Vis enkel innførsel

dc.contributor.authorKurz, Tobias Herbert
dc.contributor.authorMiguel, Galo San
dc.contributor.authorDubucq, Dominique
dc.contributor.authorKenter, Jeroen
dc.contributor.authorMiegebielle, Veronique
dc.contributor.authorBuckley, Simon John
dc.date.accessioned2023-03-30T12:37:30Z
dc.date.available2023-03-30T12:37:30Z
dc.date.created2022-08-23T14:08:28Z
dc.date.issued2022
dc.identifier.citationGeosphere. 2022, 18 (2), 780-799.en_US
dc.identifier.issn1553-040X
dc.identifier.urihttps://hdl.handle.net/11250/3061193
dc.description.abstractGeological models from outcrop analogues are often utilized as a guide, or soft constraint, for distributing reservoir properties in subsurface models. In carbonate outcrops, combined sequence stratigraphic, sedimentological, and petrographic studies constrain the heterogeneity of geobodies and diagenetic processes, including dolomitization, at multiple scales. High-resolution digital outcrop modeling further aids geometric mapping, geobody definition, and statistical analysis, though its usefulness for detailed mineralogical and lithological mapping is limited. Hyperspectral imaging offers enhanced spectral resolution for mapping subtle mineralogical differences. In both outcrops and subsurface, differences in carbonate composition can provide key information for distributing porosity and permeability, yet this mapping is highly challenging in field studies due to access difficulties, visible material differences, and sampling resolution. Spectral analysis of limestone–dolomite ratios conducted in laboratory studies indicates theoretical measures for quantitative identification and mapping of dolomite degrees within carbonate rocks. In this study, close-range hyperspectral imaging is applied to outcrops of the Alacón Member, Barranco del Mortero, northeastern Spain, to identify exposed limestone–dolomite geobodies and to quantify the degree of dolomitization across outcrop faces. Hyperspectral imaging is supplemented with photogrammetric outcrop modeling, field spectroscopy, and laboratory sample analysis for empirical validation and uncertainty analysis. Hyperspectral mapping shows that earlier fieldwork utilizing visual inspection of difficult to access outcrop surfaces had overestimated the amount of dolomite in the outcrop. Results indicate that hyperspectral imaging identified dolomite bodies more accurately and reliably than conventional field methods and facilitates the mapping of dolomite contribution in areas modified by dedolomitization, where dolomite content changes by more than ~20%.en_US
dc.language.isoengen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleQuantitative mapping of dolomitization using close-range hyperspectral imaging: Kimmeridgian carbonate ramp, Alacón, NE Spainen_US
dc.title.alternativeQuantitative mapping of dolomitization using close-range hyperspectral imaging: Kimmeridgian carbonate ramp, Alacón, NE Spainen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.rights.holder© 2022 The Authorsen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1130/GES02312.1
dc.identifier.cristin2045404
dc.source.journalGeosphereen_US
dc.source.volume18en_US
dc.source.issue2en_US
dc.source.pagenumber780-799en_US
dc.relation.projectNorges forskningsråd: 266740en_US
dc.relation.projectAndre: TotalEnergy SE, laboratory at CSTJen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal