Show simple item record

dc.contributor.authorMorro, Bernat
dc.contributor.authorBalseiro Vigo, Pablo
dc.contributor.authorAlbalat, Amaya
dc.contributor.authorMacKenzie, Simon
dc.contributor.authorPedrosa, Cindy
dc.contributor.authorNilsen, Tom Ole
dc.contributor.authorSuzuki, Shotaro
dc.contributor.authorShimizu, Munetaka
dc.contributor.authorSveier, Harald
dc.contributor.authorGorissen, Marnix
dc.contributor.authorEbbesson, Lars O.E.
dc.contributor.authorHandeland, Sigurd O
dc.date.accessioned2020-04-24T14:44:34Z
dc.date.available2020-04-24T14:44:34Z
dc.date.created2019-12-16T15:57:39Z
dc.date.issued2019
dc.identifier.issn0044-8486
dc.identifier.urihttps://hdl.handle.net/11250/2652468
dc.description.abstractHighlights • nkaα1a, nkaα1b and nkcc1a provide relevant information that the NKA activity does not reflect. • While nkaα1a and nkcc1a transcription are mainly regulated by temperature, nkaα1b is regulated mainly by photoperiod. • High water temperature could potentially compromise the adaptive and innate immune response of rainbow trout. • Increased water temperature (8 °C) during winter does not provide clear advantages for smoltification or size at harvesting.
dc.language.isoeng
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEffects of temperature and photoperiod on rainbow trout (Oncorhynchus mykiss) smoltification and haematopoiesis
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersion
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1016/j.aquaculture.2019.734711
dc.identifier.cristin1761441
dc.source.journalAquaculture


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0