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Cool season precipitation plays a critical role in regional water resource

management in the western United States. Throughout the twenty-first century,

regional precipitation will be impacted by rising temperatures and changing

circulation patterns. Changes to precipitation magnitude remain challenging to

project; however, precipitation phase is largely dependent on temperature, and

temperature predictions from global climatemodels are generally in agreement. To

understand the implicationsof this dependence,we investigateprojectedpatterns in

changing precipitation phase for mountain areas of the western United States over

the twenty-first century and how shifts from snow to rain may impact runoff. We

downscale two bias-corrected global climatemodels for historical and end-century

decades with the Weather Research and Forecasting (WRF) regional climate model

to estimate precipitation phase and spatial patterns at high spatial resolution (9 km).

For future decades, we use the RCP 8.5 scenario, which may be considered a very

high baseline emissions scenario to quantify snow season differences over major

mountain chains in thewesternU.S.Under this scenario, the averageannual snowfall

fraction over the Sierra Nevada decreases by >45% by the end of the century. In

contrast, for the colder Rocky Mountains, the snowfall fraction decreases by 29%.

Streamflowpeaks in basins draining the SierraNevada areprojected to arrivenearly a

month earlier by the end of the century. By coupling WRF with a water resources

model, we estimate that California reservoirs will shift towards earlier maximum

storage by 1–2 months, suggesting that water management strategies will need to

adapt to changes in streamflow magnitude and timing.
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1 Introduction

Snow accumulation and snowmelt are fundamental

components in regional water budgets for mountainous areas.

In semi-arid regions, like much of the western United States,

mountain snowmelt plays an outsized role in downstream river

runoff (Li et al., 2017), highlighting the importance of snow for

driving regional water storage (Zhou et al., 2015). Numerous

studies have reported historical changes in snow-related

variables, including decreased snow accumulation (Mote 2003;

Grundstein and Mote 2010; Fyfe et al., 2017; Mote et al., 2018),

declining snowfall (Knowles et al., 2006), and earlier spring

streamflow peaks (Dettinger et al., 2004; Stewart et al., 2004;

Maurer et al., 2007; Schwartz et al., 2017). In addition to studying

these historical changes, it is important for local and regional

water managers to know how snow resources may continue to

change in response to the climate of the coming century to

develop new adaptation and operation strategies. Furthermore,

to facilitate informed decision-making, a more holistic picture of

the hydrologic cycle is required–one in which warming causes

changes in precipitation phase that manifest in downstream

reservoir management approaches.

While global climate models (GCMs) are useful tools for

understanding continental-scale variability and change (Taylor

et al., 2012; Knutson et al., 2013; Knutti and Sedláček 2013;

Eyring et al., 2016), their coarse grid spacing (on the order of

100 km or larger) limits their use over regions on the scale of a

single mountain range or watershed (Maraun et al., 2010). In

general, datasets at this resolution underestimate mountain

snowpack, often by an order of magnitude (Broxton et al.,

2016; Snauffer et al., 2016; Wrzesien et al., 2017, 2019).

Therefore, multiple techniques have been developed to

downscale GCM output to a more appropriate resolution for

regional applications, including statistical downscaling (Barnett

et al., 2008; Wang and Zhang 2008; Alder and Hostetler, 2019)

and dynamical downscaling through a regional climate model

(RCM; Liu et al., 2017; Walton et al., 2017; Wrzesien and

Pavelsky 2020). Among the most popular tools for dynamical

downscaling is the Weather Research and Forecasting (WRF)

RCM, which has been used extensively to study western U.S.

hydroclimate (Liu et al., 2017; Musselman et al., 2017, 2018;

Letcher and Minder, 2018; Wrzesien et al., 2017, 2018)

To investigate potential future changes to snow accumulation

and melt, we must first understand how precipitation may

change. However, end-century projections from GCMs for

precipitation are often in disagreement with one another and

have large intermodel spread (Sillmann et al., 2013;

Langenbrunner et al., 2015; Shen et al., 2018; Yazdandoost

et al., 2021). Temperature projections, on the other hand,

generally have a consensus between models on the sign of the

temperature projections, though not necessarily on the

magnitude of warming (IPCC et al., 2021). Therefore, it is

more feasible to study the changing precipitation

phase–particularly the extent to which snowfall will transition

to rainfall–since precipitation phase is strongly tied to

temperature. By assessing changes to precipitation phase by

the end of the twenty-first century, in this study, we aim to

understand potential downstream impacts of those changes,

including changes to snow accumulation, the length of the

snow season, and the timing and magnitude of streamflow.

Other studies have evaluated projected changes to snowpack

and snowfall (Krasting et al., 2013; Rhoades et al., 2018; Ikeda

et al., 2021), shifts from snow to rain (Klos et al., 2014; Rhoades

A.et al., 2018; Catalano et al., 2019; McCrary and Mearns, 2019),

and related impacts on streamflow (Islam et al., 2019) through

dynamical downscaling of GCMs (Rhoades et al., 2018; McCrary

and Mearns, 2019), statistical downscaling of GCMs (Klos et al.,

2014; Islam et al., 2019), or using a pseudo-global warming

approach (PGW; Ikeda et al., 2021). However, the latter two

approaches of statistical downscaling and PGW require

assumptions about climate stationarity, such as historical

spatial patterns in precipitation. These assumptions are

avoided by a fully dynamical downscaling approach. Few

dynamical studies have mapped the cascading impact of

projected changes in precipitation phase through the full

water cycle, including snowpack, streamflow, and water

management. Therefore, we approach this future water

resources challenge with a dynamical, holistic framework to

provide a much-needed, yet often unexplored resource

management perspective.

Water management is a particularly important topic in semi-

arid regions like the western United States (Tidwell et al., 2014).

In order to understand the implications of changing precipitation

phase for water management, it is essential to accurately simulate

precipitation, runoff generation, and the operating policies of

downstream reservoirs. This connection is relevant for climate

assessment because reservoirs will offset some of the detrimental

impacts of snowpack decline, including the seasonal shift in

water availability for agriculture (Qin et al., 2020) and the risk of

rain-on-snow flood events (Huang et al., 2018). Dynamical

downscaling with WRF has previously been linked to

reservoir operations models for historical simulations (e.g.,

Holtzman et al., 2020), though the combination has not yet

been used for future projections. We connect a water resources

model with high-resolution RCM output to enable detailed

estimates of how reservoir system operations may need to

adapt due to climate change.

In this paper, we use a multimodel framework to project how

future hydroclimate conditions over the western United States

may respond to altered precipitation phase in a warming climate.

We aim to address three main questions, all related to following

the hydrologic process chain, from precipitation to snow

accumulation to streamflow to management:

1) To what extent will winter precipitation shift from snowfall to

rainfall by the end of the twenty-first century?
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2) What impacts will a projected precipitation phase shift have

on downstream variables, such as snow and streamflow, both

in terms of magnitude and timing?

3) How will reservoir operations be impacted by projected

hydroclimatic changes?

To address these questions, we use WRF to downscale two

GCMs over the western United States for two decade-long

periods–historical and end-century. As part of these WRF

simulations, we use a modified version of the Noah-MP land

surface model that is designed to provide better simulations of

runoff in mountain regions (Holtzman et al., 2020). We then use

the resultingWRF/Noah-MP simulations to drive the Operations

of Reservoirs in California (ORCA) reservoir operations model,

representing selected Sierra Nevada basins (Cohen et al., 2020).

Further details on the model setup are described in Section 2,

including the bias adjustment procedure for both the GCM data

and the streamflow output from WRF and the ORCA model. In

Section 3, we present results, and in Section 4, we discuss

implications for projected hydroclimatic changes on water

resource availability and water management.

2 Methods

2.1 Regional climate model domain and
setup

We downscale two GCMs using WRF version 4.0.3

(Skamarock et al., 2019) with the Noah land surface model

with multi-parameterization options (Noah-MP; Niu et al.,

2011). Meteorological forcing data are from the Community

Climate System Model version 4 (CCSM4; Gent et al., 2011;

Lawrence et al., 2011; Neale et al., 2013) and the Norwegian

Earth SystemModel (NorESM1-M; Bentsen et al., 2012; Iversen

et al., 2013), both under a high emissions scenario (RCP 8.5).

While it is preferable to generate a multi-model ensemble, the

computational costs of running a high resolution regional

model for many ensemble members over a domain as large

as ours are prohibitively high. CCSM4 and NorESM1-M are

chosen due to the fact that they sit near the CMIP5 multi-model

ensemble mean (Supplementary Figure S1) for both transient

climate response and equilibrium climate sensitivity (IPCC,

2021). For the study domain, NorESM is within 0.34 mm and

0.023°C of the CMIP5 ensemble average for annual

precipitation and annual temperature, respectively over the

selected historical decade (Supplementary Figure S1); for the

end-century period, NorESM is slightly cooler (0.35°C) and

slightly wetter (13.45 mm) than the ensemble average.

Similarly, CCSM is close to the ensemble average for the

western US domain for average temperature (0.022°C),

though drier than the ensemble average by 11.74 mm over

the historical decade (Supplementary Figure S1). For end-

century, CCSM is 0.47°C degrees cooler than the ensemble

average and 19.50 mm drier. Results are similar if we subset the

CMIP5 GCMs to only consider mountainous regions in the

western US study domain.

The choice of RCP8.5 was made in order to provide a

physically plausible “worst case” scenario based on a high

emissions baseline (van Vuuren et al., 2011). This extreme or

upper bound scenario has been widely used in previous snow-

related literature (e.g., Musselman et al., 2017, 2018; Rhoades

A.et al., 2018; Ullrich et al., 2018; Siirilia-Woodburn et al., 2021).

Table 1 includes details on CCSM4 and NorESM1-M. Prior to

using either CCSM4 or NorESM1-M as initial and boundary

conditions for WRF, we first bias adjust the GCMs; details on the

bias adjustment procedure are below in Section 2.2.

Here we use a two-way nested domain, where the outer

domain has a spatial resolution of 27 km and the inner domain a

resolution of 9 km (Supplementary Figure S2, S3). The 27 km

domain covers North America, while the 9 km inner domain

zooms in on the western United States and southwestern Canada,

from the Pacific Coast to east of the Rocky Mountains. Previous

work suggests a model grid cell resolution of <10 km is necessary

to accurately reproduce orographic precipitation (Ikeda et al.,

2010; Pavelsky et al., 2011; Rasmussen et al., 2011; Minder et al.,

2016; Wrzesien et al., 2017; Wrzesien et al., 2018). Although

convective processes are not necessarily captured well at this

resolution, past work suggests that cool season precipitation in

the western U.S. is similar at convection parameterized (~9 km)

and convection permitting (~3 km) resolutions (Pavelsky et al.,

2011; Wrzesien et al., 2017). Here analysis is performed on the

9 km domain.

While we are interested in precipitation patterns across the

full western U.S., we will only analyze streamflow in the Sierra

Nevada region since the ORCA model is designed for selected

Sierra Nevada basins that are critical to California’s water

resources. Given the importance of these types of precipitation

phase through management studies, we provide a guiding

framework for analysis of reservoir operations of other

hydrologically-relevant western U.S. basins. Following

previous work (Holtzman et al., 2020), we modify Noah-MP

to improve streamflow simulations for basins in the Sierra

Nevada, including updating the snow capacitance, subsurface

flow slope, and depth of subsurface runoff generation. All WRF/

Noah-MP modifications are detailed in Table 2. We also apply a

statistical aquifer correction algorithm based on comparisons to

estimates of full natural flow (FNF), which improves simulated

baseflow for basins with headwaters in the Sierra Nevada

(Holtzman et al., 2020).

For the WRF setup, we select the following physics schemes:

the Thompson et al. (2008) cloud microphysics scheme, the

Rapid Radiative Transfer Model longwave scheme (Mlawer et al.,

1997), the Dudhia shortwave scheme (Dudhia 1989), the Yonsei

University planetary boundary layer scheme (Hong et al., 2006),

and the modified Kain–Fritsch convective parameterization for
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the outer domain (Kain & Fritsch, 1990; Kain & Fritsch, 1993;

Kain, 2004). We also apply two-way spectral nudging to wind,

geopotential height, temperature, and water vapor mixing ratio;

nudging to temperature and moisture are only applied within the

free troposphere, following recent literature on nudging for

regional climate purposes (Spero et al., 2018, 2014). Previous

studies show that applying spectral nudging to bias-corrected

GCM forcing data helps to reduce biases introduced from both

the GCM and the RCM, particularly climate drifts in the center of

the model domain (Wang and Kotamarthi, 2015; Xu and Yang,

2015).

WRF simulations are performed for two separate decadal

periods: historical (water years (WYs) 1996–2005) and end-

century (WYs 2091–2100). We include an additional year in

each decadal simulation for model spin-up (WYs 1995 and

2090), but those years are not included in the analysis

presented here. We recognize that it would be desirable to use

multidecade averages, but this was not possible due to the

computational expense of running WRF. Instead, we

performed an analysis to ensure that we selected

representative decades in terms of precipitation and

temperature relative to the combined historical and

RCP8.5 data spanning 1900–2100 from CCSM4. For example,

we would not want to use a decade that, through random

variability, represented an extreme drought or wet period in

the model. For this analysis, we first detrended the data and

deseasonalized all data by removing the mean seasonal cycle.

Note that this process did not remove seasonality in precipitation

or temperature variability. We then compared the decades we

chose to all possible 10 year periods for precipitation and

temperature (Supplementary Figure S4). We observed that

while individual months and occasionally multiple consecutive

months fell outside of 1 standard deviation ranges, we did not

observe systematic anomalies for either the historical decade or

the end century decade from CCSM4. Further, the selected

historical decade is in the 69th percentile of historical decadal

averages for temperature, and the selected end-century decade is

in the 48th percentile of projected decadal averages for

temperature. Similarly, the selected historical decade is in the

61st percentile of historical decadal averages for precipitation,

and the selected end-century decade is in the 15th percentile of

projected decadal averages for precipitation. As such, we feel

confident that our results are not substantially affected by the

inadvertent selection of a highly anomalous decade.

2.2 Bias adjustment of GCM data

Both GCMs and RCMs suffer from biases arising from poorly

resolved physics, model errors and parameter uncertainty. As

such, some form of bias adjustment is often needed prior to

downscaled data being used in impacts models. There is no

agreed-upon optimal bias adjustment approach, and many create

as many problems as they solve (Maraun et al., 2010). One

approach that has shown some promise in recent years, and that

we apply here, is to adjust the GCM input to the RCM so that

large-scale biases inherent to the GCM are at least partly

ameliorated. For our WRF forcing data, we use CCSM4 and

NorESM1-M simulations that have already been bias adjusted

following the Bruyère et al. (2014) method. This method adjusts

GCM mean values toward the ERA-Interim (Dee et al., 2011)

mean, calculated from the 1981–2005 period. Over the

TABLE 1 Model characteristics.

Model Full name Institution Resolution References

CCSM4 Community Climate System Model,
version 4

National Center for Atmospheric
Research

0.9 deg x 1.25 deg Gent et al. (2011); Lawrence et al. (2011); Neale et al.
(2013)

NorESM1-
M

Norwegian Earth System Model,
version 1

Norwegian Climate Centre 1.89 deg x 2.5 deg Bentsen et al. (2012); Iversen et al. (2013)

TABLE 2 Noah-MP modifications.

Category Default assumption Modification

Snow capacitance (in microphysics scheme) Vary linearly from 0.15 at -1.5°C to 0.5 at -30°C Constant value of 0.2

Soil type Default soil texture map Sand and ice grid cells changed to sandy loam

Soil porosity for sandy loam 0.434 0.52

Slope to calculate subsurface flow 0.1 0.5

Depth of subsurface runoff generation Deepest soil layer, from 1 to 2 m below the surface Second-from-top soil layer, from 10 to 30 cm below the surface

Rain-snow partitioning Function of 2-m air temperature (opt_snf = 1) Allow microphysics scheme to partition precipitation (opt_snf = 4)
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1981–2005 reference period, GCM 6-hourly data are separated

into a monthly mean and a deviation. To calculate the bias-

corrected GCM output, the monthly mean from ERA-Interim

and the GCM deviation are combined. Therefore, the Bruyère

et al. (2014) method corrects for mean errors in the GCM but

incorporates the climate variability from the GCM. The following

equations are used in the bias adjustment:

ERAIref � ERAIref + ERAI′ (1)
GCM � GCMref + GCM′ (2)
GCMBC � ERAIref + GCM′ (3)

In the above equations, the subscript ref stands for the reference

period over which the bias adjustment is calculated, the overbar

signifies the monthly mean, and the prime signifies the deviation

from the mean. For future years, the 6-hourly deviations are

applied to monthly means from the historical reference period;

that is, deviations from 2006–2100 are applied to ERA-Interim

monthly means over 1981–2005.

Bias adjustment is applied to correct the mean bias in 3-D

fields and in surface fields. Bias adjusted 3-D fields include

geopotential height, wind, temperature, and humidity; surface

fields include surface pressure, sea level pressure, sea surface

temperature, skin temperature, soil temperature, and soil

moisture (Bruyère et al., 2014). This method retains the GCM

variability in the initial and lateral boundary conditions forWRF.

The Bruyère et al. (2014) method has been applied successfully in

other studies to bias adjust GCMs (e.g., Wang and Kotamarthi

2015; Pontoppidan et al., 2018; Wrzesien and Pavelsky, 2020). It

must be noted that, due to biases arising from parameterized

processes in any chosen RCM, further bias adjustment of the

RCM output is still often needed prior to its use in downstream

impact modeling (Malek et al., 2022).

2.3 Comparison metrics

Instead of comparing historical and end-century

precipitation magnitudes, here we consider how spatial

patterns of precipitation phase may change. Specifically, we

compare historical values of snowfall fraction, or simply the

ratio of snowfall to total precipitation, to end-century values. We

calculate cool season (October through March) snowfall fraction

and compare the two downscaled GCMs for the historical and

end-century periods.

In addition to comparing snow accumulation and peak

SWE timing, we also consider how snow cover duration (SCD)

may change throughout the twenty-first century. We calculate

the maximum continuous SCD for each year in both the

historical and end-century decades; for our evaluation, we

compare decadal average continuous SCD. Within the

literature, a SCD of 2 months or more is generally

described as seasonal snow (Sturm et al., 1995); regions

with SCD of less than 2 months have intermittent or

ephemeral snow. Here we evaluate the end-century

projections against the historical simulations to estimate

the extent to which SCD may change throughout the

western U.S., resulting in some areas shifting from seasonal

to ephemeral snow, which can largely impact runoff and water

availability timing and magnitude downstream.

Prior to projecting how future streamflow may be affected by

changes to precipitation patterns, we first bias adjust the WRF-

generated streamflow estimates. We compare historical

simulations to estimates of “unimpaired” or “full nature flow”

(FNF) for eight Sierra Nevada basins (Huang et al., 2018), which

are available for download from the California Data Exchange

Center. We include an additional four basins with headwaters in

the Sierra Nevada that do not have FNF data available. Basins

with sufficient available data were selected, spanning the entire

Sierra Nevada, which also matches those analyzed by Holtzmann

et al. (2020). FNF values are meant to provide an estimate of what

streamflow would be without diversions for irrigation or other

human interventions. Over each basin, we compare FNF and

WRF decade-averaged hydrographs to calculate a basin-specific

percent bias.We average the eight individual percent biases into a

Sierra Nevada mean percent bias for each downscaled GCM. This

mean bias approach allows us to apply the bias adjustment to all

twelve basins of interest (Supplementary Figure S2) and to the

end-century decade. WRF/CCSM streamflow estimates are

shifted by +15% and WRF/NorESM estimates are shifted

by -28%.

2.4 ORCA model

Water resources management is represented by the

Operations of Reservoirs in California (ORCA) model for

selected river basins in the Sierra Nevada (Cohen et al., 2020).

This region, like many in the western U.S., must manage

substantial intra- and inter-annual variability in precipitation

with a complex network of (aging) reservoir infrastructure.

Specifically, the model simulates operations of Shasta,

Oroville, and Folsom reservoirs, located in the Sacramento,

Feather, and American river basins, respectively, as well as the

management of water supply infrastructure in the

Sacramento-San Joaquin Delta. This system serves multiple

purposes, including agricultural water supply and flood

control, that are expected to be impacted by snowpack

decline. The modeled operating policies are estimated from

agency manuals, and they lead to a daily mass balance update

in which a target release is determined by the greatest of three

minimum operating requirements: environmental flows, flood

control releases, and water demand. ORCA is open source

(https://github.com/jscohen4/orca) and has been shown to

accurately reproduce historical operations in prior work,

with the Nash-Sutcliffe Efficiency (NSE) of reservoir
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storage exceeding 0.8. More simulation details are provided by

Cohen et al. (2020).

Here we evaluate the ORCA model with daily inputs from

WRF over the historical (WY 1996–2005) and end-century

(2091–2100) periods. The input variables include reservoir

inflows, SWE, temperature, and precipitation. While prior

studies of this system have employed relatively coarse

statistically-downscaled GCM projections to determine

impacts of climate change (e.g., Robinson et al., 2020; Cohen

et al., 2021), the model has not been investigated with high-

resolution, dynamically downscaled hydrological inputs and

such investigations tend to remain unexplored across large

regions of the western U.S. Previous studies such as Qin et al.

(2020), indicate that with changing snowmelt timing,

alternative water sources and practices are needed for

specific applications such as agricultural irrigation. By

primarily focusing on reservoir storage, which affects these

applications, in this study we determine the extent to which

the infrastructure operations may have to compensate for

seasonal shifts in runoff timing and potential loss of

snowpack, to minimize the potential impacts to millions of

people that rely on these reservoirs to deliver water for their

domestic, agricultural, and industrial uses.

3 Results

3.1 WRF and GCM comparison

We first compare decade-averaged annual temperature and

annual precipitation from the WRF downscaled estimates to

native GCM output for each model (Figure 1 and Figure 2,

respectively). Broadly speaking, historical spatial patterns of

temperature and precipitation across the western U.S. domain

have similarities between the coarse resolution global datasets

and the fine resolution WRF estimates. For example, for annual

precipitation (Figure 2), we see a local maximum in the Pacific

Northwest/Southwest Canada fromGCMs andWRF downscaled

results. For decade-averaged annual temperature, all datasets

have warm temperatures in the desert southwest and colder

temperatures in Canada and along the Rocky Mountains.

However, neither CCSM nor NorESM appear to have fine

enough spatial resolution to capture either cooler

temperatures in the Sierra Nevada and Cascade Mountains or

orographic enhancement of precipitation in the mountains along

the west coast, particularly in NorESM, which has a grid

resolution of 1.89° # 2.5° (~200 km). Due to finer grid spatial

resolution and more realistic topography, WRF simulations

FIGURE 1
Comparison of annual mean temperature, averaged over the historical decade (water years 1996–2005) from (A,B)CCSM4 and (C,D)NorESM1-
M. The WRF estimates (A,C) are at 9 km spatial resolution and the GCM estimates (B,D) are at the GCM native resolution.
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result in a more detailed representation of both temperature and

precipitation (Wrzesien et al., 2019).

Differences between WRF and the GCMs are particularly

stark when comparing SWE (Figure 3). While the GCMs do have

some snow throughout the domain (e.g., NorESM in Figure 3),

magnitudes are much less than expected, particularly when

compared to the corresponding WRF simulation. Low SWE

magnitudes in a coarse resolution GCM are not unexpected:

previous work found that coarser resolution models and

reanalysis underestimate mountain snow, often by more than

an order of magnitude (Broxton et al., 2016; Snauffer et al., 2016;

Wrzesien et al., 2017, 2019). Most notably, the WRF results have

large values of SWE (>500 mm) in the Sierra Nevada, Cascades,

Colorado Rockies, and southwestern British Columbia, all

regions with little to no snow accumulation in the GCM.

Based on the WRF simulations, we can appreciate the impact

of topography on both precipitation and snow accumulation

processes. By design, GCMs with grid resolution ≥1° cannot

resolve realistic surface elevations, which may cause biases in

surface temperature and precipitation, among other

hydroclimate variables. Using WRF to dynamically downscale

the GCMs presents a method for translating GCM output onto a

finer resolution grid, which is particularly important in regions

with complex topography, such as the western United States.

Improved topographic and process representations can translate

into more realistic precipitation partitioning and SWE amounts,

which are needed for understanding the propagating impact of

changing SWE on other components of the hydrologic cycle (e.g.,

evapotranspiration, soil moisture, runoff, streamflow), wildfires,

ecology, and socioeconomics (Huning and AghaKouchak, 2020;

Siirila-Woodburn et al., 2021).

We note that the GCMs and WRF have differing rain-snow

partitioning schemes, which would impact snowfall and snow

accumulation estimates from each model. Both CCSM4 and

NorESM1 use the Community Atmosphere Model version 4

(CAM4; Neale et al., 2010) for the atmospheric component of the

GCM. In CAM4, the fraction of precipitation that falls as snow is

the following function of temperature:

fs � T − Ts,max

Ts,min − Ts,max
, T min ≤T≤Tmax (4)

With fs(T<Ts,min) � 1 and fs(T>Ts,max) � 0 and where

Tmin � −5℃ and Tmax � 0℃. Therefore, for temperatures

greater than 0℃, the snowfall fraction is set to 0 and for

temperatures below −5℃, the snowfall fraction is set to 0. In

contrast, the precipitation partitioning in the Noah-MP land

surface model comes from the microphysics component of WRF;

in the case of our simulations, we use the Thompson et al. (2008)

cloud microphysics scheme. The Thompson scheme represents a

range of hydrometeors, including rain, snow, and graupel. The

distribution of snow size depends on both temperature and the

ice water content of the hydrometeor and is ultimately

represented through exponential and gamma distributions.

The generation of hydrometeors, include raindrops and

FIGURE 2
As for Figure 1 but for annual precipitation. (A–D) represent WRF/CCSM4, CCSM4, WRF/NorESM1-M, and NorESM1-M, respectively.
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snowflakes, in the Thompson scheme is more complex than

partitioning options in the Noah-MP land surface model, and

previous tests demonstrated better performance when rain vs

snow is determined by the microphysics scheme as opposed to

the land surface model (Holtzman et al., 2020). The

CAM4 partitioning scheme will not impact the phase of the

WRF precipitation, but such model parameterizations are

important to consider when comparing snow variables

between a GCM and a GCM-driven WRF simulation (e.g.,

Figure 3) since we would expect some differences due to

precipitation partitioning schemes.

3.2 Precipitation magnitude and phase

To assess how western U.S. hydroclimate may change by

2100, we first compare annual precipitation between our

historical and end-century study decades from the two

WRF/GCM simulations (Figure 4). The historical decades

from each WRF/GCM scenario have similar magnitudes for

average annual precipitation (somewhat by design since both

GCMs are biased adjusted against ERA-Interim data), but the

percent differences by end-century largely diverge. WRF/

CCSM and WRF/NorESM exhibit similar spatial patterns of

precipitation change, with the Pacific Northwest getting wetter

and the desert southwest getting drier, which agree with

previous projection studies (Gutzler and Robbins 2011;

Kumar et al., 2013; Baker and Huang 2014). The dipole

pattern, however, is shifted further south in the WRF/

NorESM simulations, with projected precipitation increases

as far south as northern Utah and Colorado. A small shift in

the dipole could have far-reaching implications. Consider the

Upper Colorado River basin: in WRF/CCSM, end-century

annual precipitation is projected to have a 7% decrease,

while in WRF/NorESM, precipitation is projected to increase

by 5%. In already stressed or over-allocated regions such as the

Colorado River (Tidwell et al., 2014), a small decrease in

precipitation may add further strain to the system and

enhance anthropogenic drought across regions where

increasing population centers drive increasing water

demands and competition for resources (AghaKouchak et al.,

2021). It is also important to consider that many arid and/or

snow-free regions depend on precipitation and snowmelt-

derived water from remote mountainous regions through

imported water, meaning that a small change in one

location’s precipitation may not just have direct local

impacts, but rather widespread implications that cascade

through various sectors. Overall, NorESM has larger

differences by end-century, with annual precipitation

projected to increase by 13%, on average, for all land pixels

FIGURE 3
As for Figure 1 but for peak snow water equivalent. (A–D) represent WRF/CCSM4, CCSM4, WRF/NorESM1-M, and NorESM1-M, respectively.
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within the domain, compared to an average increase of less than

1% for CCSM.

For precipitation phase, we compare projected changes in

snowfall fraction, or the ratio of snowfall to total precipitation,

between the two WRF experiments (Figure 5). Consistent with

warming temperatures, widespread declines in snowfall fraction

are projected across the western U.S. and southwestern Canada.

Here we consider four major western mountain regions: Sierra

Nevada, Cascades, Great Basin, and U.S. Rockies (see

Supplementary Figure S2). For these four regions, the cool

season snowfall fraction is projected to decline by up to 55%

when averaged over each mountain range (Supplementary Table

S2). For example, the U.S. Rockies, the coldest range in our study

area, are projected to experience snowfall fraction declines of

between 28% (WRF/NorESM) and 35% (WRF/CCSM). High

elevation regions, such as the Colorado Rockies and the Sierra

Nevada, have smaller declines relative to surrounding non-

mountain areas due to cooler temperatures. For the four

major western mountain regions we consider here, nearly all

grid cells are projected to experience decreases to snowfall

fraction by end-century, with the largest decreases at the

lower elevations (Figure 6); decreases at low elevations are not

unexpected since these areas already have the warmest

temperatures and tend to have the smallest snow

accumulations. Elevations where half of the winter

precipitation falls as snow are projected to shift higher; from

both downscaled GCMs, the elevation change is projected to be

the smallest for the Cascades (+398 m for WRF/CCSM and

+313 m for WRF/NorESM), while the change is the largest for

the Sierra Nevada (+661 m from WRF/CCSM and +586 m from

WRF/NorESM). This elevational increase can be accompanied by

a change in the likelihood of rain-on-snow events and flooding

potential given the hypsometry of a basin as well as a change in

timing and magnitude of mountain water storage. Over the four

mountain ranges, the projected increase in elevation is larger in

the WRF/CCSM simulations. This potentially suggests that the

higher transient climate response of CCSM GCM (1.8 K)

compared to NorESM (1.4 K) (IPCC, 2021) manifests as a

higher regional warming signal.

3.3 Snow accumulation and duration

In addition to snowfall fraction, we compare historical and

future estimates for snow accumulation and snow duration. First,

we consider how the selected decades compare to the longer

record by considering the historical period of 1900–2005 from

the CCSM GCM simulation (Supplementary Figure S5). The

selected historical decade of 1996–2005 is within expected

variability of domain-averaged SWE for the 100+ year period.

FIGURE 4
Decade-averaged annual precipitation for (A,C) historical decade and (B,D) percent difference by end-century from (A,B)WRF/CCSM and (C,D)
WRF/NorESM.
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The selected end-century decade of 2091–2100 is well outside

natural variability for the region, suggesting that the differences

we consider here between the historical and end-century decades

for SWE magnitude and timing are related to impacts of a

changing climate.

For snow accumulation, we compare grid cell peak SWE

(Figure 7). For most of the model domain, SWE is projected to

decline by end-century in both GCM scenarios. When

comparing percent difference in SWE by end-century, it is

evident, particularly in the Sierra Nevada and the Colorado

Rocky Mountains, that higher elevations are projected to have

smaller declines than low to mid-elevations; this is similar to

snowfall fraction changes and attributable to cooler

temperatures at high elevations as compared to surrounding

low lying areas.

Range-wide snow water storage (SWS), or the volume of

water stored as snow, is projected to decline by 24–68%,

depending on mountain range and GCM (Table 3; Figure 8).

In each WRF/GCM simulation, mountains areas of the Great

Basin are projected to have the largest percent decline in SWS,

while the Cascades and U.S. Rockies are projected to have

larger decreases in SWS magnitude. Though both GCM

projections suggest decreases to maximum range-scale

SWS, declines are larger from WRF/CCSM, with projected

decreases up to 40 percentage points larger than WRF/

NorESM. Projected end-century SWS values are most

similar for the Sierra Nevada, with 7.1 km3 from WRF/

CCSM and 7.3 km3 from WRF/NorESM; however, since

WRF/CCSM historical simulations have 4.4 km3 more

snow in the Sierra Nevada than WRF/NorESM, the end-

century changes still are ~16 percentage point larger in

WRF/CCSM.

Not only is there likely to be less snow accumulating, but the

length of the snow season is projected to change and in the

future, seasonal snow may be at-risk of transitioning to

ephemeral conditions where snow does not persist (Hatchett

2021). Continuous SCD is projected to have widespread

declines across the full model domain (Figure 9); large

decreases are projected across high elevation areas,

particularly the warm maritime ranges of the Sierra Nevada,

Cascades, and southern Coast Mountains of British Columbia,

where decreases of 73–75 days from WRF/CCSM are expected

(a decline of 45–54 days from WRF/NorESM). The highest

elevation areas in the WRF domain (elevation ≥3,000 m) are

projected to have SCD declines of 47 and 59 days, on average,

by the end century from WRF/CCSM and WRF/NorESM

simulations, respectively.

To estimate whether there is a relationship between snowfall

fraction and snow duration, we compare historical values of

snowfall fraction over each mountain range to SCD from the

historical and end-century periods (Figure 10). By holding

snowfall fraction constant at historical levels, we can compare

FIGURE 5
As for Figure 4 but for snowfall fraction. (A,B) are for WRF/CCSM and (C,D) are for WRF/NorESM.
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how SCD changes for the same group of grid cells. When

comparing the same mountain grid cells between the

historical and end-century decades, we see large decreases in

continuous snow duration for all snowfall fraction values. That is,

over the same set of grid cells, we project average decreases to the

snow season of up to 74 days. Relationships are similar between

WRF/CCSM and WRF/NorESM, though snow duration by the

end-century tends to be less in WRF/CCSM.

3.4 Streamflow and reservoir operations

In addition to precipitation and snow accumulation, we

consider how streamflow in the Sierra Nevada may be

impacted by climate warming. First, we compare WRF-

generated streamflow over eight basins in the Sierra Nevada

to estimates of full natural flow (FNF) (Figure 11). Since we

would not expect GCM output to match observations for a

FIGURE 6
(A,C,E,G) Relationship between snowfall fraction and elevation for individual grid cells within four mountain ranges in the western United States
for each downscaled GCM simulation (B,D,F,H) Projected snowfall fraction change across elevation.
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specific year (Taylor et al., 2012), we compare the decade-

averaged hydrographs. After bias adjustment, WRF/CCSM

and WRF/NorESM are both reasonable compared to FNF for

most basins, with NSE values >0.7 for the San Joaquin and Kings

basins from both WRF/CCSM andWRF/NorESM; the Kern also

has an NSE >0.7 from WRF/CCSM.

Next, we compare historical and end-century streamflow

estimates from downscaled simulations (Figure 12). For all

basins, future projections of bias-adjusted streamflow suggest

a decrease in spring/early summer streamflow, with an average

earlier shift of the streamflow centroid timing of 24 days from

WRF/CCSM and 31 days from WRF/NorESM (Supplementary

Table S2). Earlier streamflow centroid timing is likely due to a

shift in precipitation phase from snowfall to rainfall and

corresponding declines in snow accumulation, which also lead

to decreased spring and summer streamflow. WRF/NorESM

generally shows a shift to earlier centroid timing compared to

WRF/CCSM, which may be due to differences in peak SWE

timing. In WRF/CCSM, the day of peak SWE in the Sierra

Nevada is projected to occur 19 days later versus 30 days

earlier in WRF/NorESM. The differences in timing between

NorESM and CCSM is particularly evident in the southern

Sierra Nevada watersheds, such as the San Joaquin, Kings, and

Kaweah. Across all basins, WRF streamflow increases in the

winter and spring, likely due to increased cool season rainfall.

FromWRF/CCSM (WRF/NorESM), average cool season rainfall

is projected to increase over the Sierra Nevada by 61% (72%),

while cool season total precipitation is projected to increase by

FIGURE 7
As for Figure 4 but for grid-cell peak SWE. (A,B) are for WRF/CCSM and (C,D) are for WRF/NorESM.

TABLE 3 Maximum snow water storage (SWS) for western U.S. mountain ranges from CCSM and NorESM downscaled simulations.

Mountain
range

CCSM4 historical
(km3)

CCSM4 end-
century
(km3)

CCSM4 percent
difference

NorESM1-M
historical
(km3)

NorESM1-M end-
century
(km3)

NorESM1-
M percent
difference

Sierra Nevada 17.0 7.1 -58.1% 12.6 7.3 -42.0%

Cascades 49.2 15.1 -69.3% 40.8 28.7 -29.7%

U.S. Rockies 94.2 56.3 -40.3 87.1 65.3 -25.1%

Great Basin 12.9 2.2 -82.7% 10.0 4.1 -59.1%
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only 12% (23%). Though total precipitation may increase over

the Sierra Nevada, much of the change can be attributed to

snowfall transitioning to rainfall under warmer temperatures.

Evidence of this change is also seen in the flashiness of end-

century hydrographs, suggesting a fast response between rainfall

and streamflow instead of the typical delayed response between

snowfall and streamflow, which could pose challenges for flood

management.

When using WRF output to run the ORCA model, we can

estimate how reservoir storage may change throughout the

twenty-first century (Figure 13). Though both the historical

and end-century periods have large interannual variability

(Supplementary Figure S6), projections suggest an earlier peak

in reservoir storage for Shasta, Oroville, and Folsom in both

GCM scenarios. In results driven by WRF/NorESM, maximum

springtime storage is projected to increase by end-century in both

Shasta and Oroville reservoirs; results from WRF/CCSM,

however, show slight declines in reservoir storage following

the peak. This analysis assumes that the current system

operations remain the same in the future, such that earlier

winter inflows may not be stored due to current flood control

regulations. The largest projected change comes from WRF/

NorESM for Shasta: in nearly every month, the end-century

interannual variability is outside the range of the historical

interannual variability, likely driven by increased winter/early

spring streamflow in the Upper Sacramento basin (Figure 12)

and higher inflows into the reservoir (Supplementary Figure S7).

While this additional storage would be a benefit for water supply,

it would also pose challenges for flood control, with inflows

arriving in highly variable, rainfall-driven events rather than the

more gradual snowmelt observed historically. In contrast, WRF/

CCSM projections show much smaller changes in interannual

variability for Shasta between the historical and end-century

periods.

4 Discussion

In this study, we dynamically downscale two GCMs with

WRF to consider how mountain hydroclimate in the western

United States may change by 2100. Outputs from the model

simulations indicate how precipitation phase shifts might change

FIGURE 8
Average snow water storage, in km3, for each mountain range from the two downscaled GCMs. Solid lines show SWS averaged over the
historical decade, and dashed lines show SWS averaged over the end-century decade. (A–D) show the Sierra Nevada, the Cascades, the US Rockies,
and the Great Basin, respectively.
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precipitation patterns, how a phase shift would impact other

hydrological variables, and how reservoir operations would have

to respond to a projected precipitation phase shift. We discuss

these topics below further.

Precipitation magnitude throughout the twenty-first

century is difficult to project, and models often do not agree

(Sillmann et al., 2013; Langenbrunner et al., 2015). Indeed, we

see that tendency here in the varying precipitation response

patterns from the downscaling of the two GCMs in this study

(e.g., Figure 4). However, temperature projections tend to have

high agreement between models (IPCC, 2021). Therefore, we

consider projections of how precipitation phase - specifically

snowfall fraction - may change throughout the twenty-first

century since the rain-snow threshold is largely temperature

dependent. To evaluate precipitation phase, we compare cool

season snowfall fraction (Figure 5). For all four mountain

ranges, regardless of GCM, snowfall fraction is projected to

decline across all elevation bands. Out of all grid cells classified

as mountainous, less than 0.05% are projected to have increases

in snowfall fraction by 2100 (6 grid cells out of 14,432 total).

Shifting from snowfall to rainfall is not unexpected in a

warming climate and is in agreement with recent studies on

future climate in snow-dominated regions (Krasting et al., 2013;

Klos et al., 2014; Rhoades et al., 2018; Ikeda et al., 2021; Siirila-

Woodburn et al., 2021). With precipitation phase changes, both

WRF/GCM simulations are in agreement in the direction of the

change, though snowfall fraction declines are larger in WRF/

CCSM.

After assessing precipitation phase, we examine

“downstream” impacts - that is, how a shift from snowfall to

rainfall impacts snow accumulation, snow duration, and

streamflow timing. As expected, decreased snowfall leads to

reduced snowpacks. Both end-century WRF simulations have

less snow accumulation than the historical period, with declines

up to 80% for some mountain ranges. Snowpack declines of this

magnitude are consistent with the literature (e.g., Rhoades et al.,

2018; Siirila-Woodburn et al., 2021). In the Sierra Nevada and the

U.S. Rockies, where much of the snow is critical for the water

supply, snow water storage declines are projected inWRF/CCSM

to be on the order of -58% and -40%, respectively. For WRF/

NorESM projections, snow water storage declines are projected

to be on the order of -42% and -25% for the Sierra Nevada and

the U.S. Rockies, respectively. Such large declines will impact

water resources, possibly straining the water and energy supplies,

irrigation, and recreation with severe economic consequences

(Sturm et al., 2017).

Beyond snow accumulation magnitude, all ranges are

projected to have snow duration decrease by at least 50 days.

Sturm et al. (1995) define a seasonal snowpack as persisting for a

minimum of 2 months. By end-century, snow cover in much of

the Great Basin will no longer meet the seasonal snow criterion:

in WRF/CCSM projections, average snow duration will fall to

FIGURE 9
As for Figure 4 but for continuous snow duration. (A,B) are for WRF/CCSM and (C,D) are for WRF/NorESM.
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FIGURE 10
Relationship between continuous snow duration and historical values of snowfall fraction for fourmountain ranges in thewestern United States.
In all plots, both historical (solid lines) and end-century (dashed lines) relationships are determined with historical snowfall fraction values in order to
compare over the same grid cells. Snow duration values correspond to historical and end-century values.

FIGURE 11
(A–H) Historical decade-averaged daily runoff from eight Sierra Nevada basins with available estimates for full natural flow (FNF).
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FIGURE 12
(A–L)Differences in decade-averaged daily streamflow between historical and end-centuryWRF simulations. Positive values indicate increases
in streamflow magnitude by end century, while negative values indicate decreases.

FIGURE 13
Reservoir storage, in thousand acre feet (TAF), for lakes impounded by Shasta, Oroville, and FolsomDams in the foothills of the Sierra Nevada in
California as calculated by theORCAmodel. In each plot, the historical mean storage is reported in blue and the end-centurymean is reported in red.
Shasta Dam is on the Upper Sacramento River, Oroville Dam is on the Feather River, and Folsom Dam is on the American River.
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52 days. Much of eastern Washington/Oregon and southern

Utah (Figure 9) may also have annual snow duration decrease

below 60 days. Remarkably, the slope of the relationship between

snow duration and snowfall fraction remains very similar by end-

century (Figure 10), though at lower values of snow duration.

This consistency in relationship is even more apparent when we

compare the same relationship between snow duration and

snowfall fraction, but use each decade’s values for snowfall

fraction (Supplementary Figure S8); that is, this evaluation

does not compare snow duration over the same set of grid

cells for historical and end-century (as we do in Figure 10).

By end-century, generally, the shape of the relationship between

the two variables remains largely the same. This result suggests

that we may be able to estimate snow duration values from

snowfall fraction using a single, consistent relationship for each

range. For downscaling methods that only consider a handful of

variables (e.g., statistical downscaling), this approach may allow

for projection of an additional hydroclimatic variable, snow

duration. However, we note that our results here are from a

9 km WRF simulation and further study of the stability of this

relationship is necessary between historical and end-century at

other spatial resolutions.

Following changes to both snow accumulation and melt

timing, results indicate that changes to precipitation phase will

also impact streamflow. As snowfall shifts to rainfall, the

residence time on the surface decreases, resulting in earlier

springtime streamflow peaks: streamflow centroid timing

occurs 24 31) days earlier by 2,100 in WRF/CCSM (WRF/

NorESM) simulations. The shift in WRF/NorESM to earlier

streamflow may be due to differences in peak SWE timing; in

WRF/CCSM, the day of peak SWE in the Sierra Nevada is

projected to occur 19 days later versus 30 days earlier in

WRF/NorESM. The differences in timing between NorESM

and CCSM is particularly evident in the southern Sierra

Nevada watersheds, such as the San Joaquin, Kings, and

Kaweah. Changes to streamflow timing will directly impact

water management strategies, which are currently based on

historical records of snow magnitude and streamflow timing.

Finally, the results of our WRF-forced ORCA simulations to

estimate how reservoir operations as Shasta, Oroville, and

Folsom show that all reservoirs are projected to have an

earlier storage peak, with possible shifts up to 2 months. The

earlier peak, often in April by end-century versus historical peaks

in June, corresponds to shifts in hydrographs (Figure 12), due to a

higher rainfall fraction and earlier snowmelt. Though the largest-

magnitude changes to streamflow occur during months with

extensive snowmelt, changing summer low flows also likely have

an impact on reservoir storage. Though low flows are not a large

proportion of total annual streamflow, summer releases from the

reservoirs may be reduced by curtailments due to low snowpack

under existing operating policies, which could cause carryover

storage to increase as seen in Shasta by end-century for NorESM.

Using a reservoir system model allows us to track impacts of

changing precipitation phase and snow accumulation on

reservoir storage under current operating policies, highlighting

how water management strategies will need to adapt to not only

changes in streamflow magnitude but also in streamflow timing.

Further, as demonstrated with Shasta end-century projections,

relatively small changes to seasonal inflow patterns can produce

outsized changes in projected reservoir storage.

These findings broadly agree with prior assessments of

California water resources under climate change, which generally

indicate reduced carryover storage (Vicuna and Dracup, 2007;

Medellín-Azuara et al., 2008; Ray et al., 2020) and increased

flood risk, worsened by the loss of streamflow predictability

historically afforded by snowpack (Livneh and Badger, 2020; Liu

et al., 2021). This combination of impacts is expected to increase the

tension between water supply and flood control operations,

indicating the need for operating policies to adapt (Mateus and

Tullos, 2017; Cohen et al., 2021). However, this analysis is primarily

based on changes in precipitation phase, and does not account for

the wider range of disagreement among GCMs in the amount of

precipitation and patterns of drying and wetting. This is particularly

challenging for the extreme flood and drought events that drive

water management decisions (Dottori et al., 2018; Herman et al.,

2020). The high-resolution dynamical analysis presented here is a

step toward representing the physical drivers of these events and

understanding their consequences for reservoir management.

The future projections that we discuss here are useful for

considering regional patterns of climate change at finer spatial

resolutions than GCMs currently allow. However, it is important

to consider the limitations of our approach. First, we only

downscale two GCMs and therefore our experiments cannot

capture the full range of temperature and precipitation

projections from CMIP5 models. Since we select GCMs that

are close to the ensemble average for both the historical and

end-century decades (Supplementary Figure S1), our results

cannot consider how future snowfall or snow mass would

respond to a GCM that is hotter, colder, wetter, or drier than

the CMIP5 ensemble average. Downscaling more models would

likely produce a wider range of future precipitation and snow

projections for the western United States, but we cannot make that

conclusion without more simulations, which is beyond the scope

of this project. Therefore, our conclusions are limited to the results

that we see from only two downscaled estimates. Similarly, due to

WRF’s high computational cost, multi-decade, multi-model, high-

resolution ensemble simulations are not possible. Similar to other

studies (Gao et al., 2012; Prein et al., 2017), we only consider

decadal snapshots of western U.S. climate throughout the 20th and

21st centuries. While the snapshot approach is useful for

understanding potential hydroclimatic changes, recent literature

suggests a large ensemble approach is likely the best method for

projecting future climate; as computational resources continue to

improve, this may be a possible method with WRF. Until then,

approaches such as ours, less complex models (e.g., the

Intermediate Complexity Atmospheric Research model
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(Gutmann et al., 2016)), or a hybrid dynamical-statistical

downscaling approach (Walton et al., 2015; Sun et al., 2016;

Schwartz et al., 2017) are tools that are available for obtaining

robust projections of climate change on a mountain range or

smaller scale.

5 Conclusion

Dynamically downscaling GCM projections provides

suggestions for how hydroclimatic conditions may change over

scales that are more appropriate for local and regional planning.

Despite limitations due to the computational cost of downscaling

with WRF, we present two potential scenarios for end-century

conditions in the western United States. Both models agree on the

large-scale thermodynamically driven changes, including decreases

to snowfall fraction, decreases to snow duration, declines to peak

snow accumulation, and earlier springtime streamflow. Perhaps

more importantly from a resourcemanagement perspective, we also

demonstrate how projected changes to physical variables may

impact our water resources through reservoir system simulations.

Using tools like WRF and ORCA together is necessary for assessing

how the timing and magnitude of local water resources may be

affected by climate change. Future work should continue striving for

high-resolution climate projections, which are essential for

capturing the fine resolution hydroclimatic patterns required for

elevation-dependent snow accumulation and melt. Climate change

will impact the water resources of the western United States, and

downscaled simulations, like the ones we present here, are the first

step for understanding how water management strategies will need

to adapt.
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