Vis enkel innførsel

dc.contributor.authorWrzesien, Melissa L.
dc.contributor.authorPavelsky, Tamlin M.
dc.contributor.authorSobolowski, Stefan Pieter
dc.contributor.authorHuning, Laurie S.
dc.contributor.authorCohen, Jonathan S.
dc.contributor.authorHerman, Jonathan D.
dc.date.accessioned2023-09-20T07:40:53Z
dc.date.available2023-09-20T07:40:53Z
dc.date.created2022-11-21T09:00:17Z
dc.date.issued2022
dc.identifier.citationFrontiers in Earth Science. 2022, 10 .en_US
dc.identifier.issn2296-6463
dc.identifier.urihttps://hdl.handle.net/11250/3090664
dc.description.abstractCool season precipitation plays a critical role in regional water resource management in the western United States. Throughout the twenty-first century, regional precipitation will be impacted by rising temperatures and changing circulation patterns. Changes to precipitation magnitude remain challenging to project; however, precipitation phase is largely dependent on temperature, and temperature predictions from global climate models are generally in agreement. To understand the implications of this dependence, we investigate projected patterns in changing precipitation phase for mountain areas of the western United States over the twenty-first century and how shifts from snow to rain may impact runoff. We downscale two bias-corrected global climate models for historical and end-century decades with the Weather Research and Forecasting (WRF) regional climate model to estimate precipitation phase and spatial patterns at high spatial resolution (9 km). For future decades, we use the RCP 8.5 scenario, which may be considered a very high baseline emissions scenario to quantify snow season differences over major mountain chains in the western U.S. Under this scenario, the average annual snowfall fraction over the Sierra Nevada decreases by >45% by the end of the century. In contrast, for the colder Rocky Mountains, the snowfall fraction decreases by 29%. Streamflow peaks in basins draining the Sierra Nevada are projected to arrive nearly a month earlier by the end of the century. By coupling WRF with a water resources model, we estimate that California reservoirs will shift towards earlier maximum storage by 1–2 months, suggesting that water management strategies will need to adapt to changes in streamflow magnitude and timing.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectNedbøren_US
dc.subjectPrecipitationen_US
dc.subjectVannressursforvaltningen_US
dc.subjectWater Resources Managementen_US
dc.titleTracking the impacts of precipitation phase changes through the hydrologic cycle in snowy regions: From precipitation to reservoir storageen_US
dc.title.alternativeTracking the impacts of precipitation phase changes through the hydrologic cycle in snowy regions: From precipitation to reservoir storageen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.rights.holder© 2022 Wrzesien, Pavelsky, Sobolowski, Huning, Cohen and Hermanen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3389/feart.2022.995874
dc.identifier.cristin2076984
dc.source.journalFrontiers in Earth Scienceen_US
dc.source.volume10en_US
dc.source.pagenumber21en_US
dc.relation.projectAndre: (INFEWS) grant CNS-1639268en_US
dc.relation.projectAndre: Coupled Natural and Human Systems (CNH) grant 2009726en_US
dc.relation.projectAndre: University of Texas at Austin, allocation TGATM19008en_US
dc.subject.nsiVDP::Geofag: 450en_US
dc.subject.nsiVDP::Geosciences: 450en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal