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Abstract
In ensemble-based data assimilation (DA), the ensemble size is usually limited to around one hundred. Straightforward
application of ensemble-based DA can therefore result in significant Monte Carlo errors, often manifesting themselves as
severe underestimation of parameter uncertainties. Localization is the conventional remedy for this problem. Assimilation
of large amounts of simultaneous data enhances the negative effects of Monte Carlo errors. Use of lower-fidelity models
reduces the computational cost per ensemble member and therefore renders the possibility to reduce Monte Carlo errors by
increasing the ensemble size, but it also adds to the modeling error. Multilevel data assimilation (MLDA) uses a selection
of models forming hierarchies of both computational cost and computational accuracy, and tries to balance between Monte
Carlo errors and modeling errors. In this work, we assess a recently developed MLDA algorithm, the Multilevel Hybrid
Ensemble Smoother (MLHES), and introduce and assess an iterative version of this algorithm, the Iterative Multilevel
Hybrid Ensemble Smoother (IMLHES). In our assessments, we compare these algorithms with conventional single-level DA
algorithms with localization. To this end, a typical example of large amount of spatially distributed data, i.e. inverted seismic
data, is considered and three data sets of this kind are assimilated in three different petroleum reservoir models. Qualitatively
evaluating the DA outcomes, it is found that multilevel algorithms outperform their conventional single-level counterparts in
obtaining the posterior statistics of both uncertain parameters and model forecasts. Additionally, it is observed that IMLHES
performs better than MLHES in the same regard, and also successfully converges to the proximity of solution in a case
where the considered iterative single-level algorithm did not converge to the global optimum.
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1 Introduction

Sound decision making in petroleum reservoir management
depends on reliable production forecasts from reservoir
models, including accurate estimates of uncertainty in the
forecasts. The reliability is increased by utilization of
available data for calibration of the models.

Ensemble-based Data Assimilation (DA) methods, using
statistically correct formulations, have accordingly become
popular for automated reservoir history-matching [7, 11, 25,
27, 30, 36, 37].

Monte Carlo approximations play a crucial role in
ensemble-based DA. Due to computational-cost limitations,
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the ensemble size is limited to roughly one hundred. Using
straightforward ensemble-based DA, the degrees of freedom
of the problem would equal the ensemble size, and such an
approach would result in significant Monte Carlo errors.

The negative effects of Monte Carlo errors are enlarged
in the presence of large amounts of simultaneous data,
e.g. inverted seismic data, resulting in underestimation of
variance of the unknown parameters, and in more severe
cases ensemble collapse. There have been several efforts on
balancing the degrees of freedom of the problem and the
amount of data [29, 31].

The most widely used treatment for Monte Carlo
errors is distance-based localization [24]. The basic
assumption underlying distance-based localization is that
true correlations between a parameter and a datum decrease
when the distance between their respective locations
increase, and disappears if the distance exceeds a critical
distance. This assumption may not always hold for
subsurface problems. Different correlation functions and
their utilization in DA can be found in [6, 9, 17]. A proper
choice of correlation function, and the critical distance in
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particular, depends on parameter and data types as well
as on other problem settings. This reduces the robustness
of distance-based localization, also for problems where
its basic assumption does hold. Papers using ensemble-
based methods for assimilation of seismic data [1, 10,
26], typically use localization methodologies developed
originally for production data.

Simply increasing the ensemble size will of course
reduce Monte-Carlo errors, but it will also increase compu-
tational cost. Utilization of a lower-cost and lower-fidelity
model renders the possibility of increasing the ensemble
size without increasing the total computational cost. Use
of a lower-fidelity reservoir model will, however, intro-
duce modeling errors in addition to those already present
in conventional-fidelity simulation results. The underly-
ing assumption when applying lower-fidelity models in
DA is therefore that the gain in reducing Monte Carlo
errors is larger than the loss in numerical simulation accu-
racy. DA using various types of lower fidelity models
has been applied to several inverse problems, e.g., within
petroleum reservoir modeling [13, 21, 40] and atmospheric
science [20]. Note that since lower-fidelity simulations are
applied to the forecast step and localization is applied to the
analysis step, the two techniques can be combined, if
desired.

Multilevel simulations utilize a selection of models
for the same entity that constitute hierarchies in both
fidelities and computational costs (multilevel models). The
idea is to decrease Monte Carlo errors without increasing
numerical errors too much. There are a number of ways
to realize multilevel models. We choose to construct them
by spatial coarsening of the conventional simulation grid to
several levels of coarseness, and correspondingly upscale
the associated grid-based parameter functions. Multilevel
Data Assimilation (MLDA) [8, 14, 15, 22, 23, 32, 35]
utilizes multilevel models in the forecast step. Since inverted
seismic data are given on the conventional grid (denoted the
fine grid from now on), MLDA with such data must be able
to handle differences in grid levels between data and model
forecasts.

As utilization of iterative methods helps to improve
the quality of history matching in standard Ensemble
Smoothers (ES) [7], a similar advancement in the domain of
MLDA is possible. An MLDA smoother for assimilation of
spatially distributed data, the Multilevel Hybrid Ensemble
Smoother (MLHES), was developed in [32] and was
assessed for assimilation of inverted seismic data. In this
work we further investigate this algorithm and introduce
an iterative version of MLHES, the Iterative Multilevel
Hybrid Ensemble Smoother (IMLHES). We will also
evaluate the performance of these algorithms in comparison
with conventional DA algorithms, i.e. fine-level DA with

localization, for assimilation of inverted seismic data in
petroleum reservoir problems.

The rest of this paper is organized as follows. Section 2
is devoted to introducing some standard DA algorithms
to establish a base for comparison. Section 3 introduces
the MLDA algorithms. Section 4 explains the test models
used for comparison of the performance of DA schemes.
In Section 5 we describe the numerical investigations,
which are followed by their results in Section 6. Finally, in
Section 7 we summarize and conclude the paper.

2 Standard data assimilation schemes

Ensemble-based DA is a robust method for solving the
parameter and state estimation problems using Bayesian
methodology. We explain two widely used DA algorithms;
Ensemble Smoother (ES), introduced in [41], and Iterative
Ensemble Smoother (IES), introduced in [7]; both with
localization [16], as conventional methods for DA.

2.1 Ensemble Smoother

Consider the prior ensemble {zpri
j }Ne

j=1, containing Ne

realizations from the prior parameters random vector Zpri .
Their corresponding forecasts, {yj }Ne

j=1 (realizations from
the random vector Y ) are then obtained by running the
forward model, M, on each of the ensemble members as

yj = M(z
pri
j ) . (1)

Consequently, the empirical estimation of the mean and
the covariance of the forecast random vector, E(Y ) and
C(Y ), respectively, can be calculated as

E(Y ) = 1

Ne

Ne∑

i=1

yj , (2)

C(Y ) = 1

Ne − 1

Ne∑

i=1

(
yj − E(Y )

) (
yj − E(Y )

)T (3)

Let dj denote a realization of data to be assimilated, drawn
from D ∼ N (μD,C(D)), where μD is the mean and
C(D) is the data-error covariance. The linear-Gaussian
assumption enables the possibility of formulating a closed
form for the analysis step in the ES. Accordingly the analysis
step for an arbitrary ensemble member zj can be written as

za
j = z

pri
j + K(dj − yj ) , (4)

where K is the Kalman gain defined by

K = C(Z, Y ) (C(Y ) + C(D))−1 , (5)

and C(Z, Y ) is the empirical estimate of cross-covariance
between parameters and model forecasts.
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2.2 Iterative ensemble smoother

Iterative versions of ES are developed for improved
performance of DA in nonlinear problems. Here we present
the algorithm introduced in [7] with confined step length
[34], and denote it Iterative Ensemble Smoother (IES) in the
rest of this paper.

Writing the posterior logarithm of likelihood using
Bayesian update equation and ignoring the constant terms,
the objective function is given as [39]

J(Z) = 1

2
||Z−E(Zpri)||2C(Zpri )−1+1

2
||M(Z)−μD||2

C(D)−1 .

(6)

The corresponding objective function for zj is [7]

Jj (zj ) = 1

2
||zj − z

pri
j ||2C(Zpri )−1 + 1

2
||M(zj ) − dj ||2

C(D)−1 .

(7)

In the linear-Gaussian case Jj is minimized by the update
in Eq. 4. However, assuming nonlinearity in M, this will
not be the case. Accordingly, the Gauss-Newton scheme
with confined step length is employed to minimize Jj for all
realizations.

The Gauss-Newton scheme requires the gradient and the
Hessian of Jj for each of the ensemble members. In this
approach, these are computed using approximations based
on the ensemble. Accordingly, the gradient, ∇Jij , and the

Hessian, Hi , for the parameter vector realizations at iteration
i, zi

j , are given as

∇Jij ≈ C(Zpri )−1
(
zi
j − z

pri
j

)
+Mi T

C(D)−1
(
M(zi

j ) − dl,j

)
, (8)

Hi ≈ C(Zpri)−1 + MiT
C(D)−1 Mi , (9)

respectively. In these formulae, Mi denotes the approxi-
mation to Jacobian of M(Z), and Hi is approximated by

neglecting the derivative of Mi . MiT denotes the transpose
(or more generally, the adjoint) of Mi . In IES [7, 19], the

approximation,

Mi ≈ C
(
Y i, Zi

)
C

(
Zi

)+
, (10)

is used for calculation of Mi , where superscript +
denotes Moore-Penrose pseudo inverse. A mathematical
justification for this can be found in [36, Theorem 1].

The realization zi
j is then updated as

zi+1
j = zi

j − β
(
Hi−1∇Jij

)
, (11)

where β is the step length which is defined based on
“restricted-step algorithm” in [34]. The update equation can
be written as

zi+1
j = zi

j + β
(
�

i,pri
j + �

i,lik
j

)
, (12)

where �
i,pri
j and �

i,lik
j are given by

�
i,pri
j = (IZ − Ki Mi )[zpri

j − zi
j ] , (13)

�
i,lik
j = Ki[dj − M(zi

j )] . (14)

In these Equations, IZ is the identity matrix of the parameter
vector dimension, and the Kalman gain Ki is given by

Ki = C(Zpri)MiT
(
Mi C(Zpri)MiT + C(D)

)−1
. (15)

The iterations are continued until convergence is obtained.

3Multilevel data assimilation

In MLDA the forecast step is performed using a set of
models which have different costs and fidelities. Here, we
define ML := M, and {Ml}L−1

l=1 are approximations to
ML with increasing accuracy and computational cost as
l increases. We will denote {Ml}Ll=1 a multilevel model.
After sampling from the prior distribution, the ensemble of
prior state vectors is divided into L sub-ensembles. Each
of the sub-ensembles are modeled using its corresponding
forward model, as seen in Fig. 1, where subscript l denotes
the sub-ensemble index.

Fig. 1 Representation of a
single forecast step of MLDA
algorithms
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3.1 Multilevel models

Multilevel models will form hierarchies of both accuracy
and computational cost.

One can think of several schemes to devise the hierarchy,
including but not limited to coarsening the spatial grid of
the forward model, coarsening the temporal grid of the
forward model, and relaxing the convergence criteria in
the iterative linear solvers. All of these methods reduce
the computational cost of the models and increase their
numerical error. Coarsening the spatial grid and performing
simulations on such grids is chosen for the current work
(Note, however, that the parameters that we invert for are
kept in the fine grid, meaning that upscaling the parameters
is considered as part of the multilevel forward models).
The techniques presented in this work are, however, robust
enough so that with minor manipulations, they can be used
for other lower fidelity models.

As for coarsening the grid of the forward models, [14]
proposed a robust technique, which was also used in [32].
This technique occurs in a sequence of steps. In each step,
neighboring cells of the grid at the previous step are merged
into a coarser cell unless they are to be kept fine deliberately.
A representation of the grid coarsening process for an 8× 8
sample grid can be found in Fig. 2. As it can be seen in the
figure, coarsening has occurred in a uniform manner across
both directions, except for the vicinity of two opposite
corners, where the grid cells are kept in fine scale to boost
the local numerical accuracy around the two wells, producer
(P) and injector (I). The aim is that the grid coarsening does
not change the physics of the problem too much.

3.2 Transformation of model forecasts

The discrepancy in coarseness of the multilevel grids results
in the spatially distributed model forecasts to be in different
resolutions for different levels. Therefore, in order to be
able to compute the multilevel sample statistics of model
forecast, a robust transformation scheme should be devised

for converting a model forecast from the resolution at one
level to another.

In the problem at hand, transformation of the model
forecast requires either upscaling or downscaling. Standard
volume-weighted arithmetic averaging technique is used for
upscaling.

Downscaled model forecasts are simply put equal to
the corresponding coarse grid values. Accordingly, both
upscaling and downscaling are linear transformations
of model forecasts. Hence, we define a set of linear
transformations, {Uc

f : Rζf �→ R
ζc |1 ≤ c, f ≤ L} , where

ζf and ζc denote the dimension of model forecast vector at
arbitrary levels f and c, respectively, and Uc

f transforms the
model forecast vector from level f to be compatible with
level c.

Figure 3 gives two examples of transformation of
spatially distributed model forecast, one from a coarser grid
to a finer grid, and one vice versa. Each model forecast
component is represented in its corresponding spatial grid
cell. As can be seen in Fig. 3, in the upscaling procedure, the
arbitrarily named model forecast components {ai}4i=1 in the
northwest zone from the finer grid (level f ), are averaged to
form their corresponding model forecast component, ā, in
the coarsened grid. Similar procedure has been performed
for the rest of model forecast components, shown by *. In
the downscaling procedure, on the other hand, the model
forecast components in the coarse grid are simply copied to
their corresponding components of the finer grid.

3.3 Upscaling of observation data

As part of the DA process, the mismatch between the model
forecasts and observation data needs to be calculated. Here,
it is assumed that inverted seismic data is given in the
resolution of the finest simulation grid. Accordingly, for
each of the levels, either the observation data should be
upscaled to the resolution of model forecast or the model
forecast should be downscaled to the resolution of the
observation data. In this paper, we take the former approach.

Fig. 2 Grid coarsening proposed by [14] performed on an 8 × 8 grid (a) Finest level (b, c) Coarser levels
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Fig. 3 Transformation of model
forecast between two levels f

(finer) and c (coarser) (a) model
forecast in resolution of level f
(b) transformation of model
forecast from resolution of level
f to the resolution of level c (c)
model forecast in resolution of
level c (d) transformation of
model forecast from resolution
of level c to the resolution of
level f

Since the observation data is in the resolution of the finest
model, using the same transformation functions as those
designed for model forecasts on the fine observation data
will result in upscaling of observation data into the preferred
resolution. Accordingly, the transformed random vector of
observation data at level l is given as

Dl = Ul
LD . (16)

3.4 Multilevel statistics

Assuming we have approximations of the model forecasts,
Y , being a function of the unknown parameter vector,
Z, on several levels, a statistically correct scheme for
approximation of multilevel statistics for Y is required. As
for MLDA, the mean and the covariance of model forecast
are of foremost interest. Accordingly, formulations for these
multilevel statistics are proposed.

Assuming the model with the highest fidelity, ML,
to be exact, [22] proposed an unbiased formulation for
approximation of multilevel statistics for DA under certain
conditions. Under these set of conditions, the proposed
method outperformed its alternatives [15]. For reservoir
problems, however, these conditions typically do not hold,
and another formulation inspired by Bayesian Model
Averaging (BMA) was proposed [15]. In this formulation
the statistics are computed based on reliability weights wl

for each of the levels l. This formulation is, by definition,
a biased scheme for computation of multilevel moments;
however, it will be a useful technique for problems in which
variance error dominates bias, which is often the case for
petroleum reservoir problems [15]. Using this formulation
and transformations of the forecast, [32] proposed a
formulation of multilevel statistics for spatially distributed
model forecasts which will be used in the current work.
According to this scheme, the multilevel mean of the model
forecast at level l is given as

EML,l(Y ) =
L∑

k=1

wkU
l
k E(Yk) , (17)

L∑

k=1

wk = 1 , (18)

where E(Yk) denotes sample mean of the model forecast
at level k. Using the law of total variance, the multilevel
approximation of covariance of the model forecast at level l
is formulated as

CML,l(Y ) =
L∑

k=1

wk{C(Ul
kYk) +

(
E(Ul

kYk) − EML,l(Y )
)

(
E(Ul

kYk) − EML,l(Y )
)T } . (19)
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In addition, the parameter-forecast cross-covariance can
be written as

CML,l(Z, Y ) =
L∑

k=1

wk{C(Zk, U
l
kYk) + (E(Zk) − EML(Z))

(
E(Ul

kYk) − EML,l(Y )
)T }, (20)

where EML(Z) is the multilevel formulation of the
parameter-vector mean. This statistic is formulated using
the same weights as in forecasts multilevel statistics, but
since the parameters are in the same resolution for all levels,
no transformation is needed for formulating it,

EML(Z) =
L∑

k=1

wk E(Zk) . (21)

Similarly, the multilevel covariance of the parameter vector
is defined as

CML(Z) =
L∑

k=1

wk{C(Zk)+(E(Zk) − EML(Z)) (E(Zk) − EML(Z))T }.

(22)

If all the Zk , 1 ≤ k ≤ L, share the same probability
distribution function, which is the case in the first
iteration of DA algorithms to be discussed in Section 3.5,
Equations 21 and 22 will reduce to E(Z) and C(Z),
respectively.

3.5 Multilevel data assimilation algorithms

Multilevel Hybrid Ensemble Smoother (MLHES) was
proposed in [32] and tested on a petroleum reservoir model.
Here, we firstly explain MLHES algorithm. Following that,
we develop an iterative MLDA algorithm based onMLHES;
i.e. IMLHES. The coarse model forecasts in both of
these algorithms entail Multilevel Modeling Error (MLME),
defined as the discrepancy between the upscaled fine model
forecasts of a certain realization and the coarse model
forecast of that realization. Several methods for correction
of this error were assessed in [33]. Here, we utilize mean
bias correction for addressing the MLME, which was also
used in [32].

3.5.1 Multilevel hybrid ensemble smoother

Based on the decision on resource allocation, Nl ensemble
members are simulated using Ml . Running the forward
simulator for every prior realization z

pri
l,j , where 1 ≤ l ≤ L

and 1 ≤ j ≤ Nl , we have

ŷl,j = Ml (z
pri
l,j ) , (23)

where ŷl,j is the model forecast pertaining to realization

z
pri
l,j . It should be mentioned that zpri

l,j vectors are essentially
i.i.d samples from the prior distribution regardless of l

and have the same dimension. The subscript l is used to
denote that the forecasts pertaining to this realization are
modeled usingMl . The models forecasts, ŷl,j , however, are
in different resolutions for different l, and accordingly have
different dimensions.

Next, the multilevel simulations are corrected for their
mean bias by

yl,j = ŷl,j +
(
Ul

L E(ŶL) − E(Ŷl)
)
. (24)

This correction will help to account for part of the modeling
error associated with coarser models, and results in the
forecast mean to be unbiased.

In MLHES, multilevel approximation of the mean
and covariance of the model forecasts are utilized for
computation of the Kalman gain, and since the model
forecasts are in different resolutions for different levels, this
is done separately for each level. Accordingly, the updated
parameters vector of an arbitrary ensemble member at level
l is given by

za
l,j = z

pri
l,j + Kl(dl,j − yl,j ) , (25)

where the observation data sample, dl,j , is a random

pick from N (Ul
LμD, Ul

LC(D)Ul
L

T
), and the level-specific

Kalman gain, Kl , is given as

Kl = CML,l(Z
pri, Y )

(
CML,l(Y ) + Ul

LC(D)(Ul
L)T

)−1
.

(26)

Here, the multilevel forecast covariance and the parameter-
forecast cross-covariance are calculated by Eqs. 19 and 20,
respectively.

A pseudo-code of MLHES is presented in Appendix A.

3.5.2 Iterative multilevel hybrid ensemble smoother

In order to be able to handle more nonlinear cases, an
iterative version of MLHES is developed. In this algorithm,
like with the MLHES, after the forecast step, we correct
for the multilevel mean bias. To ease the notations, we
consider the bias-correction as part of the new-defined
forward models {M̃l}Ll=1 given as

M̃l(Z) = Ml(Z) +
(
Ul

L E(ŶL) − E(Ŷl)
)
. (27)
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Similarly to how (6) was obtained in Section 2.2, we can
write the objective function for level l as

Jl (Z) = 1

2
||Z−E(Zpri )||2C(Zpri )−1 + 1

2
||M̃l (Z)−Ul

LμD ||
(Ul

LC(D)Ul
L

T
)−1 .

(28)

Randomizing this objective function using the ensemble of
realizations pertaining to level l, the objective function for
realization j in sub-ensemble l can be written as

Jl,j (zl,j ) = 1

2
||zl,j −z

pri
l,j ||2C(Zpri )−1 + 1

2
||M̃l (zl,j )−dl,j ||

(Ul
LC(D)Ul

L

T
)−1 .

(29)

In order for minimization of Jl,j for all the realizations,
the Gauss-Newton scheme with confined step length
is employed. Accordingly, the gradient, ∇ Jil,j , and the

Hessian, Hi
l , for the parameter vector realizations at iteration

i, zi
l,j , are defined by

∇ Jil,j = C(Zpri )−1
(
zi
l,j −z

pri
l,j

)
+Mi

l

T
(
Ul

LC(D)Ul
L

T
)−1 (

M̃l (z
i
l,j )−dl,j

)
,

(30)

Hi
l ≈ C(Zpri)−1 + Mi

l

T
(
Ul

LC(D)Ul
L

T
)−1

Mi
l , (31)

respectively. Here, Mi
l denotes the ensemble approximation

to Jacobian of M̃l at iteration i, and Hi
l is approximated by

neglecting the derivative of Mi
l .

If the same procedure that was used in Section 2.2 to
obtain (10) was followed for Ml , the approximation,

Mi
l ≈ C

(
Y i

l , Z
i
l

)
C

(
Zi

l

)+
, (32)

would be obtained. However, in order to be able to use the
information also from other levels for approximation of Mi

l ,
the multilevel formulation of the parameter-forecast cross-
covariance is utilized instead of its single-level formulation,

Mi
l ≈ CML,l

(
Y i, Zi

)
CML(Zi)

+
. (33)

The update formula for an arbitrary realization j of
sub-ensemble l at iteration i, zi

l,j , can be written as

zi+1
l,j = zi

l,j − βl

(
Hi

l

−1∇ Jil,j

)
, (34)

where βl is the step length at level l which is updated as
in the restricted step algorithm, [34], at every iteration. The
update equation can be written as

zi+1
l,j = zi

l,j + βl

(
�

i,pri
l,j + �

i,lik
l,j

)
, (35)

where by using Woodbury matrix lemma, �i,pri
l,j and �

i,lik
l,j

are given by

�
i,pri
l,j = (IZ − Ki

l M
i
l )[zpri

l,j − zi
l,j ] , (36)

�
i,lik
l,j = Ki

l [dl,j − M̃(zi
l,j )] , (37)

and the level-specific Kalman gain, Ki
l , is obtained by

Ki
l = C

(
Zpri

)
Mi

l

T
(
Mi

l C(Zpri )Mi
l

T + Ul
LC(D)(Ul

L)T
)−1

. (38)

The iterations are then separately performed for each of the
levels until convergence is obtained for all of them.

A pseudo-code of the IMLHES algorithm is presented in
Appendix B.

4 Test models

Three different reservoir models are set up to assess
the algorithms performances. These reservoir models have
some shared properties. They are two-dimensional with
Cartesian grids. For all of them, compressible two-phase
flow (oil and water), no-flow boundary conditions, and
standard equations for capillary pressure and relative
permeability are considered. A description of the other
shared general properties of the reservoir models is given
in Table 1. Unique features of the reservoir models are
explained separately in Sections 4.1–4.3.

The forward models used for forecasting each consist of
two segments. A reservoir flow model is used to predict the
state variables in time, and a petro-elastic model is utilized
for computing the elastic rock properties from parameters
and predicted state variables.

The flow segment of the forward model is derived by
substitution of the Darcy’s law into the mass conservation
equation for each of the phases, resulting in [3]

∇.

[
kro

νoBo

k(∇po − ρog∇z)

]
= ∂

∂t

(
φSo

Bo

)
+ qo , (39)

∇.

[
krw

νwBw

k(∇pw − ρwg∇z)

]
= ∂

∂t

(
φSw

Bw

)
+ qw , (40)

where

So + Sw = 1 , (41)

pcow = po − pw . (42)

Table 1 Shared properties of the reservoir models

Fine cell dimensions: 30 × 30 × 30 (m3) Porosity: 0.2

Initial Oil saturation: 0.85 Initial Pressure: 200 bar
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In these Equation, k denotes absolute permeability, and
kr∗ denotes the relative permeability of the corresponding
phase. kr∗ is a function of saturation of that phase, S∗. The
pressure of a phase is denoted by p∗, and the capillary pres-
sure, pcow, is a function of Sw. Furthermore, g denotes the
gravitational constant; ν∗, B∗, and ρ∗ are the viscosity, the
formation volume factor, and density of their correspond-
ing phases; and q∗ denotes the sink or source term of its
corresponding continuity equation.

The flow segment of the forward models is performed
using Eclipse-100 [38]. Coarsening the grid is done by using
the Eclipse keyword COARSEN, which merges groups
of pre-defined neighboring cells to form a coarser grid.
The upscaling of permeabilities is performed using pore-
volume weighted arithmetic averaging, and transmissibili-
ties between two neighboring coarse cells in each direction
are calculated based on harmonic averaging in that direction
and summing it in other directions [38].

As for the petro-elastic segment of the forward model,
an in-house model based on standard rock-physics [4],
[12, Report 1] was used.

4.1 Reservoir model I

This model has a 40 × 40 grid, and two wells, one
producer (P) at southwest corner and one injector (I) at
northeast corner. Both of the wells are pressure-controlled,
the injector at 275 bar and the producer at 100 bar.

4.2 Reservoir model II

This model has a 64× 64 grid, and two wells, one producer
(P) at southwest corner, and one injector at northeast corner
(I). Additionally, an oblique fault stretching from 8 grid cells
distant from the northwest corner to 8 grid cells distant from
southeast corner is added to the general reservoir model
structure. As can be seen in Fig. 5, the coarsening scheme
in the presence of such a fault, which will be discussed
in Section 5.2, results in some permeability values that are
located on one side of the fault in the fine grid to contribute
to an upscaled permeability value located on the other side
of the fault in the coarsened grid.

4.3 Reservoir model III

This model has a 70× 70 grid and three wells, one injection
well (I) in southeast corner and two producers (P1 and P2) in
southwest and northwest corners. All the wells are pressure-
controlled, I at 300 bar and P1 and P2 at 110 bar. This model
has three zones, each of which contains one of the wells and
has its own variogram for the permeability field, and there
exist a smooth transition from one zone to another.

5 Numerical investigation

In order to compare the quality of the multilevel algorithms
presented in this work with the standard DA methods, three
experiments are conducted. Each experiment is performed
on one of the three reservoir models discussed in Section 4.

The unknown parameter fields in all the experiments
are logarithmic permeability fields, which have different
distributions in each of the experiments.

The observation data are two sets of time-lapse bulk-
impedance data taken based on a baseline (day zero
of production) and two vintages, which are different
for each experiment and will be described separately.
These observation data are generated using the results of
simulation of a random draw from the prior parameter
distribution. As inverted seismic data typically are spatially
correlated, we use a correlated covariance matrix for the
data error. In doing so, a variogram with the specifications
given in Table 2 is considered. The marginal standard
deviation of each observation value is given as

σ = r max{|δ|, η} , (43)

where r = 0.1, δ is the value of observation data at a
certain location, and η is a threshold put to avoid too much
certainty in the observation data whose absolute values are
very small. This threshold is defined as the 1st smallest
percentile of the absolute value of the observation data.

For each numerical experiment we will compare plots
of results obtained with multilevel algorithms, MLHES and
IMLHES, with the results obtained from their standard
DA counterparts, ES with localization (ES-LOC) and IES
with localization (IES-LOC). The localization scheme used
in ES-LOC and IES-LOC, is a distance-based localization
based on the covariance structure given in [16] and spherical
model for variogram.

The gold standards (reference solutions) for the com-
parison will be results obtained using ES with an exceed-
ingly large ensemble (ES-REF) for smoothers, and results
obtained using IES with an exceedingly large ensemble
(IES-REF) for iterative algorithms. By utilizing such unre-
alistically large ensembles we obtain results that are visually
indistinguishable from the best results that can be achieved
using ES and IES. This was assured by running these
algorithms with perturbations in their ensemble sizes.

Table 2 Variogram used for observation data error, the unit for range
is grid cells

variogram type range mean anisotropy ratio

spherical 5 0 1
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Furthermore, we will show plots of the log permeability
realizations used when generating the synthetic data
(“Truth”).

In each experiment, a fixed computational power is
considered for each iteration of all algorithm runs (except
for reference solutions). As the dominant cost of the DA
process is pertaining to simulations of forward models,
where iterative linear solvers dominate the computational
costs for large problems, the computational cost pertaining
to each ensemble member to be simulated using forward
model, Ml , is assumed to be proportional to G

γ

l , where Gl

is the number of the active grid cells in the forward model
at level l, and γ ∈ [1.25, 1.5], [2]. Here, we take γ = 1.35.
Additionally, as usual for large-scale cases, the ensemble
size for standard single-level DA algorithms is set to be
100. Using this basis for calculations, the computational
power allocated for all the runs will be equal if the following
equation holds for all of them,

100G1.35
L =

L∑

l=1

NlG
1.35
l . (44)

Considering this equation, we set Nl for different levels of
the MLHES. There exists L − 1 degrees of freedom for
specification of the {Nl}Ll=1. No optimization was performed
for this specification, the only aim pursued was to keep the
size of sub-ensembles ascending with decrease in model
cost. Several other similar settings that were tried resulted
in similar DA outcomes.

For all experiments, the convergence criterion for the
iterative algorithms was that improvements in the relative
data mismatch should be smaller than 0.0001. The number
of iterations required for convergence was approximately
the same for IES-LOC and IMLHES. Accordingly, no
adjustments were performed for equalizing the total
computational cost used by these two algorithms.

For the MLHES and IMLHES, there is a possibility to
improve the results by tuning the weights in Eqs. 17–22 for
specific cases, but here we use the simplest choice–weights
being all equal to 1/L.

5.1 Experiment I

This experiment is conducted on Reservoir Model I. The
multilevel algorithms have four levels, corresponding to 85,
154, 436, and 1600 grid cells, respectively. A summary of
the resource allocation for the different runs carried out in
this experiment can be found in Table 3. The observation
data for this experiment are generated based on seismic
vintages at 2000 and 4000 days after production starts.

The unknown logarithmic permeability field is based on
a spherical variogram with mean and variance constant at
5 and 1, respectively, anisotropy angle and anisotropy ratio

Table 3 A summary of resource allocation for different runs in
experiment I

level 1 level 2 level 3 level 4

G1 = 85 G2 = 154 G3 = 436 G4 = 1600

N1 N2 N3 N4

ES-LOC - - - 100

MLHES 525 471 231 30

ES-REF - - - 8000

IES-LOC - - - 100

IMLHES 525 471 231 30

IES-REF - - - 8000

of -20 degrees and 0.33, and range 20 grid cells. Randomly
selected realizations from this logarithmic permeability
field can be found in Fig. 4.

5.2 Experiment II

This experiment is conducted on Reservoir Model II. In this
experiment, the presence of the oblique fault in the field
interferes with coarsening the model. One way to handle
this issue would be to avoid coarsening the grid around the
fault area; however, this would reduce the computational
efficiency of the multilevel scheme. In order to keep the
grid coarsening as it is, the fault is approximated with
bigger “zigzags” as depicted in Fig. 5 for one realization
of the logarithmic permeability field at different levels of
coarseness.

The multilevel algorithms have four levels, correspond-
ing to 124, 310, 1060, and 4096 grid cells, respectively. A
summary of the resource allocation for the different runs
carried out in this experiment can be found in Table 4. The
observation data for this experiment are generated based on
seismic vintages at 5000 and 10000 days after production
starts.

The unknown logarithmic permeability field is based on
a spherical variogram with mean and variance constant at
5 and 1, respectively, anisotropy angle and anisotropy ratio
of -30 degrees and 0.7, and range 25 grid cells. Randomly
selected realizations from this logarithmic permeability
field can be found in Fig. 6.

5.3 Experiment III

This experiment is conducted on Reservoir Model III.
The multilevel algorithms have four levels, correspond-

ing to 163, 412, 1279, and 4900 grid cells, respectively. The
observation data for this experiment are generated based on
seismic vintages at 3000 and 6000 days after production
starts.
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Fig. 4 Randomly selected realizations from prior distribution of the logarithmic permeability field of Reservoir model I

Fig. 5 Approximation of the
fault for simulations, a: original
fault, b-d: approximations at
coarser levels

Table 4 A summary of
resource allocation for different
runs in experiment II

level 1 level 2 level 3 level 4

G1 = 124 G2 = 310 G3 = 1060 G4 = 4096

N1 N2 N3 N4

ES-LOC - - - 100

MLHES 1404 652 170 40

ES-REF - - - 10000

IES-LOC - - - 100

IMLHES 1404 652 170 40

IES-REF - - - 10000
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Fig. 6 Randomly selected realizations from prior distribution of the logarithmic permeability field of Reservoir model II

Table 5 A summary of
resource allocation for different
runs in Experiment III

level 1 level 2 level 3 level 4

G1 = 163 G2 = 412 G3 = 1279 G4 = 4900

N1 N2 N3 N4

ES-LOC - - - 100

MLHES 791 707 226 30

ES-REF - - - 10000

IES-LOC - - - 100

IMLHES 791 707 226 30

IES-REF - - - 10000

Fig. 7 Reservoir Model III, (a)
three zones of the model (b-d)
randomly selected realization
from prior logarithmic
permeability field
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Table 6 The three variograms
of Reservoir Model III Zone variance mean range ratio angle type

1 1 5 20 0.4 -70 cubic

2 1 5 40 0.7 -30 cubic

3 1 5 30 0.6 -60 cubic

A summary of the resource allocation for different tests
carried out in this experiment can be found in Table 5.

The unknown logarithmic permeability field is based on
three different variograms in three zones of the field. The
Zones, i.e. Zone 1, Zone 2, and Zone 3 can be seen in
Fig. 7. The area without any assigned zone is a continuous
transition from one zone to others. The details about the
variograms based on which the distribution of the unknown
parameters are defined can be found in Table 6. Randomly
selected realizations from this logarithmic permeability
field can be found in Fig. 7.

6 Numerical results

The results from the numerical experiments are assessed
qualitatively, using the posterior parameters and forecasts.

Firstly, mean and variance of the posterior parameter
fields obtained by different algorithms and reference cases
are compared with each other. Additionally, since both
the model forecasts and observation data are in different
resolutions for different levels of multilevel algorithms,
comparison of posterior forecasts as such is not a possibility.
Instead, we run fine-scale simulations of the posterior

Fig. 8 Experiment I–Mean posterior logarithmic permeability field
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Fig. 9 Experiment I–Variance of posterior logarithmic permeability field

Fig. 10 Experiment I–Posterior time-lapse bulk impedance field (m
s

kg

m3 ) in comparison with observation data in the second vintage
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Fig. 11 Experiment I–Variance of posterior time-lapse bulk impedance field ((m
s

kg

m3 )2), in the second vintage

ensemble for all algorithms and then plot the mean and
variance of the model forecasts for all the algorithms and
compare them together. The model forecasts of the second
vintage are presented for all the experiments.

The simplest formulation is chosen for computation of
posterior statistics of MLHES and IMLHES, i.e. re-uniting
all the sub-ensembles in these algorithms and treating them
as one ensemble for computation of posterior mean and
variance fields.

ES-LOC was tested with several ranges for localization
(critical distances), and the best results are presented for
each of the experiments.

6.1 Results of Experiment I

Visual analysis of the mean permeability fields in Fig. 8
shows that MLHES and IMLHES results are more similar
to ES-REF and IES-REF results, respectively, than ES-LOC
and IES-LOC results are. This is confirmed by comparison
of the variance fields in Fig. 9. In Fig. 8, improvements
are seen in approximation of the “Truth” by utilization of
IMLHES compared with MLHES.

From Figs. 10 and 11, it is seen that the statistics of
posterior forecasts obtained by use of multilevel algorithms
are more similar to those of reference cases than the results
obtained by use of conventional algorithms. In Fig. 10, the

mean of model forecasts obtained from IMLHES is more
similar to the observation data than that of MLHES.

The ES-LOC and IES-LOC results presented here are
based on the localization range of 30 grid cells.

6.2 Results of Experiment II

Visual analysis of the mean permeability fields in Fig. 12
shows that MLHES results are more similar to ES-REF
results than ES-LOC results are. This can be further
confirmed by comparison of the variance fields given in
Fig. 13 and the statistics of model forecasts in Figs. 14 and
15.

In this experiment, IES-LOC does not converge to the
proximity of global optimum. Since the same holds for
IES-REF, there exists no reference for comparison of the
iterative algorithms. Nonetheless, as can be seen in Fig. 12,
IMLHES results are more similar to “True” permeability
field than those of MLHES. Also, in Fig. 14, slight
improvements in approximation of the observation data is
seen in IMLHES results compared with MLHES results.

For a class of problems (including the problem consid-
ered here) where the model forecast can be seen as a spa-
tially integrated response to a spatially varying parameter
field, there exists a correlation between small-scale oscilla-
tions in the parameter domain and the nonlinearity strength
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Fig. 12 Experiment II–Mean posterior logarithmic permeability field

Fig. 13 Experiment II–Variance of posterior logarithmic permeability field
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Fig. 14 Experiment II–Posterior time-lapse bulk impedance field (m
s

kg

m3 ) in comparison with observation data in the second vintage

Fig. 15 Experiment II–Variance of posterior time-lapse bulk impedance field ((m
s

kg

m3 )2), in the second vintage
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Fig. 16 Experiment III–Mean posterior logarithmic permeability field

of the mapping from parameter field to model forecast, see,
e.g., [5, 18]. This correlation is such that coarsening the sim-
ulation grid and upscaling the associated parameters will
generally result in weaker nonlinearity in the coarser for-
ward models compared to the finer ones. Accordingly, use
of IMLHES instead of IES could improve convergence, as
was the case in experiment II.

The ES-LOC and IES-LOC results presented here are
based on the localization range of 50 grid cells.

6.3 Results of Experiment III

Visual analysis of the mean permeability fields in Fig. 16
shows that MLHES and IMLHES results are more similar
to ES-REF and IES-REF results, respectively, than ES-LOC
and IES-LOC results are. This is confirmed by comparison
of the variance fields in Fig. 17. In Fig. 16, improvements
are seen in approximation of the “Truth” by utilization of
IMLHES compared with MLHES.

From Figs. 18 and 19, it is seen that the statistics of
posterior forecasts obtained by use of multilevel algorithms
are more similar to those of reference cases than the results
obtained by use of conventional algorithms. In Fig. 18, the
mean of model forecasts obtained from IMLHES is more
similar to the observation data than that of MLHES.

The ES-LOC and IES-LOC results presented here are
based on the localization range of 60 grid cells.

7 Summary and Conclusions

In this work, a recently devised MLDA algorithm (MLHES)
for assimilation of spatially distributed data was discussed,
and an iterative version of it (IMLHES) was introduced.
Both of these methods utilize generalizations of multilevel
statistics introduced in [15] for Monte Carlo approximations
of mean and covariance of model forecasts. In addition, per-
formance of these algorithms were evaluated in comparison
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Fig. 17 Experiment III–Variance of posterior logarithmic permeability field

Fig. 18 Experiment III–Posterior time-lapse bulk impedance field (m
s

kg

m3 ) in comparison with observation data in the second vintage
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Fig. 19 Experiment III–Variance of posterior time-lapse bulk impedance field ((m
s

kg

m3 )2), in the second vintage

with standard DA techniques. In doing so, three experiments
were conducted. Each experiment was performed on a reser-
voir model and consisted of six algorithm runs: conventional
Ensemble Smoother with localization (ES-LOC), MLHES,
ES with an exceedingly large ensemble size (ES-REF),
conventional Iterative Ensemble Smoother with localization
(IES-LOC), IMLHES, and IES with an exceedingly large
ensemble (IES-REF).

In order to assess the numerical results, firstly, the mean
and variance fields of posterior unknown parameters (log
permeability) were generated and assessed visually. The
assessments suggest that in all experiments the results from
MLHES were more similar to those of ES-REF than the
results from ES-LOC were. Except for one experiment
where both IES-LOC and IES-REF did not converge to
the proximity of global optimum, the same conclusion was
true about the iterative algorithms. The exception suggests
an additional advantage of IMLHES over IES. It was also
observed that iterations resulted in all the mean posterior
fields obtained by IMLHES to be closer to the permeability
field from which the observation data were generated than
the mean posterior field obtained by MLHES.

Secondly, fine-scale simulations were conducted for
all the posterior ensembles of all algorithms. Plots of
simulated time-lapse bulk impedance means and variances

were compared to plots of observed time-lapse bulk
impedance. Visual analysis of these plots showed that in all
the applicable cases, the multilevel algorithms performed
more similar to the reference cases than the conventional
algorithms did. Additionally, the means of model forecasts
obtained from IMLHES were closer to the observation data
than the means of model forecasts obtained from MLHES
were.

In addition to the presented conventional DA algorithms,
which utilize distance-based localization, ES and IES were
used in conjunction with correlation-based localization [28]
for assimilation of the same data, but this did not improve
the conventional DA results. Furthermore, results from
investigations that were not presented here suggest that
MLDA algorithms show consistency in quality of history
matching with respect to variation in observation data error.

There are several issues about the presented MLDA
algorithms that can be investigated further. Firstly, the
optimal extent of coarsening the grid was not discussed.
The rule of thumb was to coarsen the grid until further
coarsening results in marginal reduction in grid size, due to
restrictions with coarsening around the wells. Additionally,
the number of levels and allocation of resources between
them to obtain the optimal result can also be further
investigated. In this research, the weights for different
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levels in the multilevel statistics was set to be all equal;
however, there is no such constraint. Accordingly, tuning
these weights can be a matter of investigation. Furthermore,
the posterior statistics that was presented in this paper was
based on a pool comprised of all the updated realizations
of different levels put together. Since the accuracy and the
computational power allocated per realization differs from
level to level, the optimal choice of weights for presenting
the posterior statistics needs further research. Moreover, the
multilevel modeling error, which was partially accounted
for by mean bias correction, can be studied in more detail.
For this we refer to [33]. Finally, as realistic reservoir cases
are more complex than the fields tested in this paper, the
increase in the dimensionality of the parameters may call
for a combination of localization and the proposed MLDA
algorithms.

Appendix

AMultilevel hybrid ensemble smoother
algorithm

B Iterative Multilevel Hybrid Ensemble
Smoother Algorithm
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