Vis enkel innførsel

dc.contributor.authorTerhaar, Jens
dc.contributor.authorGoris, Nadine
dc.contributor.authorMüller, Jens D.
dc.contributor.authorDeVries, Tim
dc.contributor.authorGruber, Nicolas
dc.contributor.authorHauck, Judith
dc.contributor.authorPérez, Fiz F.
dc.contributor.authorSéférian, Roland
dc.date.accessioned2024-07-16T09:14:11Z
dc.date.available2024-07-16T09:14:11Z
dc.date.created2024-04-23T09:42:00Z
dc.date.issued2024
dc.identifier.citationJournal of Advances in Modeling Earth Systems. 2024, 16 (3), .en_US
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/11250/3141441
dc.description.abstractThe ocean is a major carbon sink and takes up 25%–30% of the anthropogenically emitted CO2. A state-of-the-art method to quantify this sink are global ocean biogeochemistry models (GOBMs), but their simulated CO2 uptake differs between models and is systematically lower than estimates based on statistical methods using surface ocean pCO2 and interior ocean measurements. Here, we provide an in-depth evaluation of ocean carbon sink estimates from 1980 to 2018 from a GOBM ensemble. As sources of inter-model differences and ensemble-mean biases our study identifies (a) the model setup, such as the length of the spin-up, the starting date of the simulation, and carbon fluxes from rivers and into sediments, (b) the simulated ocean circulation, such as Atlantic Meridional Overturning Circulation and Southern Ocean mode and intermediate water formation, and (c) the simulated oceanic buffer capacity. Our analysis suggests that a late starting date and biases in the ocean circulation cause a too low anthropogenic CO2 uptake across the GOBM ensemble. Surface ocean biogeochemistry biases might also cause simulated anthropogenic fluxes to be too low, but the current setup prevents a robust assessment. For simulations of the ocean carbon sink, we recommend in the short-term to (a) start simulations at a common date before the industrialization and the associated atmospheric CO2 increase, (b) conduct a sufficiently long spin-up such that the GOBMs reach steady-state, and (c) provide key metrics for circulation, biogeochemistry, and the land-ocean interface. In the long-term, we recommend improving the representation of these metrics in the GOBMs.en_US
dc.language.isoengen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleAssessment of Global Ocean Biogeochemistry Models for Ocean Carbon Sink Estimates in RECCAP2 and Recommendations for Future Studiesen_US
dc.title.alternativeAssessment of Global Ocean Biogeochemistry Models for Ocean Carbon Sink Estimates in RECCAP2 and Recommendations for Future Studiesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.rights.holder© 2024 The Authorsen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1029/2023MS003840
dc.identifier.cristin2263626
dc.source.journalJournal of Advances in Modeling Earth Systemsen_US
dc.source.volume16en_US
dc.source.issue3en_US
dc.source.pagenumber32en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal