Vis enkel innførsel

dc.contributor.authorHill, Emily A.
dc.contributor.authorUrruty, Benoit
dc.contributor.authorReese, Ronja
dc.contributor.authorGarbe, Julius
dc.contributor.authorGagliardini, Olivier
dc.contributor.authorDurand, Gael
dc.contributor.authorGillet-Chaulet, Fabien
dc.contributor.authorGudmundsson, G. Hilmar
dc.contributor.authorWinkelmann, Ricarda
dc.contributor.authorChekki, Mondher
dc.contributor.authorChandler, David Matthew
dc.contributor.authorLangebroek, Petra
dc.date.accessioned2023-11-24T11:46:45Z
dc.date.available2023-11-24T11:46:45Z
dc.date.created2023-09-21T13:57:28Z
dc.date.issued2023
dc.identifier.citationThe Cryosphere. 2023, 17 (9), 3739-3759.en_US
dc.identifier.issn1994-0416
dc.identifier.urihttps://hdl.handle.net/11250/3104526
dc.description.abstractTheoretical and numerical work has shown that under certain circumstances grounding lines of marine-type ice sheets can enter phases of irreversible advance and retreat driven by the marine ice sheet instability (MISI). Instances of such irreversible retreat have been found in several simulations of the Antarctic Ice Sheet. However, it has not been assessed whether the Antarctic grounding lines are already undergoing MISI in their current position. Here, we conduct a systematic numerical stability analysis using three state-of-the-art ice sheet models: Úa, Elmer/Ice, and the Parallel Ice Sheet Model (PISM). For the first two models, we construct steady-state initial configurations whereby the simulated grounding lines remain at the observed present-day positions through time. The third model, PISM, uses a spin-up procedure and historical forcing such that its transient state is close to the observed one. To assess the stability of these simulated states, we apply short-term perturbations to submarine melting. Our results show that the grounding lines around Antarctica migrate slightly away from their initial position while the perturbation is applied, and they revert once the perturbation is removed. This indicates that present-day retreat of Antarctic grounding lines is not yet irreversible or self-sustained. However, our accompanying paper (Part 2, Reese et al., 2023a) shows that if the grounding lines retreated further inland, under present-day climate forcing, it may lead to the eventual irreversible collapse of some marine regions of West Antarctica.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe stability of present-day Antarctic grounding lines-Part 1: No indication of marine ice sheet instability in the current geometryen_US
dc.title.alternativeThe stability of present-day Antarctic grounding lines-Part 1: No indication of marine ice sheet instability in the current geometryen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.rights.holder© Author(s) 2023en_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.5194/tc-17-3739-2023
dc.identifier.cristin2177608
dc.source.journalThe Cryosphereen_US
dc.source.volume17en_US
dc.source.issue9en_US
dc.source.pagenumber3739-3759en_US
dc.relation.projectEC/H2020/820575en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal