Vis enkel innførsel

dc.contributor.authorNezhadali, Mohammad
dc.contributor.authorBhakta, Tuhin
dc.contributor.authorFossum, Kristian
dc.contributor.authorMannseth, Trond
dc.date.accessioned2022-07-13T07:55:12Z
dc.date.available2022-07-13T07:55:12Z
dc.date.created2022-05-04T17:22:09Z
dc.date.issued2022
dc.identifier.citationComputational Geosciences. 2022, 26 241-262.en_US
dc.identifier.issn1420-0597
dc.identifier.urihttps://hdl.handle.net/11250/3004984
dc.description.abstractIn ensemble-based data assimilation (DA), the ensemble size is usually limited to around one hundred. Straightforward application of ensemble-based DA can therefore result in significant Monte Carlo errors, often manifesting themselves as severe underestimation of parameter uncertainties. Localization is the conventional remedy for this problem. Assimilation of large amounts of simultaneous data enhances the negative effects of Monte Carlo errors. Use of lower-fidelity models reduces the computational cost per ensemble member and therefore renders the possibility to reduce Monte Carlo errors by increasing the ensemble size, but it also adds to the modeling error. Multilevel data assimilation (MLDA) uses a selection of models forming hierarchies of both computational cost and computational accuracy, and tries to balance between Monte Carlo errors and modeling errors. In this work, we assess a recently developed MLDA algorithm, the Multilevel Hybrid Ensemble Smoother (MLHES), and introduce and assess an iterative version of this algorithm, the Iterative Multilevel Hybrid Ensemble Smoother (IMLHES). In our assessments, we compare these algorithms with conventional single-level DA algorithms with localization. To this end, a typical example of large amount of spatially distributed data, i.e. inverted seismic data, is considered and three data sets of this kind are assimilated in three different petroleum reservoir models. Qualitatively evaluating the DA outcomes, it is found that multilevel algorithms outperform their conventional single-level counterparts in obtaining the posterior statistics of both uncertain parameters and model forecasts. Additionally, it is observed that IMLHES performs better than MLHES in the same regard, and also successfully converges to the proximity of solution in a case where the considered iterative single-level algorithm did not converge to the global optimum.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights© The Author(s) 2022
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleIterative multilevel assimilation of inverted seismic dataen_US
dc.title.alternativeIterative multilevel assimilation of inverted seismic dataen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1007/s10596-021-10125-3
dc.identifier.cristin2021552
dc.source.journalComputational Geosciencesen_US
dc.source.volume26en_US
dc.source.pagenumber241-262en_US
dc.relation.projectNorges forskningsråd: 295002en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal