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A B S T R A C T   

Localization is critical to the effective use of an (iterative) ensemble Kalman filter or ensemble smoother to 
estimate uncertain quantities of interest. Here, we propose a novel, fully adaptive, correlation-based localization 
method (termed FBadap). We embed our FBadap approach within an iterative ensemble smoother to estimate 
three-dimensional spatially heterogeneous log-conductivity (Y) fields. The latter are characterized through a 
Generalized sub-Gaussian model, which includes the Gaussian distribution as a particular case. They constitute 
random fields within which head and concentration observations are collected at monitoring wells screened at 
multiple depths. To ensure transparent comparisons, we study and analyze the performance of our approach 
through a wide range of synthetic test cases. These comprise diverse configurations, including (a) various 
ensemble sizes, (b) various degrees of departure of the description of the spatial heterogeneity from a Gaussian 
model, as well as (c) different values of the mean and variance of the initial ensemble of Y. Our results show that 
(i) FBadap is robust adaptive approach enabling one to tackle a variety of settings; (ii) FBadap exhibits stronger 
adaptivity to cope with diverse ensemble sizes than FBconst, and can provide improved accuracy of conductivity 
estimates in comparison with traditional methods; and (iii) the quality of conductivity estimates is jointly 
impacted by the degree of departures of the reference Y field and of the initial ensemble of Y from a description 
based on a Gaussian model.   

1. Introduction 

Ensemble-based data assimilation (or history matching) techniques 
(e.g., Evensen, 2009; Emerick and Reynolds, 2013; Chen and Oliver, 
2013; Luo et al., 2015) are widely used in Earth system sciences. Their 
practical implementation typically involves relying on a limited-size 
collection of realizations of the random field (e.g., spatially heteroge-
neous hydraulic conductivities) to be estimated, mainly due to con-
straints associated with available computational resources. This, in turn, 
leads to issues associated with rank-deficiency of the covariance matrix 
of system parameters/states of interest as well as spurious correlations 
amongst parameters/states/observations. The latter can hamper the 
variability across the realizations of the collection. It can thus severely 
affect the overall quality of data assimilation and our ability to char-
acterize the system within which the dynamics of hydrological processes 

of interest are developing. 
Localization has been proposed to mitigate negative impacts of small 

ensemble size. A variety of studies document development and/or 
application of localization techniques in diverse fields. These include, e. 
g., petroleum engineering (Chen and Oliver, 2010; Emerick and Rey-
nolds, 2011; Luo et al., 2018; Soares et al., 2019; Luo and Bhakta, 2020), 
meteorology (Houtekamer and Mitchell, 1998; Bocquet and Sakov, 
2017), and hydrology (Nan and Wu, 2011; Zovi et al., 2017; Rasmussen 
et al., 2015; Li et al., 2018). Examples of applications in the context of 
the latter include groundwater (e.g., Zovi et al., 2017; Li et al., 2018 and 
references therein), land surface (e.g., Vrugt et al., 2005), and coupled 
subsurface-surface water systems (e.g., Rasmussen et al., 2015) 
scenarios. 

Distance- (Houtekamer and Mitchell, 1998; Sun et al., 2009; Chen 
and Oliver, 2010; Emerick and Reynolds, 2011; Xia et al., 2018; Li et al., 
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2018) and correlation- (Furrer and Bengtsson, 2007; Luo et al., 2018; 
Luo and Bhakta, 2020) based localization approaches are characterized 
by distinct key features. Distance-based localization approaches limit 
the spatial extent of the influence of available observations on local 
model parameter values through a specified tapering function. The latter 
is based on the relative distance between locations associated with an 
observation and a parameter to be estimated, respectively. Tapering 
functions that are typically employed (exponential (e.g., Tong et al., 
2012; Xia et al., 2018), Gaussian (e.g., Nan and Wu, 2011), or Gaspari- 
Cohn (e.g., Hamill et al., 2001; Wang et al., 2018) functions) are 
unimodal and specified/characterized through some characteristic 
length scales. Applications in the context of hydrological sciences 
include, e.g., the studies of Sun et al. (2009), Xia et al. (2018), Li et al. 
(2018) and references therein. Drawbacks associated with distance- 
based localization methods comprise: (i) the need for a high computa-
tional cost when estimating a large number of parameters (Wang et al., 
2018); (ii) the inherent difficulty to adaptively cope with space–time 
dynamics of the strength of the correlation between observations (or 
between observations and parameters to be estimated); (iii) the docu-
mented dependence of the optimal choice of tapering function on the 
forward model (Arroyo-Negrete et al., 2008; Emerick and Reynolds, 
2011; Soares et al., 2019) and/or data type (e.g., Xia et al., 2018); and 
(iv) the inability to cope with parameters and/or observations which are 
not strictly characterized by a given physical location (e.g., Furrer and 
Bengtsson, 2007; Luo et al., 2018). With reference to the latter, we recall 
typical hydrological scenarios associated with (a) large scale parameter 
information such as, e.g., watershed scale soil depth, soil parameters 
related to a typical scale of a soil profile, or regional scale (effective/ 
equivalent) conductivities; or (b) nonlocal (or depth-averaged) infor-
mation such as, e.g., head and concentration data associated with 
monitoring wells screened along multiple depth intervals (Konikow 
et al., 2009; Xia et al., 2021). 

In contrast, a correlation-based localization limits the strength of the 
influence of observations on parameter estimates via a specified 
tapering function which is based on sample (cross-) correlations be-
tween parameters and simulated observations. The value of a so-called 
tapering coefficient, r, between a simulated observation and a param-
eter drives the weight that the observation exerts on the parameter to be 
estimated. Furrer and Bengtsson (2007) propose to evaluate the tapering 
coefficient through a piece-wise tapering function with a constant 
threshold that needs to be tuned (see additional details in Section 2.3). 
Soares et al. (2019) point out that the selection of the (constant) 
threshold value significantly impacts the variability of the model pa-
rameters across the collection of realizations. A proper value of such a 
threshold may be case-dependent and can range (in terms of order of 
magnitude) from 10− 3 to 10− 1, even higher values being documented in 
some cases (e.g., Furrer and Bengtsson, 2007; Soares et al., 2019; Lac-
erda et al., 2021; and references therein). 

Miyoshi (2010) suggests to evaluate r as the product of two adaptive 
components. One of these components stems from cross-validation 
relying on two sets of sample correlations from two hierarchical col-
lections (or sub-ensembles) of parameters with an identical number of 
members (Anderson, 2007). It is expressed as (1− |c1 − c2|/2)β; here, c1 
and c2 correspond to the degree of correlation between parameters and 
simulated observations related to the two sub-ensembles of parameters, 
respectively; and β is a constant that is typically tuned by trial-and-error, 
thus being case-dependent. The other component considers high levels 
of the correlation between parameters and simulated observations 
(Bishop and Hodyss, 2009). It is typically evaluated as |c|γ, where c and γ 
are the strength of the correlation assessed across the whole ensemble 
(which includes the two aforementioned sub-ensembles) and a constant 
to be appropriately tuned (hence being case-dependent), respectively. 

The localization approaches listed above are semi-adaptive, consis-
tent with the observation that the associated hyperparameters (e.g., β or 
γ) are required to be tuned. Luo and Bhakta (2020) recently propose a 
fully adaptive approach relying on the use of the Gaspari-Cohn 

formulation as a tapering function to evaluate the tapering coefficient 
under some assumptions. 

Correlation-based localizations are considered only in a limited 
number of studies in the context of hydrological sciences. Rasmussen 
et al. (2015) rely on the approach proposed by Miyoshi (2010) and apply 
the correlation-based localization within an ensemble Kalman filter 
approach to estimate parameters of a coupled subsurface-surface hy-
drological model. Available observations include heads across the 
groundwater system and stream discharge. These authors compare a 
correlation- and a distance-based localization approach. They note that 
the former outperforms the latter because of its enhanced ability to 
quantify and constrain the influence of observations to each parameter. 

Our study aims at developing an original fully adaptive localization 
method, hereafter termed FBadap. The latter is grounded on the 
correlation-based approach originally proposed by Furrer and Bengtsson 
(2007) and adaptively evaluates the threshold value. We embed our 
scheme in an iterative ensemble smoother and test its potential against 
(a) its original counterpart (hereafter denoted as FBconst; Furrer and 
Bengtsson, 2007) which relies on a pre-set constant threshold and (b) the 
localization method proposed by Luo and Bhakta (2020; hereafter 
denoted as LB2020). To provide transparent assessment and comparison 
of the approaches analyzed, we rest on a suite of computational settings 
that we take as reference. In this framework, we consider scenarios 
associated with Gaussian and non-Gaussian heterogeneous log- 
conductivity fields, Y(x) (x denoting a vector of spatial coordinates). 
We then explore the impact of the degree of departure from a description 
of spatial heterogeneity based on a Gaussian model within a three- 
dimensional subsurface system in the presence of head and concentra-
tion observations. Here, we consider the presence of long-screened 
monitoring wells at which monitored data are representative of 
(depth-)average system states and can be regarded as information of an 
integral nature. We refer to these types of information as nonlocal, for 
simplicity (see also Section 2). 

The non-Gaussian random fields we analyze are characterized 
through a Generalized sub-Gaussian (GSG) model (Riva et al., 2015a). 
The latter constitutes a modeling approach which enables one to char-
acterize jointly the statistical behavior of a given (spatially heteroge-
neous) quantity, Y(x), and its spatial increments, ΔY(s) = Y(x +

s) − Y(x), evaluated at various separation distances (or lags), s. This 
approach is capable of interpreting salient statistical features that have 
been documented through the analysis of a wide range of hydro-
geological variables (e.g., Guadagnini et al., 2018; and references 
therein) and result in a scale-dependent behavior of sample distributions 
(and associated statistical moments) of spatial increments. Documented 
manifestations of such a behavior comprise the observation that the 
distribution of ΔY(s) tends to be symmetric and to develop heavier tails 
and sharper peaks as lag decreases. Such a behavior has been displayed 
(among others) by log-conductivity and permeability (Painter, 1996, 
2001; Liu and Molz, 1997; Meerschaert, 2004; Siena et al., 2012, 2017; 
Riva et al., 2013a, 2013b; Guadagnini et al., 2018), electrical resistivity 
(Painter, 2001), vadose zone hydraulic properties (Guadagnini et al., 
2012, 2013, 2014, 2015), neutron porosity (Riva et al., 2015a), sedi-
ment transport quantities (e.g., Ganti et al., 2009), fully developed 
turbulence (Boffetta et al., 2008), and micro-scale geochemical data 
(Siena et al., 2020, 2021). The impact of these aspects on flow and 
transport in porous media whose log-conductivity is characterized 
through a GSG model has been explored in preliminary analytical and 
numerical studies (Riva et al., 2017; Libera et al., 2017; Sole-Mari et al., 
2021; Ceresa et al., 2022). 

The remainder of the work is structured as follows. Section 2 pro-
vides details on the methodology, including some background on head 
and concentration observations related to monitoring wells which are 
screened along multiple depths (Section 2.1), the main formulations 
associated with the iterative ensemble smoother (Section 2.2), the three 
tested localization schemes (Section 2.3), and the theoretical elements 
underpinning the GSG formulation adopted to describe the three- 
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dimensional spatial distribution of log-conductivity (Section 2.4). Sec-
tion 3 illustrates the design of the computational analyses together with 
three criteria considered to assess the performance of the localization 
approaches. Results and related analyses are included in Section 4. Main 
conclusions of the work are provided in Section 5. 

2. Methodology 

2.1. Groundwater flow - transport and borehole data 

We consider a three-dimensional confined aquifer associated with 
transient flow, as governed by 

Ss
∂h(x, t)

∂t
= − ∇⋅q(x, t) + f (x, t), with q(x, t) = − K(x)∇h(x, t) (1)  

where Ss [L− 1] is specific storage; h [L] is hydraulic head; x = (x1, x2, x3)

is a spatial coordinator vector; t [T] is time; K [LT− 1] is hydraulic con-
ductivity; q [LT− 1] is Darcy velocity vector; and f [T− 1] is a source term. 

We take (non-reactive) solute transport to be driven by the classical 
advection dispersion equation 

∂θC(x, t)
∂t

= ∇⋅
[
θD(x, t)∇C(x, t)

]
− ∇⋅[q(x, t)C(x, t) ] + qs(x, t)Cs(x, t) (2)  

Here, θ [–] is effective porosity; C [ML− 3] is solute concentration; qs 
[T− 1] is a source/sink term associated with solute concentration Cs 
[ML− 3], and D [L2T− 1] is the dispersion tensor 

D =

⎡

⎣
Dl 0 0
0 Dh 0
0 0 Dv

⎤

⎦, with Dζ = βζ‖V‖ + D0;

‖V‖ = ‖q‖

/

θ;

(3)  

Here, D0 [L2T− 1] is the effective molecular diffusion; ‖q‖ is the magni-
tude of q; and βζ [L] is dispersivity along longitudinal (ζ = l) and 
transverse (ζ = h, v) directions. Eqs. (1)–(3) are then complemented 
with a set of initial and boundary conditions, as detailed in Section 3. 

Borehole information, including head (i.e., water level or pressure), 
solute concentration, and in some cases fluxes, are typically employed 
for the purpose of system characterization in terms of, e.g., model 
parameter estimation. Here, we consider head and concentration to be 
available from multi-screen monitoring wells, a condition that is very 
common in practical applications (see, e.g., Post et al., 2007; Konikow 
et al., 2009; Zhang et al., 2019). In our computational analyses, we 
represent these boreholes as multi-node monitoring wells. Following 
Konikow et al. (2009), Zheng (2010), and Xia et al. (2021), and 
neglecting linear (due to skin effects) and nonlinear (due to turbulent 
flow) head losses at the well, water level, hw

I [L], and solute concen-
tration, Cw

I [ML− 3], monitored at a multi-node well I are evaluated as 

hw
I =

∑n
i=1biKihi
∑n

i=1biKi
; Cw

I =

∑n
i=1QiCi
∑n

i=1Qi
(4)  

where n [–] is the number of nodes in the multi-node well I (i.e., the 
number of cells according to which the screened interval of the well is 
discretized); and bi [L], Ki [LT− 1], hi [L], and Ci [ML− 3] are thickness, 
conductivity, hydraulic head, and concentration associated with the cell 
of the numerical grid whose centroid corresponds to the ith node in the 
multi-node well, respectively. Evaluation of Eq. (4) requires computing 
the flux exchange Qi [L2/T] between the ith node of the multi-node well 
and the aquifer system. Following Konikow et al. (2009), Qi is assessed 
by 

Qi = a biKi
(
hw

I − hi
)
, with a =

2π
ln(r0/rw)

, (5)  

where r0 = 0.14
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δx2
1 + Δx2

2

√

[L] and rw [L] are the effective and actual 
radius of monitoring well I, respectively, Δx1 and Δx2 corresponding to 
grid spacing along x1 and x2 directions. We further note that neglecting 
linear (due to skin effects) and nonlinear (due to turbulent flow) head 
losses at the well can lead to computational savings while otherwise 
introducing a simplified description of the actual flow field in the 
proximity of the well. 

As stated in Section 1, hydraulic heads and/or solute concentrations 
observed at a long-screened monitoring well can be regarded as infor-
mation of an integral nature. These are representative of (depth-)aver-
aged system states (e.g., Elci et al., 2001, 2003; Konikow et al., 2009; 
Zheng, 2010; Zhang et al., 2019), and are here considered as nonlocal 
information. Elci et al. (2001, 2003) note that data collected at long- 
screened wells should be used with caution, since spatial distributions 
of hydraulic heads and/or solute concentrations (as well as estimates of 
source contaminant locations and plume geometry informed by such 
(integral/nonlocal) data) can be associated with a considerable degree 
of ambiguity. We also recall that actual (physical) distances between 
these types of observations and locations at which model parameters (e. 
g., conductivity values) need to be assessed cannot be clearly defined. 
This constitutes an additional layer of difficulty that hampers the 
applicability of distance-based localization approaches as opposed to 
their correlation-based counterparts. 

2.2. Iterative ensemble smoother 

We denote by m = [m1,m2,…,mP]
T the vector (of size P) of log- 

conductivity, Y, values and by d = [d1, d2,…, dO]
T the vector (of size 

O) collecting all observations available from multi-node monitoring 
wells (e.g., heads and concentrations), superscript T denoting transpose. 

Considering a collection of realizations (i.e., an ensemble) of size N 
and assuming that the prior probability density function (pdf) of Y is 
Gaussian, the objective function to be minimized is expressed as (Luo 
et al., 2015; Chen and Oliver, 2013): 

fobj(m) =
1
2
(g(m) − d )T C− 1

d
(g(m) − d )+

1
2

γ
(
m − mpri)T C− 1

m

(
m − mpri)

(6)  

Here, g
(
mk) is the operator associated with the groundwater flow and 

transport model; mpri is the prior counterpart of m; γ is a positive scalar 
which corresponds to the relative weight of the two terms included in 
Eq. (6); Cm(of size P × P) is the covariance matrix associated with mpri; 
and Cd (of size O × O) is the covariance matrix of observation errors. For 
the purpose of our study, observation errors are assumed to be uncor-
related. Thus, Cd is diagonal, its entries being equal to the variance of 
observation errors. 

The spatial distribution of Y can be estimated upon relying on an 
iterative ensemble smoother (iES; e.g., Luo et al., 2015; Chen and Oliver, 
2013), i.e., 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

mk+1 = mk + Kk
Gain

Δdk

Kk
Gain

= Sk
m

(
Sk

d

)T
(

Sk
d

(
Sk

d

)T
+ γkI

)− 1

Δdk = g
(
mk) − d

,

with γi = ξitrace
(

Si
d

(
Si

d

)T
)/

O

(7)  

Here, superscript k represents the index of the iteration step; I is the 
identity matrix (of size O × O); and ξk is an adaptive coefficient (Luo 
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et al., 2015). The latter is employed in the context of the adaptive step 
size associated with each iteration of the Levenberg-Marquardt (LM) 
algorithm we consider to assess Eq. (7). This algorithm is first introduced 
by Levenberg (1944). It is commonly employed to solve non-linear least 
squares problems in several contexts, including history matching (Li and 
Reynolds, 2009; Chen and Oliver, 2013; Luo et al., 2015). We set ξ0 = 10 
in our showcase application examples (see Section 3) and follow Luo and 
Bhakta (2020) to update its value for the remaining iteration steps. 
Matrices Sk

m (of size P × N) and Sk
d (of size O × N) are evaluated upon 

making use of the ensemble of Y fields associated with the kth iteration 
step and of the corresponding ensemble of model simulation results as 

Sk
m
=

1
̅̅̅̅̅̅̅̅̅̅̅̅
N − 1

√
[
mk

1 − mk,⋯,mk
N − mk]

Sk
d
=

1
̅̅̅̅̅̅̅̅̅̅̅̅
N − 1

√
[
g
(
mk

1

)
− g
(
mk),⋯, g

(
mk

N

)
− g
(
mk) ]

, with mk

=
∑N

j=1
mk

j

/

N (8) 

Note that both inner and outer iterations are required in the context 
of the LM algorithm during optimization. In the numerical analysis 
illustrated in Sections 3 and 4 we (i) set the inner iteration number equal 
to 5 (see also Luo and Bhakta, 2020) and (ii) analyze the convergence of 
our results upon varying the outer iteration number. We set (δk− 1 − δk)/

δk− 1 × 100%⩽10− 6 as a stopping criterion, where 

δk =
1
N
∑N

j=1

{(
dk

j − g
(

mk
j

))T
C− 1

d

(
dk

j − g
(

mk
j

))}

. (9)  

2.3. Correlation-based adaptive localization 

When considering localization, the first line of Eq. (7) is replaced by 

mk+1 = mk +
(

Rk ⊗ Kk
Gain

)
Δdk, (10)  

where “⊗ ” represents the Hadamard product and Rk (of size P × O) is 
the tapering matrix where the entry rk

po is evaluated as (Furrer and 
Bengtsson, 2007) 

rk
po =

N

N + 1 +
(

ρ̂k
po

)− 2, with ρ̂k
po =

ĉk
po
̅̅̅̅̅̅̅̅̅̅̅̅̅

ĉk
pp ĉk

oo

√ (11)  

Here, ĉk
po is the covariance between the pth parameter and the oth 

observation; ĉk
pp and ĉk

oo denote the variances of the pth parameter and 

the oth observation, respectively; and ρ̂k
po is the corresponding correla-

tion coefficient. As quantities embedded in Eq. (11) are generally un-
known, Furrer and Bengtson (2007) suggest to employ a variant of Eq. 
(11), hereafter denoted as FBconst, to evaluate rk

po as 

rk
po =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N

N + 1 +
(

ρk
po

)− 2 if
⃒
⃒
⃒ρk

po

⃒
⃒
⃒⩾ω

0 if
⃒
⃒
⃒ρk

po

⃒
⃒
⃒ < ω

, with ρk
po =

ck
po
̅̅̅̅̅̅̅̅̅̅̅̅
ck

ppck
oo

√ (12)  

Here, ck
po is the sample (evaluated across the ensemble of size N) cross- 

covariance between mk
p and the oth outcome associated with g

(
mk), i. 

e., go
(
mk); ck

pp is the sample variance of mk
p; ck

oo is the sample variance of 
go
(
mk); and 0⩽ω⩽1 is a constant threshold for the sample cross- 

correlation coefficient ρk
po between mk

p and go
(
mk). The main concept 

underlying Eq. (12) is that the oth observation should not be used to 
update the pth entry of Y when their (cross-) correlation is negligible. 
Equation (12) is widely employed in many studies (e.g., Maschio and 
Schiozer, 2016; Soares et al., 2019; Lacerda et al., 2021 and references 
therein). 

According to Anderson (2003), ρk
po is asymptotically (i.e. for 

increasing values of N) described by a Gaussian distribution, i.e., 

N

(

ρ̂k
po,

(

1 −
(

ρ̂k
po

)2
)2

/N

)

. Therefore, the link between ρ̂k
po and ρk

po 

can be (asymptotically) described as 

ρk
po = ρ̂k

po + ε, with ε ∼ N

(

0,
(

1 −
(

ρ̂k
po

)2
)2
/

N

)

. (13) 

Eq. (13) suggests that the variance of the noise ε associated with the 
(sample) cross-correlation coefficient tends to increase as ρ̂k

po decreases. 

We then note that ρk
po does not vanish when ρ̂k

po = 0 (i.e., mk
p and go

(
mk
)

are uncorrelated) and is equal to ε (∼ N (0, 1/N)). It can then be ex-
pected that relying on ρk

po in Eq. (12) instead of ρ̂k
po can contribute to 

deteriorate the effect of localizing Kk
Gain. This is especially seen when the 

strength of ρk
po (i.e., 

⃒
⃒
⃒ρk

po

⃒
⃒
⃒) is much higher than that of ρ̂k

po (i.e., 
⃒
⃒
⃒ρ̂k

po

⃒
⃒
⃒), 

which leads to overestimating rk
po. 

Based on these observations, we propose here a new tapering func-
tion, hereafter denoted as FBadap. The latter descends from Eq. (12). It is 
obtained by considering an adaptive selection of ω and rewriting the 
tapering function as  

Here, the term 2
(

1 −

⃒
⃒
⃒ρk

po

⃒
⃒
⃒
2
)

/
̅̅̅̅
N

√
corresponds to an approximation of 

twice the standard deviation of ε, i.e., 2
(

1 −

⃒
⃒
⃒ρ̂k

po

⃒
⃒
⃒
2
)

/
̅̅̅̅
N

√
. Since 

⃒
⃒
⃒ρk

po

⃒
⃒
⃒ >

⃒
⃒
⃒ρ̂k

po

⃒
⃒
⃒ when ε > 0, employing the first row of Eq. (12) might yield 

excessively large values for the tapering coefficients, thus deteriorating 
the performance of localization approach. Hendricks Franssen and 
Kinzelbach (2008) show that enforcing a relatively small damping factor 
(which is a constant tapering coefficient across diverse parameters and/ 
or observations) on the Kalman gain matrix can help to improve the 
effectiveness of localization, as embedded in an ensemble Kalman filter. 
Consistent with these findings, here we employ 

rk
po =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N

N + 1 +

(

ρ⌢k
po

)− 2 if
⃒
⃒
⃒ρk

po

⃒
⃒
⃒⩾ω

0 if
⃒
⃒
⃒ρk

po

⃒
⃒
⃒ < ω

, with

⎧
⎪⎨

⎪⎩

ρ⌢k
po =

⃒
⃒
⃒ρk

po

⃒
⃒
⃒ − 2

(

1 −

⃒
⃒
⃒ρk

po

⃒
⃒
⃒

2
)/

̅̅̅̅
N

√

ω = 2
/ ̅̅̅̅

N
√

(14)   
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ρ⌢k
po =

⃒
⃒
⃒ρk

po

⃒
⃒
⃒ − 2

(

1 −

⃒
⃒
⃒ρk

po

⃒
⃒
⃒
2
)

/
̅̅̅̅
N

√
in Eq. (14) to obtain smaller values of 

tapering coefficients than those stemming from Eq. (12). Note that we 
consider ω = 2/

̅̅̅̅
N

√
(i.e., twice the standard deviation of ε) when ̂ρk

po = 0. 
This is related to the observation that one cannot reject the hypothesis 
that ρk

po = 0 when ρk
po < w. In this case rk

po is set to zero. Otherwise, rk
po is 

evaluated through the first row of Eq. (14) when the above mentioned 
hypothesis is rejected with a confidence level of 95 % (i.e., there is high 
confidence that ρk

po ∕= 0). 
For the purpose of comparison, we also test the performance of the 

adaptive localization approach proposed by Luo and Bhakta (2020). The 
latter is hereafter denoted as LB2020 and is characterized by a tapering 
function evaluated as 

rk
po = ftap

⎛

⎝
1 −

⃒
⃒
⃒ρ1

po

⃒
⃒
⃒

1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(lnP)/N

√

⎞

⎠ (15)  

Here, ftap is the commonly used Gaspari-Cohn function with argument 
(⋅). It is worth noting that the sample correlation ρ1

po appearing in Eq. 
(15) is evaluated at the first iteration step, i.e., the tapering function 
evaluated at the first iteration step remains constant during the 
remaining steps. 

2.4. Generalized sub-Gaussian log-conductivity fields 

Applications of data assimilation or history matching approaches to 
subsurface flow and/or transport scenarios typically rest on the 
assumption that system attributes (e.g., log-conductivities) be charac-
terized by a (multivariate) Gaussian probability density function (pdf). 
There is ample evidence that probability distributions and associated 
statistical moments characterizing a variety of hydrogeological and soil 

science variables and their spatial increments display distinctive fea-
tures that are not captured by a typical Gaussian model (see Section 1). 
The core concept underpinning the Generalized sub-Gaussian (GSG) 
model we consider in our study (see also Riva et al., 2015a, b) is that the 
departure of the distribution of a variable and its two-point increments 
from the Gaussian one is driven by the action of a (spatially uncorre-
lated) subordinator on an otherwise spatially correlated Gaussian 
random field. Following Riva et al., (2015a), we model the log- 
conductivity field, Y(x) = lnK(x), as a GSG random field 

Y′(x) = U(x)G(x) = y(x) (y) (16)  

Here, angular brackets denote expectation; and G(x) and U(x) corre-
spond to a zero-mean correlated Gaussian random field and a (non- 
negative) uncorrelated subordinator independent of G, respectively. 
While a variety of formulations can be employed to characterize the 
subordinator (Siena et al., 2020), we consider (see Section 3) U(x) to be 

characterized by a lognormal pdf, i.e., U(x) ∼ lnN

[
0, (2 − α)2

]
, where 

α < 2 is the parameter controlling the strength of the departure of Y′(x)
from the Gaussian distribution. Such a modeling choice has also been 
adopted in previous analytical and numerical studies (Riva et al., 2017; 
Libera et al., 2017; Sole-Mari et al., 2021). Note that Y′(x) tends to 
become Gaussian in the limit for α→2 (see also Riva et al., (2015a) for 
additional details). 

We then consider G(x) to be a stationary Gaussian random field 
constituting a truncated fractional Brownian motion, tfBm. Relying on 
this formulation is fully consistent with the theoretical geostatistical 
framework introduced by Di Federico and Neuman (1997) and Neuman 
and Di Federico (2003) and further extended by Neuman et al. (2008a, 
b). According to the latter, a Truncated Power Variogram (TPV) model 
enables one to view a given system attribute as a continuous, over-
lapping, multiscale hierarchy of stationary random fields (modes), each 

Fig. 1. Reference Y fields with αref = (a) 1.99 and (b, c corresponding to a color gradation associated with the total and a reduced range of variability, respectively) 
1.20; contours of (d) reference heads and (e) reference concentrations evaluated after the 20th time step by considering reference Y fields with αref = 1.99 (solid 
black) and 1.20 (dashed black); (f) spatial distribution of 30 monitoring wells (circles); (g) vertical distribution of screens (filled square black) associated with 
monitoring wells across the transect at x2 = 205. 
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having an exponential (or Gaussian) variogram characterized by a single 
integral scale. We can then express the variogram of G(x), γG, as 

γG(s; λu, λl) = γ(s; λu) − γ(s; λl), (17)  

where one can write (for exponential modes) 

γ(s; λm)

σ2(λm)
= 1 − exp

(

−
s

λm

)

+

(
s

λm

)2H

Γ
(

1 − 2H;
s

λm

)

;

σ2(λm) = A
λ2H

m

2H
, m = l, u;

(18)  

Here, s = ‖s‖ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
s2
x1
+ s2

x2
/a2

x2
+ s2

x3
/a2

x3

√
[L] is separation distance (lag) 

in an equivalent isotropic domain, s2
xi 

(with i = 1, 2, 3) being the sepa-
ration distance along xi-axis in the original (anisotropic) domain; A 
[L− 2H] is a coefficient; H [–] is a Hurst scaling coefficient, with 
0 < H < 0.5; λl and λu [L] are lower and upper cutoff scales, proportional 
to the measurement scale associated with available data and to the scale 
of the sampling domain, respectively; and Γ(⋅; ⋅) is the incomplete 
gamma function. Based on Eqs. (16) and (17), the variance (σ2

Y), var-
iogram (γY), and integral scale (IYxi ; i = 1, 2, 3) of Y for a lognormal 
subordinator are (Riva et al., 2015b) 

σ2
Y(λu, λl, α) = e2(2− α)2 σ2

G, with σ2
G(λu, λl) =

A
2H
(
λ2H

u − λ2H
l

)
(19)  

γY(s, λu, λl, α) = e(2− α)2
[
σ2

G

(
e(2− α)2

− 1
)
+ γG

]
(20)  

IYxi (λu, λl, α) = e− (2− α)2
IGxi , with IGx1 =

2H
1 + 2H

λ1+2H
u − λ1+2H

l

λ2H
u − λ2H

l
;

IGx2 = IGx1 ax2 ; IGx3 = IGx1 ax3 ;
(21)  

Here, ax2 and ax3 are anisotropy ratios (i.e., ratios between integral 
scales associated with the x2 and x3 directions, respectively, and their 
counterpart along direction x1). 

3. Computational analyses 

To ensure transparent assessment and comparison of the approaches 
analyzed, we rest on a suite of computational settings that we take as 
reference. We consider heterogeneous log-conductivity fields across a 
three-dimensional domain of size 1000 × 410 × 100 (see Fig. 1a). All 
quantities are hereafter given in consistent (length/mass/time) units. 
The domain is discretized through a regular mesh formed by blocks of 
uniform size equal to 10 × 10 × 10 (thus yielding P = 41,000). Each 
monitoring well is equipped with four screens (see Fig. 1g). This leads to 
bi = 10 (with i = 1, 2, 3, 4). We consider the reference Y fields and the 
initial collection of realizations of Y to be characterized by (a) α = αref =

1.99 or 1.20, to encompass two markedly different scenarios, respec-
tively representing settings associated with a near-Gaussian distribution 
and a strong departure from it; (b) IYx1 = 100, IYx2 = 200 (i.e., ax2 = 2), 
IYx3 = 50 (i.e., ax3= 0.5); (c) 〈Y〉 = 0.5; (d) σ2

Y = 1.0; and (e) H = 0.35. We 
recall that H reflects the degree of persistence (that increases with H) of 
the field, the intermediate value selected being consistent with estimates 
obtained by analyzing log-conductivity data at field scales (Neuman, 
1990, 1995). 

We analyze the impact on the results rendered by considering the 
initial collection of random fields of Y to be generated according to 
various degrees of departure from Gaussian. We do so by generating 
these according to four values of α, i.e., α = α0 = 1.20, 1.50, 1.80, and 
1.99, corresponding to strongly, moderately, or slightly non-Gaussian 
and near-Gaussian Y fields, respectively. The complete list of parame-
ters employed to generate the initial Y fields (selected to comply with 
the constrains (b)–(e) illustrated above and evaluated on the basis of Eqs. 
(19)–(21)) is included in Table 1. Note that we set λl = 10 in all test 
cases, a value that is consistent with the grid size and with the physical 
meaning of λl. Details about the random field generation scheme are 
illustrated in Riva et al., (2015b). 

Fig. 1a and b depict the two above mentioned Y(x) random reference 
fields characterized by αref = 1.99 and 1.20. Fig. 1c complements the 
description by providing a depiction of Fig. 1b focusing on a reduced 
range of variability of Y values (generated for αref = 1.20; see the cor-
responding color gradation). 

Groundwater flow is driven by a mean uniform flow (from left, x1 =

0, to right, x1 = 1000, where fixed heads are set to 130 and 110, 
respectively, yielding a mean uniform gradient equal to 2 %, the 
remaining domain sides being impervious). Non-reactive transport is 
solved by setting a constant concentration CB = 10 at x1 = 0 and layers 5 
and 6. The remaining sides of the domain are set as no-dispersive-mass- 
flux boundaries. Initial head across the system is designed as a linear 
function of x2 with a solution constrained by fixed heads. A spatially 
uniform initial solute concentration of CI = 1.0 is considered. The 
remaining parameters, which are considered to be deterministic and 

Table 1 
Input quantities for the generation of the initial collection/ensemble of Y fields.  

Symbol Unit Shape parameter 

α0 = 1.20 α0 = 1.50 α0 = 1.80 α0 = 1.99 

λl [L] 10 
H [–] 0.35 
A [L− 2H] 1.77 × 10− 3 5.19 × 10− 3 9.31 × 10− 3 1.04 × 10− 2 

λu [L] 881.526 588.250 472.179 452.781  

Table 2 
Overview of the test cases (TCs) analyzed. All TCs are characterized by mean and variance of the Y reference field equal to 0.5 and 1.0, respectively; 〈Y〉 and σ2

Y are 
denoted as the mean and variance of initial ensemble of Y field respectively.  

Group 
1 

Test Case TC1, TC1# TC2, TC2# TC3, TC3# Group 
2 

Test Case TC1*1 TC1*2 TC1*3 TC1#1 TC1#2  TC1#3 
Size of the 
ensemble N 

100 50 500 α0 1.20 1.50 1.80 1.50 1.80  1.99 

Localization 
approaches 

FBconst, 
FBadap, 
LB2020 

FBconst, 
FBadap 

FBconst, 
FBadap 

Additional 
illustrations 

αref = α0 = 1.99 for TCs 1*1–1*3; αref = α0 = 1.20 for TCs 
1#1–1#3; 〈Y〉 = 0.5, σ2

Y = 1.0, and N = 100 for group 2; both 
FBadap and LB2020 implemented for every TC in group 2 

Additional 
illustrations 

αref = α0 = 1.99 for TCs 1–3; αref = α0 = 1.20 for 
TCs 1#-3#; 〈Y〉 = 0.5 and σ2

Y = 1.0 for group 1   

Group 3 Test Case TC1@1 TC1@2 TC1@3 TC1@4 Group 4 Test Case TC1$1 TC1$2 TC1$3 TC1$4  
〈Y〉 2.5 1.5 − 0.5 − 1.5 σ2

Y 2.0 1.5 0.8 0.5  
Additional illustrations αref = α0 = 1.99 for TCs 1@1–1@4; σ2

Y = 1.0 and 
N = 100 for group 3; both FBadap and LB2020 
implemented for every TC in group 3 

Additional illustrations αref = α0 = 1.99 for TCs 1@1–1@4; 〈Y〉 = 0.5 
and N = 100 for group 4; both FBadap and 
LB2020 implemented for every TC in group 4   
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uniformly distributed in space across all simulations, are set as Ss =

10− 3, θ = 0.3, βl = 10; βh = βv = 1, D0= 0, r0 = 1.97, and rw = 0.1. 
The numerical simulation period extends across a temporal window 

discretized onto 30 intervals, each of uniform size equal to 100. Nu-
merical solutions of head and concentration fields are obtained through 
the well-known and broadly tested computational codes MODFLOW 
(Harbaugh, 2005) and MT3DMS (Zheng, 2009, 2010), respectively. We 
make use of the Multi-Node Well package MNW2 to simulate wells 
(Konikow et al., 2009). As an example, Fig. 1d and e respectively depict 
head and concentration isolines evaluated across layer 1 at the 20th time 
interval for αref = 1.99 (solid curves) and 1.20 (dashed curves). 

Reference observations/data used to estimate Y fields are hydraulic 
head and concentration values evaluated at 30 multi-node monitoring 
wells (see circles in Fig. 1f), leading to O = 30 (number of monitoring 
wells) × 30 (number of monitored times) × 2 (number of monitored 
quantities, i.e., head and concentration) = 1800. Four screens (i.e., n = 4 
in Eq. (4)) are installed in each monitoring well at locations corre-
sponding to the first, fourth, seventh, and tenth layer of the numerical 
model (see black filled squares in Fig. 1g). 

To mimic the impact of measurement errors, head and concentration 
data are corrupted by adding a Gaussian white noise with standard 
deviation equal to 0.01 (covering a broad range of values of coefficient 
of variations, i.e., about 0.1 %–1.0 %, depending on the location within 
the system). 

We organize our exemplary settings according to the following four 
groups, for a total of 20 test cases (TCs), listed in Table 2. 

Group 1. It includes six TCs, allowing us to compare the performance 
of FBconst (Eq. (12), with w = 0.1), FBadap (Eq. (14)) and LB2020 
(Eq. (15)) upon varying the ensemble size N and the value of αref, 
when the latter is known (i.e., α0 = αref). 
Group 2. It includes six TCs, enabling us to explore the impact of the 
strength of the departure of the (otherwise unknown) pdf of Y from a 
Gaussian model (i.e., α0 ∕= αref) on Y estimates stemming from FBa-
dap and LB2020. 
Each of the groups denoted as Group 3 and Group 4 include four 
TCs, allowing for the assessment of the effect of the mean and 

variance, respectively, of the initial ensemble of Y on conductivity 
estimates obtained upon relying on FBadap or LB2020. 

We recall that randomly heterogenous conductivity fields of aquifer 
systems can be represented through a unique distribution that can be 
sometimes characterized by a large variance (see, e.g., Winter and 
Tartakovsky, 2003). This corresponds to a conceptual framework ac-
cording to which conductivity values, which might be associated with 
diverse geomaterials, are homogenized within a unique system. Other-
wise, one can view the domain as structured according to various re-
gions, each associated with a given geomaterial and related (spatially 
heterogeneous) conductivity (see e.g., Winter et al., 2002; Winter and 
Tartakovsky, 2000, 2002, 2003; Bianchi Janetti et al., 2019 and refer-
ences therein). In this sense, the distribution associated with conduc-
tivity within each of these regions is typically characterized by low to 
mild variance (Winter et al., 2002; Winter and Tartakovsky, 2002, 2003 
and references therein). The range of values we consider here for the 
variance of log-conductivity can then be viewed as corresponding to the 
type of internal variability related to a given geologic unit. 

As a metric upon which we appraise the accuracy of conductivity 
estimates, we consider the average (a) absolute error, EY , and (b) esti-
mate of the standard deviation, SY , of Y. These are defined as 

EY =
1
P
∑P

i=1

⃒
⃒〈Yi〉

est
− Yref

i

⃒
⃒SY =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
P
∑P

i=1

(
σ2

Y,i
)est

√
√
√
√ , (22)  

where 〈Yi〉
est, 
(

σ2
Y,i

)est 
and Yref

i indicate estimated (ensemble) mean and 

variance as well as reference value of Y at the ith cell of the numerical 
mesh, respectively. We then consider the average absolute difference 

Eobs =
1
O
∑O

i=1

⃒
⃒〈di〉

up
− dref

i

⃒
⃒ (23)  

to quantify data mismatch, where 〈di〉
up and dref

i correspond to the 
(updated) result of the simulation process and its reference observed 
counterpart at the ith sampled location, respectively. 

Fig. 2. Values of (a, d) EY , (b, e) SY , and (c, f) Eobs versus the number of outer iterations considering various ensemble sizes (with N = 50, 100, and 500) and αref =

α0 = 1.99; 1.20. Results are related to FBconst (crosses) and FBadap (solid curves) for (a, b, c) TC2 (blue), TC1 (green), and TC3 (red) and (d, e, f) TC2# (blue), TC1# 
(green), and TC3# (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 3. Reference (top row; a, f) and initial guess (second row; b, g) of the Y = ln K field together with final estimated (ensemble) mean of Y fields obtained through 
(c, h) LB2020, (d, i) FBconst, and (e, j) FBadap for TC1 (left column) and TC1# (right). 

Fig. 4. Initial guesses (top row) and final estimates of the spatial distribution of Y variance obtained through LB2020 (second row), FBconst (third row), and FBadap 
(fourth row) for TC1 (left column) and TC1# (right). 
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4. Results and discussion 

4.1. Effect of ensemble size (Group 1) 

Fig. 2 depicts EY (Fig. 2a, d), SY (Fig. 2b, e), and Eobs (Fig. 2c, f) versus 
the number of outer iterations considering various ensemble sizes (N) 
and αref = α0 = 1.99;1.20. 

The value of EY at the end of the iteration procedure based on 
FBconst decreases as N increases. It is also worth noting that values of EY 
for the small ensemble size (i.e., N = 50; TC2 and TC2#) decrease 
rapidly across the first two outer iterations and then gradually increase 
across the remaining ones. The strength of this phenomenon is reduced 
as N increases. Inspection on Fig. 2b and e reveals that SY increases with 
N. This behavior is related to the use of a constant threshold (w) and the 
approximation of the correlation coefficient through its sample coun-
terpart. These two elements jointly contribute to a failure in adequately 
filtering out spurious correlations. The latter (a) can dampen the vari-
ability across the ensemble of Y realizations and (b) tend to decrease as N 
increases. Note that values of EY , SY , and Eobs for TC3 are not depicted 
after the 9th iteration step, because the stopping criterion has been met. 

Considering FBadap (see solid curves in Fig. 2), one can note that EY 
and SY decrease with the iteration step and (in general) with increasing 
N. Moreover, values of SY display only minute (almost negligible) var-
iations with N. These results support the ability of FBadap to cope with 
diverse ensemble sizes in the context of the estimation workflow. 

A joint analysis of EY , SY , and Eobs (Fig. 2c and f) reveals that FBconst 
leads to an overall lower estimation accuracy with respect to conduc-
tivity than FBadap, while otherwise yielding higher estimation accuracy 
with reference to hydraulic heads. This phenomenon is linked to the 
tendency of FBconst to give rise to overfitting due to the presence of high 
spurious correlations. 

Fig. 3 provides visual depictions of the reference (first row) and 
initial mean (second row) Y fields, together with the estimated 
(ensemble) mean of Y fields obtained through LB2020 (third row), 
FBconst (fourth row), and FBadap (fifth row). Results related to TC1 (left 
column, αref = 1.99) and TC1# (right column, αref = 1.20) are depicted. 
We recall that the corresponding EY values are depicted in Fig. 2(a, d) 
and refer to Fig. S1 (see Supplementary Material) where absolute dif-
ferences between the estimated mean and reference Y field are depicted. 

These results are also complemented by Figs. S2 and S3 (see Supple-
mentary Material), depicting the mean absolute difference between each 
Y fields of the ensemble and their reference counterpart and the corre-
sponding standard deviation, respectively. Fig. 4 depicts the initial (first 
row) and final estimated spatial distributions of the variance of Y ob-
tained via LB2020 (second row), FBconst (third row), and FBadap 
(fourth row) for TC1 (left column) and TC1# (right column). Values of Y 
variances estimated through FBconst (Fig. 4c, g) are clearly lower than 
those stemming from FBadap (Fig. 4d, h) and LB2020 (Fig. 4b, f), and 
are associated with values close to zero. Spatial distributions of esti-
mated Y variance obtained by LB2020 and FBadap are visually similar, 
overall slightly higher values being associated with FBadap. 

To assist quantitative appraisal of the results illustrated above, Fig. 5 
depicts scatter plots of reference Y values against Y values of the initial 
collection of realizations (first column) and final estimated values ob-
tained through LB2020 (second column), FBconst (third column), and 
FBadap (fourth column) for TC1 (top row) and TC1# (bottom row). The 
45◦ line is depicted in red, as a reference, light blue lines being based on 
linear regression (corresponding values of the coefficient of determi-
nation, R2, are also included). When considering TC1, note that the 
regression line obtained on the basis of FBadap results is associated with 
the highest R2 value, thus suggesting that FBadap provides the overall 
highest accuracy with reference to Y estimates when a near-Gaussian Y 

Fig. 5. Scatter plots of reference Y values against Y values of the initial collection/ensemble of realizations (first column) and final estimated values obtained through 
LB2020 (second column), FBconst (third column), and FBadap (fourth column) for TC1 (top row) and TC1# (bottom row). The 45◦ line is depicted in red, as a 
reference; light blue lines are based on linear regression (corresponding values of R2 are also included). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 3 
Values of EY , SY , and Eobs at the end of the assimilation procedure obtained 
through FBadap with diverse values of ω (ω = 1/

̅̅̅̅
N

√
, 2/

̅̅̅̅
N

√
, 3/

̅̅̅̅
N

√
, and 4/

̅̅̅̅
N

√
) 

for TC1 and TC1#.  

Test Case Metrics ω 

1/
̅̅̅̅
N

√
2/

̅̅̅̅
N

√
3/

̅̅̅̅
N

√
4/

̅̅̅̅
N

√

TC1 EY  0.70  0.62  0.65  0.72 
SY  0.35  0.67  0.72  0.93 
Eobs  0.10  0.37  0.45  0.73  

TC1# EY  0.58  0.48  0.49  0.57 
SY  0.59  0.75  0.78  0.83 
Eobs  0.06  0.26  0.39  0.51  
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field is considered. Results associated with the strongly non-Gaussian 
system (TC1#) suggest that additional research efforts are required to 
obtain reliable estimates of GSG random Y fields on the basis of infor-
mation of the kind we consider. 

The results illustrated above are complemented by Fig. S4 (see 

Supplementary Material). The latter depicts values of EY (Fig. S4a, d), SY 
(Fig. S4b, e), and Eobs (Fig. S4c, f) obtained through FBadap upon 
varying the number of outer iterations and diverse values of ω (i.e., ω =
1/

̅̅̅̅
N

√
, 2/

̅̅̅̅
N

√
, 3/

̅̅̅̅
N

√
, and 4/

̅̅̅̅
N

√
) for TC1 and TC1#. Table 3 lists cor-

responding values of EY , SY , and Eobs at the end of the assimilation 

Fig. 6. Variation of (a) EY , (b) SY , and (c) Eobs obtained by FBadap across the outer iterations for TC1*1 (blue), TC1*2 (green), TC1*3 (red), and TC1 (black). Relative 
(percent) difference between (d) EY , (e) SY , and (f) Eobs obtained for TC1*1 (blue curves), TC1*2 (green), and TC1*3 (red) with respect to their counterparts 
associated with TC1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Variation of (a) EY , (b) SY , and (c) Eobs obtained by FBadap across the outer iterations for TC1# (blue), TC1#1 (green), TC1#2 (red), and TC1#3 (black). 
Relative (percent) difference between (d) EY , (e) SY , and (f) Eobs obtained for TC1#1 (green curves), TC1#2 (red), and TC1#3 (black) with respect to their coun-
terparts associated with TC1#. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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procedure. When considering ω = 1/
̅̅̅̅
N

√
, EY decreases at first and then 

increases. Otherwise, SY and Eobs consistently decrease while increasing 
the number of outer iterations. This phenomenon does not appear for the 
other values of ω considered. Values of EY , SY , and Eobs at the end of the 
assimilation procedure consistently increase when ω increases from 2/ 

̅̅̅̅
N

√
to 4/

̅̅̅̅
N

√
. This is related to the observation that larger values of ω can 

filter out more spurious correlations while to some extent dampening 
the effect of some otherwise informative data of hydraulic head and 
solute concentration. 

Fig. 8. Histogram (green bars) and mean values (dash-dot blue lines) of the values of α estimated across the 100 realizations of the final ensemble for all TCs of Group 
2 and TC1 (Group 1); (a) TC1*1, (b) TC1*2, (c) TC1*3, (d) TC1, (e) TC1#, (f) TC1#1, (g) TC1#2, and (h) TC1#3. Estimated values for α associated with the mean Y 
fields (black crosses) of the final ensembles, Y reference fields (i.e., αref , red crosses) and their corresponding theoretical values (black solid) are also depicted. 
Estimates are obtained through the application of Method A of Riva et al., (2015a; see also Supplementary Material). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Histogram (green bars) and mean values (dash-dot blue lines) of the values of σY estimated across the 100 realizations of the final ensemble for all TCs of 
Group 2 and TC1 (Group 1); (a) TC1*1, (b) TC1*2, (c) TC1*3, (d) TC1, (e) TC1#, (f) TC1#1, (g) TC1#2, and (h) TC1#3. Estimated values for α associated with the 
mean Y fields (black crosses) of the final ensembles, Y reference fields (red crosses) and their corresponding theoretical values (black solid) are also depicted. Es-
timates are obtained through the application of Method A of Riva et al., (2015a; see also Supplementary Material). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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4.2. Effect of lack of knowledge of the shape of the probability density 
function of the initial ensemble (Group 2) 

Fig. 6 depicts the way EY (Fig. 6a), SY (Fig. 6b), and Eobs (Fig. 6c) 
obtained by FBadap vary across the outer iterations for TC1*1 (blue), 
TC1*2 (green), TC1*3 (red), and TC1 (black). Relative differences be-
tween the values of EY (Fig. 6d), SY (Fig. 6e), and Eobs (Fig. 6f) for TC1*1 
(blue), TC1*2 (green), and TC1*3 (red) and their counterparts related to 
TC1 are also depicted. Values of EY and SY increase with the difference 

between αref and α0. The highest relative differences of EY , SY , and Eobs 
values (as compared against TC1) correspond to TC1*1. At the end of the 
optimization procedure, these are larger than 10 %, 8 %, and 20 %, 
respectively. Note that for TC1*3 (i.e., α= 1.80) all metrics analyzed are 
close to their counterparts evaluated for TC1. In this case, relative dif-
ferences of EY , SY and Eobs values at the end of the optimization pro-
cedure being smaller than 2 %, 6 %, and 5 %, respectively. This is 
partially consistent with previous observations (Riva et al., 2017), 
documenting that differences between moments related to key flow and 
transport quantities associated with GSG and Gaussian log-conductivity 
fields become virtually unnoticeable forα ≥ 1.80. 

As summarized above, accuracies of Y and state variable estimates 
improve as the value of α0 tends to αref = 1.99. This is caused by the 
joint effect of two elements, corresponding to (a) the difference between 
Y values in the reference field and their mean counterparts evaluated 
across the (finite) collection of initial guesses (which persists even as the 
reference value of α is perfectly known) and (b) the departure of the 
initial ensemble of Y from a Gaussian behavior. The latter effect is 
consistent with the observation that a markedly non-Gaussian behavior 
of the initial ensemble of Y is associated with a violation of the Gaus-
sianity assumption underlying the formulation of an iES (see Chen and 
Oliver, 2013). We further comment that the use of an iterative normal- 
score ensemble smoother (see Li et al., 2018) hardly improves the ac-
curacy of conductivity estimates when considering a small ensemble of, 
e.g., 100 realizations. This is possibly related to nonnegligible 

Table 4 
Values of EY, SY, and Eobs obtained at the end of the assimilation procedure 
through FBadap and LB2020 for all TCs of Group 2 and TC1 (from Group 1). 
Lowest values are indicated in bold.  

Shape parameter FBadap LB2020 

αref = 1.99 EY SY Eobs EY SY Eobs 

α0 = 1.20 (TC1*1) 0.69 0.73 0.45 0.79 0.62 0.49  
1.50 (TC1*2) 0.65 0.72 0.41 0.70 0.66 0.49  
1.80 (TC1*3) 0.63 0.70 0.39 0.68 0.69 0.49  
1.99 (TC1) 0.62 0.67 0.37 0.67 0.66 0.47  

αref = 1.20 EY SY Eobs EY SY Eobs 

α0 = 1.20 (TC1#) 0.47 0.75 0.26 0.53 0.69 0.13  
1.50 (TC1#1) 0.46 0.74 0.28 0.49 0.70 0.16  
1.80 (TC1#2) 0.45 0.73 0.29 0.48 0.71 0.18  
1.99 (TC1#3) 0.44 0.69 0.28 0.47 0.68 0.18  

Fig. 10. Estimates of α (top row), σY (middle), and correlation ρY (bottom) versus lag (denoted by s) for 100 realizations (green curves) of the ensemble of Y fields 
obtained at the end of the assimilation process and characterized by αref = 1.99. Dash-dotted blue curves correspond to the mean of these collection of curves; red and 
black cross symbols correspond to the results associated with the reference Y field and to the mean Y field of the final ensemble, respectively; and black solid lines 
correspond to the true (input) values associated with the reference Y field. All estimates are obtained upon relying on estimation Method B suggested by Riva et al., 
(2015a; see also Supplementary Material). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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inaccuracies associated with the characterization of the tails of the pdf of 
Y, consistent with the observation that accurate evaluation of sharp 
peaks and heavy tails of the pdf of a GSG field requires a large number of 
Monte Carlo samples (see Riva et al., 2015a). These aspects are also 
exemplified in the Supplementary Material, where it is shown that a 
large collection of realizations (i.e., of the order of 104–105) would be 
required to significantly improve the characterization of the tails of the 
pdf of Y in the presence of large departures from a Gaussian behavior (e. 
g., when α = 1.2). Additional research is otherwise needed in future 
studies to systematically address the benefits of relying on an iterative 
normal-score ensemble smoother to assist the analysis. 

Fig. 7 depicts results associated with αref = 1.20 and corresponding 
to those embedded in Fig. 6. The lowest values of EY and SY correspond 
to TC1#3, followed by TC1#2, TC1#1, and TC1# (see Fig. 9a). Absolute 
relative (percent) differences between values of EY and SY obtained for 
TC1#1 with respect to their counterparts related to TC1# are the lowest 
ones (see green curves in Fig. 7d, e). As discussed above, this behavior 
may be due to the use of the iES formulation in the context of a strongly 
non-Gaussian field. Otherwise, note that the lowest values of Eobs are 
observed for TC1#, Eobs generally increasing as α0 deviates from αref . 

Table 4 lists values of EY , SY , and Eobs obtained through FBadap and 
LB2020 at the end of the assimilation procedure for TCs 1*1–1*3 and 
TC1 (associated with aref = 1.99 and a0 = 1.20, 1.50, 1.80, and 1.99, 
respectively) and for TCs 1# and 1#1–1#3 (associated with aref = 1.20 
and a0 = 1.20, 1.50, 1.80, and 1.99, respectively). Similar to what has 

been observed with reference to Figs. 6 and 7, one can note that: (i) 
values of EY and SY display an overall decreasing trend as α0 increases (i. 
e., as the initial Y field tends to become Gaussian); while (ii) Eobs values 
decrease as α0 tends to αref . One can additionally note that EY values 
rendered by FBadap are consistently lower than those stemming from 
LB2020. This result suggests that the former provides higher accuracy of 
conductivity estimates than the latter. Such a behavior is possibly linked 
to the distinct types of tapering functions used in these two approaches. 

The results embedded in Figs. 6 and 7 and Table 4 suggest that the 
use of a Gaussian ensemble as an initial guess is a robust choice. It en-
ables one to obtain accurate conductivity estimates (whose quality is 
similar to the results obtained upon relying on the knowledge of the 
reference value of α) also in the case where the reference Y field is 
associated with a strongly non-Gaussian behavior. 

As an additional investigation, we analyze the statistics of the final 
estimated Y fields corresponding to the TCs included in Figs. 6 and 7. In 
this context, Figs. 8 and 9 respectively depict frequency distributions of 
the values of α and σY estimated for each of the 100 realizations of the 
final ensemble for all TCs of Group 2 and TC1 (from Group 1). These 
estimated values have been obtained upon relying on the methodology 
proposed by Riva et al., (2015a; their Method A, see Supplementary 
Material for additional details). Green bars in Figs. 8 and 9 correspond to 
histograms of the available 100 estimates of α and σY , respectively. 
Vertical dashed blue lines denote the corresponding mean values. Red 
cross symbols correspond to values of α and σY evaluated from the 

Fig. 11. Estimates of α (top row), σY (middle), and correlation ρY (bottom) versus lag (denoted by s) for 100 realizations (green curves) of the ensemble of Y fields 
obtained at the end of the assimilation process and characterized by αref = 1.20. Dash-dotted blue curves correspond to the mean of these collection of curves; red and 
black cross symbols correspond to the results associated with the reference Y field and to the mean Y field of the final ensemble, respectively; and black solid lines 
correspond to the true (input) values associated with the reference Y field. All estimates are obtained upon relying on estimation Method B suggested by Riva et al., 
(2015a; see also Supplementary Material). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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reference Y fields. Black cross symbols denote values of α and σY eval-
uated from the mean Y fields of the final ensembles, black solid lines 
representing the theoretical (input) values of α (i.e., αref ) and σY asso-
ciated with the reference Y fields. One can see from Figs. 8 and 9 that α 
and σY values evaluated from the generated reference Y fields differ 
from their theoretical counterparts (see Table 1). Such a discrepancy 
becomes more pronounced for αref = 1.20. This is consistent with the 
observation that it is difficult to accurately estimate the shape and scale 

parameter of a GSG distribution from a single realization comprising a 
limited number of values of Y (see also Riva et al., 2015a). Mean values 
of α and σY evaluated through the final collection of 100 realizations are 
generally closer to their true counterparts as α0 approaches αref . This 
finding suggests that the combination of a limited number of realizations 
and the initial guess for α can have a marked impact on the accuracy of 
the estimation of these parameters. Additionally, the histogram of the 
available 100 estimates of α displays a sharp peak located around a value 

Fig. 12. Values of EY (left column), SY (middle), and Eobs (right) versus the number of outer iterations associated with Fbadap (top row) and LB2020 (bottom) for all 
TCs of Group 3 and TC1 (Group 1): TC1@1 (blue curves), TC1@2 (green), TC1 (red), TC1@3 (cyan), and TC1@4 (black). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Histogram (green bars) and mean values (dash-dot blue lines) of the values of α and σY estimated across the 100 realizations of the final ensemble of Y for 
TC1@1 (first column), TC1@2 (second), TC1@3 (third), and TC@4 (fourth). Estimated values for α and σY associated with the mean Y fields (black crosses) of the 
final ensembles, Y reference fields (red crosses) and their corresponding theoretical values (black solid) are also depicted. Estimates are obtained through the 
application of Method A of Riva et al., (2015a; see also Supplementary Material). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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of α that is close to 2.0. This finding is consistent with the observation 
that αref = α0 = 1.99 in TC1 (see also in Table 2). 

To complement the analysis, we also estimate α, σY , and the corre-
lation coefficient of Y (i.e., ρY) at 20 lags (s = 10, 20, …, 200) for each 
realization through Method B of Riva et al., (2015a; see Supplementary 
Material for additional details) for all TCs of Group 2 and TC1 (Group 1). 
Figs. 10 and 11 depict the corresponding results for αref = 1.99 and 1.20, 
respectively. Green curves in each subplot correspond to the values of 
either α, σY , or ρY versus lag (s) obtained for the collection of 100 re-
alizations of Y at the end of the assimilation process; dash-dotted blue 
curves correspond to the means of these collection of curves; red and 
black cross symbols correspond to the results associated with the 
reference Y fields and with the mean Y fields of the final ensembles, 
respectively; and black solid lines correspond to the true (input) values 
linked to the reference Y field. The patterns related to the results 
included in the first two rows of Figs. 10 and 11 are similar to what can 
be observed in Figs. 8 and 9, i.e., the values obtained for α and σY on the 
basis of the mean Y field of the final ensemble (i) are generally closer to 
the corresponding values linked to the reference fields as α0 approaches 
αref and (ii) do not change with lag, consistent with the underlying 
theoretical framework. When αref = 1.99, all tested values of α0 would 
yield similar accuracy of ρY estimates. Otherwise, when αref = 1.20 the 
accuracy of ρY estimate improves as α0 approaches αref . 

Based on the above results, we conclude that, regardless of the 
strength of the departure from Gaussian of the reference Y field, an 
initial Gaussian ensemble of Y can yield a level of accuracy of 

conductivity estimates (in terms of EY values) that is of similar quality as 
the one that can be obtained when the true value of α (i.e., αref ) is known. 
Otherwise, in the strongly non-Gaussian settings we consider, estimation 
of system states (i.e., heads and concentrations) as well as shape (i.e., α) 
and scale (i.e., σY) parameters of the realizations of the final ensemble of 
Y can be impacted by the selected α0. 

4.3. Effect of incomplete knowledge of mean and variance of the initial 
ensemble (Groups 3 and 4) 

Fig. 12 depicts EY (left column), SY (middle), and Eobs (right) versus 
the number of outer iterations associated with Fbadap (top row) and 
LB2020 (bottom) for all TCs of Group 3 and TC1 (from Group 1). The 
highest values of EY and Eobs correspond to TC1@4 (where the per-
centage difference between the mean of the initial ensemble of Y and the 
true one is equal to 400 %), the lowest value being associated with TC1 
(where the mean of the initial ensemble coincides with the true value). 
Notably, values of EY and Eobs evaluated via LB2020 are larger and are 
characterized by a much higher variability among diverse TCs than their 
counterparts obtained via Fbadap. Note that Fbadap and LB2020 yield 
different rankings for the results of SY associated with the various TCs 
considered. The results summarized above indicate that the mean of the 
initial ensemble of Y impacts conductivity estimation. They also suggest 
that Fbadap is generally associated with a lower negative impact than 
LB2020 on the quality of the final estimates. 

Fig. 13 depicts the frequency distribution of the values of α (top row) 

Fig. 14. Estimates of α (top row), σY (middle), and correlation ρY (bottom) versus lag (denoted by s) for 100 realizations (green curves) of the ensemble of Y fields 
obtained at the end of the assimilation process for TC1@1 (first column), TC1@2 (second), TC1@3 (third), and TC1@4 (fourth). Dash-dotted blue curves correspond 
to the mean of these collection of curves; red and black cross symbols correspond to the results associated with the reference Y field and to the mean Y field of the 
final ensemble, respectively; and black solid lines correspond to the true (input) values associated with the reference Y field. All estimates are obtained upon relying 
on estimation Method B suggested by Riva et al., (2015a; see also Supplementary Material). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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and σY (bottom row) estimated for each of the 100 realizations of the 
final ensemble. It also shows the corresponding values estimated upon 
relying on (i) the mean Y field resulting from the final ensemble or (ii) 
the reference Y field through Method A of Riva et al., (2015a) for all TCs 
of Group 3, together with their theoretical counterparts. A joint analysis 
on Fig. 8d, 9d, and 13 suggests that the mean of the initial ensemble of Y 
has only a modest impact on the estimation of α and σY . 

Fig. 14 depicts the frequency distribution of the values of α (top row), 

σY (middle row), and ρY (bottom row) at 20 lags (s = 10, 20, …, 200) 
estimated for each of the 100 realizations of the final ensemble. It also 
includes the corresponding values estimated upon relying on (i) the 
mean Y field associated with the final ensemble and (ii) the reference Y 
field for all TCs of Group 3, together with their theoretical counterparts. 
Estimates are based on Method B of Riva et al., (2015a). From visual 
inspection it is difficult to assess which TC is associated with the 
(overall) best estimates of α, σY , or ρY , no systematic variation of these 

Fig. 15. Values of EY (left column), SY (middle), and Eobs (right) versus the number of outer iterations associated with Fbadap (top row) and LB2020 (bottom) for TC1 
$1 (blue curves), TC1$2 (green), TC1 (red), TC1$3 (cyan), and TC1$4 (black). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 16. Histogram (green bars) and mean values (dash-dot blue lines) of the values of α and σY estimated across the 100 realizations of the final ensemble of Y for (a, 
e) TC1$1, (b, f) TC1$2, (c, g) TC1$3, and (d, h) TC1$4. Estimated values for α and σY associated with the mean Y fields (black crosses) of the final ensembles, Y 
reference fields (red crosses) and their corresponding theoretical values (black solid) are also depicted. Estimates are obtained through the application of Method A of 
Riva et al., (2015a; see also Supplementary Material). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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values against the mean of the initial ensemble of Y being evidenced. 
Fig. 15 depicts EY (left column), SY (middle), and Eobs (right) versus 

the number of outer iterations associated with FBadap (top row) and 
LB2020 (bottom) for all test cases in Group 4 and TC1. All TCs yield 
similar values of EY upon relying on FBadap (Fig. 15a), similar to what 
could be noted for Eobs in Fig. 15c. Values of EY (Fig. 15d) and Eobs 
(Fig. 15f) obtained through LB2020 are also characterized by only mild 
variations across TCs. These are otherwise generally higher than their 
counterparts obtained through FBadap. These results indicate that the 
imperfect knowledge of the variance of the initial ensemble of Y does not 
significantly impact conductivity and state variable estimation, regard-
less of the methodology applied. The highest values of SY obtained 
through FBadap and LB2020 correspond to TC1$1 (characterized by a 
variance of the initial Y ensemble that is twice the true one), values of SY 
generally decreasing with the variance of the initial ensemble. 

Similar to Fig. 13, Fig. 16 depicts the frequency distribution of the 
values of α (top row) and σY (bottom row) estimated for each of the 100 
realizations of the final ensemble. It also depicts the corresponding 
values estimated from the mean Y field of the final ensemble and from 
the reference Y field through Method A of Riva et al., (2015a) for all TCs 
of Group 4, together with their theoretical counterparts. Joint analysis of 
Fig. 8d, 9d, and 16 reveals that there is no systematic variation of α or σY 
with the values considered for the variance of the initial ensemble of Y. 
Similar to Fig. 14, Fig. 17 depicts estimates of α, σY , or ρY obtained 
through Method B of Riva et al., (2015a) for all TCs of Group 4, together 
with their theoretical counterparts. It is visually hard to assess which TC 

yields the (overall) highest accuracy of α, σY , or ρY estimates. No sys-
tematic variation of α, σY , or ρY estimates can be observed for the 
different values of variance considered for the initial ensemble of Y. 

Elements of interest for additional analyses can include the study of 
the effects of (a) frequency of data collection, (b) number of monitoring 
wells, and (c) impact of the depth at which data are collected on esti-
mation accuracy of conductivity. In this context, we recall that Xia et al. 
(2018) indicate that relying on a high frequency of data collection and a 
large number of monitoring wells can further enhance negative effect of 
spurious correlation on conductivity estimates through distance-based 
localized iterative ensemble Kalman filter. 

5. Conclusions 

A novel correlation-based localization approach (here denoted as 
FBadap) is developed to estimate spatially heterogeneous log- 
conductivity (Y = lnK) fields. The latter form three-dimensional gener-
alized sub-Gaussian random fields within which head and concentration 
observations are collected from monitoring wells screened at multiple 
depths. We investigate the reliability of FBadap to estimate Y in com-
parison to (i) its traditional counterpart (denoted by FBconst) associated 
with a constant threshold and (ii) a recently proposed adaptive approach 
(denoted by LB2020; Luo and Bhakta, 2020). Based on our results and 
comprehensive analyses, our work yields the following major 
conclusions. 

Fig. 17. Estimates of α (top row), σY (middle), and correlation ρY (bottom) versus lag (denoted by s) for 100 realizations (green curves) of the ensemble of Y fields 
obtained at the end of the assimilation process for TC1$1 (first column), TC1$2 (second), TC1$3 (third), and TC1$4 (fourth). Dash-dotted blue curves correspond to 
the mean of these collection of curves; red and black cross symbols correspond to the results associated with the reference Y field and to the mean Y field of the final 
ensemble, respectively; and black solid lines correspond to the true (input) values associated with the reference Y field. All estimates are obtained upon relying on 
estimation Method B suggested by Riva et al., (2015a; see also Supplementary Material). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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1. We find that FBadap yields high quality results (in terms of average 
absolute difference, EY , between estimated Y values and their 
reference counterparts; square root of the average estimation vari-
ance, SY ; and average absolute difference, Eobs, between the updated 
simulated observations and their reference values) in the context of a 
variety of settings. These include various ensemble sizes, strength of 
the departure of the description of the spatial heterogeneity from a 
Gaussian model, as well as values of the mean and variance of the 
initial collection/ensemble of Y.  

2. FBadap exhibits adaptivity to cope with diverse ensemble sizes when 
estimating nearly Gaussian as well as strongly non-Gaussian random 
conductivity fields (in terms of the employed evaluation metrics, i.e., 
EY , SY , and Eobs) and yields (overall) lower values of EY and Eobs, as 
compared against LB2020.  

3. An initial virtually Gaussian ensemble of Y (i.e., associated with α0 =

1.99) can always (even when the reference field is non-Gaussian) 
yield the highest accuracy of conductivity estimates in terms of EY .  

4. Knowledge of the shape parameter (i.e., of α) associated with the 
distribution of Y yields higher accuracy in the estimation of the 
system states (in terms of heads and solute concentrations) as well as 
of the scale parameter (i.e., σY) of the final collection of Y fields. 

5. The mean and variance of the initial ensembles of Y exert some im-
pacts on the accuracy of the estimates of Y and of the system state (i. 
e., hydraulic heads and concentrations). Varying the mean of the 
initial ensembles of Y yields stronger impacts on both EY and Eobs 
than varying their variance. Otherwise, no clear systematic influence 
of the mean or variance of the initial ensemble of Y can be docu-
mented on the estimates of α, σY , and ρY . 
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Siena, M., Guadagnini, A., Bouissonnié, A., Ackerer, P., Daval, D., and Riva, M., 2020. 
Generalized Sub-Gaussian Processes: Theory and Application to Hydrogeological and 
Geochemical Data, 56, e2020WR027436. 

Siena, M., Guadagnini, A., Riva, M., Neuman, S.P., 2012. Extended power-law scaling of 
air permeabilities measured on a block of tuff. Hydrol. Earth Syst. Sci. 16, 29–42. 
https://doi.org/10.5194/hess-16-29-2012. 

Siena, M., Riva, M., Giamberini, M., Gouze, P., Guadagnini, A., 2017. Statistical 
modeling of gas-permeability spatial variability along a limestone core. Spatial 
Statistics. https://doi.org/10.1016/j.spasta.2017.07.007. 

Soares, R.V., Maschio, C., Schiozer, D.J., 2019. A novel localization scheme for scalar 
uncertainties in ensemble-based data assimilation methods. J. Petrol. Explor. Prod. 
Technol. https://doi.org/10.1007/s13202-019-0727-5. 
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