Reusable data visualization patterns for clinical practice
Abstract
Among clinical psychologists involved in guided internet-facilitated interventions, there is an overarching need to understand patients symptom development and learn about patients need for treatment support. Data visualizations is a technique for managing enormous amounts of data and extract useful information, and is often used in developing digital tool support for decision-making. Although there exists numerous data visualisation and analytical reasoning techniques available through interactive visual interfaces, it is a challenge to develop visualizations that are relevant and suitable in a healthcare context, and can be used in clinical practice in a meaningful way. For this purpose it is necessary to identify actual needs of healthcare professionals and develop reusable data visualization components according to these needs. In this paper we present a study of decision support needs of psychologists involved in online internet-facilitated cognitive behavioural therapy. Based on these needs, we provide a library of reusable visual components using a model-based approach. The visual components are featured with mechanisms for investigating data using various levels of abstraction and causal analysis.