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Abstract
The increase in heatwave intensity, causing heat stress and crop failures in many regions is a
concerning impact of global climate change. In northern Europe, significant interannual variability
previously prevented robust assessments of trends in heat extremes. However, with a
large-ensemble seasonal hindcasts and archived forecasts dataset covering 1981–2022 multiple
realisations of weather patterns can be pooled and assessed. What are recent trends of extreme
temperatures? Has the risk for a 100-year heatwave event increased in Northern Europe? We apply
the UNSEEN (UNprecedented Simulated Extremes using ENsembles) approach to assess the
credibility of the model ensemble and use non-stationary extreme value analysis to quantify recent
trends in extreme 3-day heatwaves in late spring and early summer (May to July). We find
significant non-stationarity and positive trends in annual maximum heatwave intensity. We also
show that heatwave volatility, i.e. the risk of clearly outstanding heatwaves, is highest in central
Scandinavia.

1. Introduction

The increase of temperature extremes is often per-
ceived as one of themajor and clearest signs of climate
change (Yiou et al 2020, IPCC 2023, Zachariah et al
2023). However, this increase has not received much
attention for climate impact assessment in Northern
Europe. The European Environmental Agencymainly
names winter storms and flood-related hazards as
major areas of concern in this region, while decreases
in energy demand for heating and increases in sum-
mer tourism are named as positive impacts of cli-
matic changes (EEA 2017). Also in agriculture, tem-
perature extremes often accompanied with heatwaves
and droughts were not perceived as important risks
in the past. In 2016, a report to the Norwegian gov-
ernment focused mainly on flooding and wet soils,
while heat and drought were just perceived as poten-
tially problematic in some areas towards the end
of the century (LMD 2016). Several surveys among
Norwegian farmers conducted between 2008 and
2012 also showed that while roughly 50% of the

farmers perceived drought as a potential risk for
them within the following 10 years, more than 80%
thought the same for heavy autumn rain and wet
soils (Aasprang 2013). Higher temperatures contrib-
ute to extend the thermal growing season on one
hand (Ruosteenoja et al 2020), however, especially
the increased frequency and duration of drought and
heatwaves can lead to reduced seed germination and
plant growth andhence reduce crop volume and qual-
ity (Brás et al 2021).

The hot and dry summer in Northern Europe
in 2018 came as a surprise to many, and espe-
cially to practitioners in the Scandinavian agricul-
tural sector (Haugen et al 2019, Johnsson et al
2019, Landbruksdirektoratet 2020). Much hotter and
drier conditions dominated the weather in Northern
Europe from Mid–April well into autumn. May
2018 was the warmest May on record for all of
the Scandinavian and Baltic countries, with tem-
perature anomalies exceeding +5 ◦C in some areas
(Blunden and Arndt 2019, Skaland et al 2019). More
records were broken during the summer, making
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2018 an exceptionally warm and dry year in this
region (Blunden and Arndt 2019). This had devastat-
ing impacts especially for agriculture, with economic
losses for agriculture alone of around 3 billion NOK
(Norway), 4–6 billion DKK (Denmark) and 6 bil-
lion SEK (Sweden) (Johnsson et al 2019). For effect-
ive climate adaptation, it is therefore crucial to have
a good estimate of whether the probability of such
extreme events is changing (Hov 2013, Glotter and
Elliott 2016, Devot et al 2023).

In this study, we investigate recent trends of
extreme heatwave intensity in Northern Europe and
if the risk for a 100-year heatwave event has increased
since 1981. Some of the challenges related to high
variability and short record length in observational
datasets can be overcome by using large ensembles
of physics-based climate models (e.g. Slater et al
2021). An approach that has become quite popu-
lar recently is UNSEEN (UNprecedented Simulated
Extremes using ENsembles; Thompson et al 2017).
By pooling members of seasonal predictions or cli-
mate models, UNSEEN creates a set of alternative
but equally plausible realisations of past weather pat-
terns, provided that the ‘model climate’ is repres-
entative of real-world climate. This approach has
first been conceived by van den Brink et al (2005)
and was standardised by Thompson et al (2017).
Building on that, Kelder et al (2022) developed a
standardised, easy-to-implement protocol for adapt-
ing UNSEEN and evaluating model ensembles for
plausibility. In previous studies, UNSEEN has been
used to assess the probability of unprecedented rain-
fall in the UK (Thompson et al 2017), heatwaves
in China (Thompson et al 2019), exceedance prob-
abilities of critical agrometeorological thresholds in

China and the US (Kent 2019, Coughlan de Perez
et al 2023), probability of early-spring thawing events
in Siberia (Kelder et al 2022), critical storm-surge
events in the Netherlands (van den Brink et al
2005), trends in extreme precipitation in Norway
and Svalbard (Kelder et al 2020, Müller et al 2022),
and more. We build upon and apply the UNSEEN
trends approach (an extension of UNSEEN based
on non-stationary extreme value theory; Kelder et al
2020) to detect and quantify non-stationarities in
heat extremes in Northern Europe. We use the latest
ECMWF seasonal prediction system SEAS5 (Johnson
et al 2019). High-resolution large ensemble hindcasts
and archived forecasts are available for the recent
past (1981–2022). In this study, we identify a heat-
wave by assessing the 3-day averaged daily maximum
temperature (TX3d) (Kew et al 2019) and calculate
trends in the maximumTX3d in theMay–July period
of each year, when agriculture in Northern Europe
is most vulnerable to extreme heat and drought
(Johnsson et al 2019).

2. Materials andmethods

To ensure credibility and comparability, we follow
the UNSEEN workflow as presented by Kelder et al
(2022). First, we define the event to be analysed and
describe the datasets used for the analysis. Then, for
each of the studied regions, we statistically evalu-
ate the realism of the modelled ensemble time series
compared to observations. Finally, we compute the
trends in 1-in-100-year return values and the heat-
wave volatility of each region.

2.1. Heat wave definition
In this study we focus on May–July maximum 3-
day averaged daily maximum temperature (TX3d).
While a multi-parameter drought index accounting
for both intensity and duration of a drought period
might be more relevant to agriculture, we keep the
event definition as simple as possible. This choice
makes the analysis less sensitive to possible model
shortcomings, especially in the simulation of humid-
ity and precipitation. It also makes our results more
comparable to previous studies that assessed trends
in seasonal or annual daily maximum temperature
(TXx; e.g. Sulikowska and Wypych 2021) or also
TX3d (World Weather Attribution 2018, Philip et al
2023). For the warm months (March–September) in
Europe, several studies found strong negative correl-
ations between temperature and precipitation anom-
alies (Trenberth and Shea 2005) as well as between
anomalies in temperature and cloudiness (Tomczyk
et al 2017, Räisänen 2019). Furthermore, Schaller
et al (2018) found a significant correlation between
summer heatwave magnitudes and the number of
days influenced by atmospheric blocking in Northern
Europe and Western Russia. This gives us confidence
to assume that extreme heat in Northern Europe is
generally connected to very dry conditions, making
TX3d a useful proxy for both heatwaves and drought
conditions. In Northern Europe the growing season
does not start before late April (Domínguez-Castro
et al 2020) and the early onset of abnormally warm
and dry conditions in May was identified as one
of the main reasons for large-scale crop failure in
Scandinavia in 2018 (Johnsson et al 2019).

2.2. Data
To assess ‘alternative realities’, i.e. different, but
equally plausible versions of past weather, we use
SEAS5, ECMWF’s fifth generation seasonal fore-
cast system (Johnson et al 2019). SEAS5 is a long-
range physics-based forecast system initialized every
month and integrated 7 months into the future. The
dataset consists of hindcasts (1981–2016) contain-
ing 25 ensemble members, and archived forecasts
(2017-present) containing 51 ensemble members. To
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Figure 1. (a) Never seen, but realistic weather pattern causing an extreme heatwave in central Sweden (simulated by SEAS5,
member 22, initialisation date 1st April 2011, retrieved from Copernicus CDS). 2 m temperature (colours) and sea level pressure
(contour lines). (b) Overview of regions.

ensure consistency, we use 25 ensemble members for
the whole period of 1981–2022. Despite using dif-
ferent initialization methods, major inhomogeneity
betweenhindcasts and archived forecasts is not expec-
ted (Kelder et al 2022). By pooling lead times and
ensemblemembers we can create a dataset containing
100 alternative realisations of possible weather out-
comes forMay–July of each year of the 42-year period
(4 lead times, 25members per lead time). An example
of a simulated, but yet never observed weather pat-
tern causing unprecedented heat in central Sweden is
shown in figure 1(a).

