• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra Cristin
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra Cristin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning for graphs

Bacciu, Davide; Bianchi, Filippo Maria; Paassen, Benjamin; Alippi, Cesare
Chapter
Accepted version
Thumbnail
View/Open
ESANN2021___DL_for_graphs_tutorial.pdf (333.5Kb)
URI
https://hdl.handle.net/11250/3076443
Date
2018
Metadata
Show full item record
Collections
  • Artikler, kapitler og presentasjoner fra NORCE Energi og teknologi [301]
  • Publikasjoner fra Cristin [1939]
Abstract
Deep learning for graphs encompasses all those neural models endowed with multiple layers of computation operating on data represented as graphs. The most common building blocks of these models are graph encoding layers, which compute a vector embedding for each node in a graph using message-passing operators. In this paper, we provide an overview of the key concepts in the field, point towards open questions, and frame the contributions of the ESANN 2021 special session into the broader context of deep learning for graphs.

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit