Vis enkel innførsel

dc.contributor.authorWang, Nelson
dc.contributor.authorAnonsen, Jan Haug
dc.contributor.authorHadjineophytou, Chris
dc.contributor.authorReinar, William Brynildsen
dc.contributor.authorBørud, Bente
dc.contributor.authorVik, Åshild
dc.contributor.authorKoomey, John Michael
dc.date.accessioned2020-12-15T13:56:33Z
dc.date.available2020-12-15T13:56:33Z
dc.date.created2020-10-16T10:46:43Z
dc.date.issued2020
dc.identifier.issn0959-6658
dc.identifier.urihttps://hdl.handle.net/11250/2719621
dc.description.abstractGlycosylation of multiple proteins via O-linkage is well documented in bacterial species of Neisseria of import to human disease. Recent studies of protein glycosylation (pgl) gene distribution established that related protein glycosylation systems occur throughout the genus including nonpathogenic species. However, there are inconsistencies between pgl gene status and observed glycan structures. One of these relates to the widespread distribution of pglG, encoding a glycosyltransferase that in Neisseria elongata subsp. glycolytica is responsible for the addition of di-N-acetyl glucuronic acid at the third position of a tetrasaccharide. Despite pglG residing in strains of N. gonorrhoeae, N. meningitidis and N. lactamica, no glycan structures have been correlated with its presence in these backgrounds. Moreover, PglG function in N. elongata subsp. glycolytica minimally requires UDP-glucuronic acid (GlcNAcA), and yet N. gonorrhoeae, N. meningitidis and N. lactamica lack pglJ, the gene whose product is essential for UDP-GlcNAcA synthesis. We examined the functionality of pglG alleles from species spanning the Neisseria genus by genetic complementation in N. elongata subsp. glycolytica. The results indicate that select pglG alleles from N. meningitidis and N. lactamica are associated with incorporation of an N-acetyl-hexosamine at the third position and reveal the potential for an expanded glycan repertoire in those species. Similar experiments using pglG from N. gonorrhoeae failed to find any evidence of function suggesting that those alleles are missense pseudogenes. Taken together, the results are emblematic of how allelic polymorphisms can shape bacterial glycosyltransferase function and demonstrate that such alterations may be constrained to distinct phylogenetic lineages.en_US
dc.language.isoengen_US
dc.rightsCC BY-NC 4.0*
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/*
dc.titleAllelic polymorphisms in a glycosyltransferase gene shape glycan repertoire in the O-linked protein glycosylation system of Neisseriaen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.rights.holder© 2020, Authors
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1093/glycob/cwaa073
dc.identifier.cristin1840090
dc.source.journalGlycobiologyen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

CC BY-NC 4.0
Med mindre annet er angitt, så er denne innførselen lisensiert som CC BY-NC 4.0