In order to test credibility of the model out-
comes, we need to compare them against histor-
ical observations or reanalysis products. Here we
use the MET Nordic long-term consistent dataset
(Norwegian Meteorological Institute 2023), which is
based on the 3-km Norwegian Reanalysis NORA3
(Haakenstad et al 2021) hindcast. NORA3 showed
very close agreement with surface observations for
the 99th percentile of 2-meter surface temperat-
ure across the Norwegian mainland (Haakenstad
and Breivik 2022). Preprocessing and computing
of region-averaged annual maximum temperatures
TX3d is done using CDO and NCO climate data
operators (Zender 2008, Schulzweida 2022).We com-
pute region-averaged TX3d by weighting grid cells
according to their size (decreasing with increasing lat-
itude) and the percentage of each grid cell within a
region of interest using Python xarray (Hoyer and
Hamman 2017) and Python pyscissor (Ahasan 2020).
This allows us to be more precise on the boundaries
of a given region than the ‘black and white’ mask-
ing method used for example in the ‘UNSEEN-open’
workflow (Kelder et al 2022).

We loosely base our regional analyses on the
Nomenclature of Territorial Units for Statistics
dataset NUTS (Eurostat 2022), which we modi-
fied to get regions of comparable size (figure 1(b)).
We use QGIS geographical information system
(QGIS.org 2023) for modifying the shapefiles and
plotting spatial data. We choose administrative bor-
ders rather than climatic regions (e.g. Norway’s
temperature regions; Hanssen-Bauer and Nordli
1998) or grid cell-based analysis. As it is stated in
previous studies (Bachmair et al 2018, Angelova
and Lupio 2020), this corresponds better with
the needs of risk management in societies and
agriculture.

2.3. Evaluation of UNSEEN
The UNSEEN approach is based on the assump-
tion that model ensemble members can be treated
as different and equally plausible versions of past
weather evolution, making it possible to increase the
sample size of weather events and ultimately allowing
a robust statistical analysis. Three conditions must be
met (Kelder et al 2022): i) Ensemble member inde-
pendence, because if the ensemble members are cor-
related, the effective sample size is much smaller than
the total sample size, which results in too high con-
fidence in the results, ii) model stability, because a
drift in themodel towards higher lead timesmay alter
the realism of the ensemble; and iii) model fidelity,
because only if observations and model members are
statistically indistinguishable, the virtual model cli-
mate can be regarded as consistent with the ‘real’ cli-
mate (Anderson 1997). Based on the initial idea by
van den Brink et al (2005), Thompson et al (2017)and
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Thompson et al (2019) developed a theoretical frame-
work to test these three conditions, which was fur-
ther standardised by Kelder et al (2020) and Kelder
et al (2022). Here we use the ‘UNSEEN’ R-package
presented in the latter study (https://github.com/
timokelder/UNSEEN) to test these conditions indi-
vidually for each region. All tests are extensively
discussed in the above-mentioned studies, thus we
provide a short description for better understanding.
i) Independence is tested by calculating the Spearman
rank correlation coefficient (ρ) for each lead time
and every distinct pair of ensemble members. The
resulting distribution of Spearman ρ (one value for
each pair) is compared against a theoretically expec-
ted distribution. ii) Stability is tested by separately
plotting probability density functions and empirical
return periods for each lead time. iii) Finally, fidelity
is tested by bootstrapping 10 000 proxy model time
series the same length as observational record from all
years and ensemble members. Mean, standard devi-
ation, skewness, and kurtosis are then calculated of
all the proxy timeseries as well as the observations
and compared to each other. If the moments of the
observations fall within the 95% confidence range of
the bootstrapped proxy time series, observations and
ensemble are deemed statistically indistinguishable.
We detect a cold bias in themean of the ensemble data
as themost common issue across all regions. This bias
can be corrected by adjusting themean.More sophist-
icated bias correctionmethods might yield better res-
ults (e.g. Maraun 2016, Sippel et al 2016) but are out
of the scope of this study. Kelder et al (2022) provide
an overview over potential solutions when issues with
ensemble member independence, stability or fidelity
are detected.

2.4. Statistical analysis
We use the obtained ensemble for two types of stat-
istical analysis:

i) In order to show how prone a given region is to
clearly outstanding extremes, we compute volat-
ility as the mean anomaly of the 42 highest
TX3d (corresponding to the top percent) of the
detrended seasonal forecast dataset.

ii) We apply well-established extreme value theory
(Coles 2001, AghaKouchak et al 2013) on the ori-
ginal (not detrended) TX3d time series from
reanalysis (42 values) and SEAS5 (4200 values,
one for each year, member and leadtime) to
estimate return values and trends in extreme
(100-year return period) heatwaves.

The extremal types theorem (Fisher and Tippett
1928, Coles 2001) states that for sufficiently large
samples (e.g. daily temperatures for individual years),
the greatest or least value of each of these samples (e.g.
annual maximum temperature) follows one out of

three possible limiting distributions, which can all be
summarized in the generalized extreme value (GEV)
distribution. The GEV distribution is described by
location (−∞< µ <∞), scale (σ> 0), and shape
(−∞< ξ <∞) parameters:

F(x) = exp

[
−
(
1+ ξ

x−µ

σ

)− 1
ξ

]
, 1+ ξ

x−µ

σ
> 0.

(1)

The quantiles of the distribution can then be
obtained by inverting equation (1):

xp = µ− σ

ξ
(1−{−log(1− p)}−ξ

, ξ ̸= 0 (2)

where xp corresponds to the return level associated
with the return period p−1 (Coles 2001). For the
statistical analyses in this study we use the extRemes
package in R (Gilleland and Katz 2016, R Core Team
2023). We apply generalized maximum likelihood
(GML) estimation method (Martins and Stedinger
2000) for parameter estimation, which is expected
to be more stable than commonly used maximum
likelihood (ML) estimation (El Adlouni et al 2007).
However, where GML estimation does not converge
we resort to ML (one region only). The 95% confid-
ence intervals are calculated based on a normal distri-
bution. Since hydroclimatic extreme value variables
are often characterized by a strong skewness this is a
poor assumption (Coles 2001, El Adlouni et al 2007).
Better methods exist (e.g. parametric bootstrapping),
but they are difficult to implement and much differ-
ence is not expected (Kelder et al 2020). However,
the calculated confidence intervals are not able to
take into account uncertainty due to model correct-
ness and should therefore be interpreted with cau-
tion. Non-stationarity can be introduced by allowing
one or several of the parameters to vary with a so-
called covariate (AghaKouchak et al 2013). Following
the UNSEEN Trends protocol presented by Kelder
et al (2020) we use years as a linear covariate and
redefine the parameters µ and σ as functions of time:

(Mµ,σ)


µ(t) = µ0 +µ1t,

lnσ (t) = ϕ0 +ϕ1t

ξ

. (3)

For the scale parameter a log-link function is used
to ensure σ(t)> 0. While it is theoretically possible
to introduce a time varying shape parameter ξ as
well, we have no reason to suspect significant changes
in shape and keep ξ constant. It can also not gen-
erally be assumed that in every case a model with
time-varying location and scale parameters is most
appropriate, so we implement a small decision tree
as suggested by Robin and Ribes (2020). We first
define three submodels of the model described in
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equation (3), namelyM0 (µ1 = 0,ϕ1 = 0; stationary
case),Mµ (ϕ1 = 0), andMµ,σ . We fit the threemod-
els to both the observed (from reanalysis) and simu-
lated (from seasonal forecast) time series.We then use
a likelihood ratio test as suggested by Coles (2001) to
first test Mµ against M0. If the resulting p-value is
high (>0.05),M0 is retained (and the assumption of
non-stationarity is rejected). Otherwise, the proced-
ure is repeated testing Mµ,σ against Mµ. This way,
we assure that we do not overinterpret the data by
simply assuming trends in both variation and scale
parameters. In case a non-stationarymodel is deemed
most appropriate, we can then calculate the trend in
the 100-year return value between 1981 and 2022 by
computing the absolute change between these two
values:

∆xT
∆t

=
xT (µ(2022) , lnσ (2022) , ξ)− xT (µ(1981) , lnσ (1981) , ξ)

42
,

(4)

where xT is defined by equation (2).

3. Results

In the following sections first an overview of the
results of the UNSEEN ensemble evaluation is
given, then we present the results of the statistical
assessment.

3.1. Evaluation of the UNSEEN ensemble
We test the ensemble for independence, stability, and
fidelity. No issues are detected for any of the regions
regarding independence and stability. However, the
testing for fidelity reveals partly big differences in
the statistical moments of observation and ensemble
distributions. A mean bias is found in all regions,
with the ensemble mean being between 2 and 4.5 ◦C
cooler than the observations. Thus, for each region
we adjust the ensemble data using additive bias cor-
rection. As long as, aftermean bias correction, all four
moments of the observation timeseries fall within the
95% confidence intervals, we regard the fidelity test
as passed.Where differences are large, but not outside
the confidence intervals, this is indicated in the results
table (see additional material provided on Zenodo,
Berghald et al 2024). Only one region, namely the
Åland archipelago, fails the fidelity test and is there-
fore excluded from further analysis.

3.2. Volatility
The results of the volatility analysis are shown in
figure 2. The mean TX3d anomalies of the top per-
cent of simulated events for each region range from
5 ◦C to 7 ◦C. We find the highest values in the central
Scandinavian area, indicating a higher risk for out-
standing extremes in these regions as compared to the
Norwegian coast and most of Finland.

Figure 2. Anomaly of mean TX3d of top 1% (42 out of
4200 modelled events) with respect to the detrended mean
of annual TX3d.

3.3. Trends in return values and periods
3.3.1. Best model
Trends in 100-year return values of TX3d are cal-
culated using non-stationary extreme value ana-
lysis for both reanalysis (MET Nordic long-term
consistent) and ensemble data (SEAS5). We use
a likelihood ratio test to confirm or reject non-
stationarity in the extreme value distributions for
both observed and simulated time series. Åland is
the only region where non-stationarity in the obser-
vations can be confirmed at the 5% level. In con-
trast, non-stationarity is confirmed for all regions
in the SEAS5 ensemble. Including a trend in the
scale parameter (Mµ,σ) improves the fit in seven
cases compared to variable location only (Mµ) as
shown in figure 3(a). However, in another seven
cases fitting the GEV distribution with both vari-
able location and scale parameters fails, in these
regions the model with a trend in location only is
retained.

3.3.2. Changes in return periods
We compute the estimated return period in 2022 of
a 100-year return value as of 1981 (figure 3(b)). The
smallest change here is found in the Finnish region
of Lappi (1 in 46 years) and the biggest in Nordland
in Norway (1 in 20 years). While we can not find
any obvious spatial patterns, it is noteworthy that the
biggest changes were found in regions where using
Mµ,σ showed to improve the model fit (figures 3(a)
and (b)).
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Figure 3. (a) Best GEV fit for each region:Mµ,σ (green),Mµ (white). Dotted fill indicates regions where fittingMµ,σ failed
andMµ was automatically retained. (b) 2022 return period of 1981 1-in-100-year event.

Figure 4. (a) Trends in 100-year return values between 1981 and 2022. (b) Ratio between trend in 100-year return values and the
mean temperature trend. (c) Same as b, but usingMµ for all regions.

3.3.3. Trends in 100-year return values
Estimated trends from reanalysis for the 42-year
period using Mµ are between −0.7 ◦C and +2.2 ◦C.
However, non-stationarity could not be confirmed,
which is reflected by the very large uncertain-
ties (on average ± 3.3 ◦C). Using the much big-
ger SEAS5 ensemble dataset results in significantly
smaller uncertainties: average 95%-confidence inter-
vals are roughly ± 0.3 ◦C. We find trends in 100-year
return values between 0.6 ◦C (Lappi; corresponding
to 0.14 ◦C per decade) and 1.7 ◦C (Västerbottens
län; 0.4 ◦C per decade) (figure 4(a)). These trends
are lower than the mean temperature trends in the

same months and period along the eastern parts of
the studied domain from Troms og Finnmark to
Estonia as well as in southern Sweden and some
regions in Norway. In central and northern Sweden as
well as several regions in Norway extreme heatwave
temperatures are increasing faster than the average
temperature (figure 4(b)). However, if Mµ is applied
to all regions this is just the case for Vestland and
Nordland at the Norwegian coast (figure 4(c)). The
absolute values of the 100-year return value with cov-
ariate 2022 were found to be between 26 ◦C along
the coast of Northern Norway and 34.4 ◦C in Eastern
Middle Sweden (Östra Mellansverige), with generally
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lower TX3d values along the Norwegian coast and
higher values towards the southeast (supplementary
material on Zenodo).

4. Discussion

In line with previous studies (World Weather
Attribution 2018, Sulikowska and Wypych 2021) we
do not find significant non-stationarity in obser-
vations due to high internal variability in summer
weather patterns inNorthern Europe. However, using
the much larger SEAS5 hindcast ensemble dataset, we
are able to get more robust results, revealing the until
now hidden trends in heat extremes in Northern
Europe. We find trends in 100-year return values
(the value with 1% exceedance probability in a given
year) to range from 0.1 ◦C–0.4 ◦Cper decade. Inmost
areas, these values are similar or lower than the mean
warming rate in the months May–July in the same
period, but in several regions the opposite is true.
We also find significant changes in the probability of
a given return level. For example, a heatwave event
associated with a 100-year return period in 1981 is
now estimated to happen once in 20–40 years. While
we did not assess future trends in this study, it is very
likely that these trends continue into the future, mak-
ing a former extreme event the new normal (Hov
2013, Glotter and Elliott 2016).

No conclusive explanations could be found for
the trend differences between regions. We find some
correlation between regions with the strongest trends
and where a significant trend in the scale parameter
of the GEV distribution (in addition to a trend in loc-
ation) is detected. Using the same statistical model
for all regions leads to more similar trends. However,
as especially the fidelity tests show, the statistical
distributions of MJJ TX3d are quite different from
one region to another, implying that the reasons
for the very different trends could lie elsewhere. For
example, differences in surface properties between
regions or model shortcomings in their represent-
ation could cause these differences. This could be
tested by repeating the same analysis using other sea-
sonal forecast and hindcast datasets like the American
Climate Forecast System (Saha et al 2014). However,
this was out of the scope of this study. Significant (and
potentially badly represented) land-use changes dur-
ing the studied 42-year period, for example around
the cities of Helsinki, Stockholm and Oslo are not
expected, but could play a minor role.

This leads to a question that has not yet been con-
clusively answered in the literature. Even if the stat-
istical distributions of models and observations do
not differ significantly, it is still unclear whether the
model produces the extremes of interest for the right
physical reasons (e.g Vautard et al 2019), Philip et al

2020). Indeed, the computed confidence intervals are
likely to be too small, since systematic model short-
comings are not accounted for (Kelder 2023). It is

also by definition difficult to check how realistic sim-
ulated extremes are, especially for events far above
the observed record (‘unseen’ events). Adapting the
choice of the model to the event of interest is cru-
cial: For regional-scale multi-day events like TX3d
seasonal forecast models like SEAS5 are well-suited,
while sub-daily or multi-year events cannot be cap-
tured by seasonal forecasts (Kelder 2023). Confidence
in the UNSEEN ensemble can be increased by an
assessment of the drivers of observed and unseen
extremes, which is a time-consuming process (Kelder
2023). Here, we just checked one randomly selected
‘unseen’ event, which showed to be connected to dry
conditions and a large-scale sea level pressure pat-
tern typical for atmospheric blocking (figure 1(a)).
Given that the statistical evaluation shows good res-
ults for all regions (section 3.1) and that themean bias
is similar between all regions we have enough confid-
ence in the reliability of the SEAS5 dataset. An extens-
ive discussion on the strengths and shortcomings of
UNSEEN is given in Kelder (2023).

5. Conclusion

We apply the UNSEEN approach on a large ensemble
seasonal hindcast dataset to robustly assess trends and
changes in heat extremes in Northern Europe. Unlike
previous studies based on observations or reanalysis
alone, we are able to show that 100-year return values
have increased over the past 42 years, thus highlight-
ing the added value of making use of large-ensemble
seasonal hindcast datasets. However, the spatial pat-
terns of trends are difficult to interpret. While in
some regions trends in 1-in-100-year extremes are
higher than trends in the mean temperature, in oth-
ers, they are not. Different trends in the model para-
meters other than linear ones could be assessed in
future studies, but physical limitations of the model
ensemble also need to be considered.We also find that
especially central parts of Sweden and Norway have a
high heatwave volatility, which means that the poten-
tial for a ‘surprise’-event is highest in these areas.With
continuing global climate change trends in bothmean
temperature and heat extremes are likely to continue.
The methods applied in this study cannot be used to
assess future climate change, however, the framework
could potentially be adapted for the use of e.g. large
ensembles of regional climate models.

Data availability statement

The data that support the findings of this study are
openly available at the following URL/DOI: https://
doi.org/10.5281/zenodo.8391578. Original SEAS5
seasonal forecast data is archived and accessible for
registered users at ECMWF’sMeteorological Archival
and Retrieval System MARS (www.ecmwf.int/en/
forecasts/access-forecasts/access-archive-datasets).
Description and availability of the MET Nordic
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long-term consistent product can be found at
MET Norways’s Github pages: (https://github.
com/metno/NWPdocs/wiki/MET-Nordic-dataset).
Shapefiles of the NUTS dataset are available from
Eurostat’s webpages (https://ec.europa.eu/eurostat/
web/gisco/geodata/reference-data/administrative-
units-statistical-units).
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