Vis enkel innførsel

dc.contributor.authorSargado, Juan Michael Uy Villanueva
dc.contributor.authorKeilegavlen, Eirik
dc.contributor.authorBerre, Inga
dc.contributor.authorNordbotten, Jan Martin
dc.date.accessioned2022-01-27T11:35:39Z
dc.date.available2022-01-27T11:35:39Z
dc.date.created2021-04-12T18:56:27Z
dc.date.issued2021
dc.identifier.citationComputer Methods in Applied Mechanics and Engineering. 2021, 373:113474 1-23.en_US
dc.identifier.issn0045-7825
dc.identifier.urihttps://hdl.handle.net/11250/2885789
dc.description.abstractNumerical simulations of brittle fracture using phase-field approaches often employ a discrete approximation framework that applies the same order of interpolation for the displacement and phase-field variables. In particular, the use of linear finite elements to discretize both stress equilibrium and phase-field equations is widespread in the literature. However, the use of Lagrange shape functions to model the phase-field is not optimal, as the latter contains cusps for fully developed cracks. These should in turn occur at locations corresponding to Gauss points of the associated FE model for the mechanics. Such a feature is challenging to reproduce accurately with low order elements, and element sizes must consequently be made very small relative to the phase-field regularization parameter in order to achieve convergence of results with respect to the mesh. In this paper, we combine a standard linear FE discretization of stress equilibrium with a cell-centered finite volume approximation of the phase-field evolution equation based on the two-point flux approximation constructed over the same simplex mesh. Compared to a pure FE formulation utilizing linear elements, the proposed framework results in looser restrictions on mesh refinement with respect to the phase-field length scale. This ability to employ coarser meshes relative to the traditional implementation allows for significant reductions on computational cost, as demonstrated in several numerical examples.en_US
dc.language.isoengen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA combined finite element–finite volume framework for phase-field fractureen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.rights.holder© 2020 The Authorsen_US
dc.description.versionpublishedVersionen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1016/j.cma.2020.113474
dc.identifier.cristin1903654
dc.source.journalComputer Methods in Applied Mechanics and Engineeringen_US
dc.source.volume373:113474en_US
dc.source.pagenumber1-23en_US
dc.relation.projectNorges forskningsråd: 250223en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal