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Multisensor data fusion (MDF) is a process/technique of combining observations

from multiple sensors to provide a more robust, accurate and complete

description of the concerned object, environment or process. In this paper we

introduce a new MDF method, multisensor optimal data fusion (MODF), to fuse

different operational sea ice observations around Svalbard. The overall MODF

includes regridding, univariate multisensor optimal data merging (MODM),

multivariate check of consistency, and generation of new variables. For MODF

of operational sea ice observations around Svalbard, the AMSR2 sea ice

concentration (SIC) is firstly merged with the Norwegian Meteorological

Institute ice chart. Then the daily SMOS sea ice thickness (SIT) is merged with

the weekly CS2SMOS SIT to form a daily CS2SMOS SIT, which is further refined to

be consistent with the SIC through consistency check. Finally sea ice volume

(SIV) and its uncertainty are calculated based on the merged SIC and fused SIT.

The fused products provide an improved, united, consistent and multifaceted

description for the operational sea ice observations, they also provide consistent

descriptions of sea ice edge and marginal ice zone. We note that uncertainties

may vary during the regridding process, and therefore correct determination of

the observation uncertainties is critically important for MDF. This study provides a

basic framework for managing multivariate multisensor observations.
KEYWORDS

multisensor optimal data fusion (MODF), regridding, multisensor optimal data merging
(MODM), sea ice concentration (SIC), sea ice thickness (SIT), sea ice volume (SIV), sea ice
edge (SIE), marginal ice zone (MIZ)
1 Introduction

Sea ice refers to any form of ice found at sea originated from the freezing of seawater

(WMO, 2014). The annual mean global sea ice area is approximately 23 × 106 km2, being

approximately 4.5% of the Earth’s surface and approximately 6.4% of the world’s oceans.

The majority of sea ice is in the Arctic and Southern oceans, with some additional seasonal

sea ice in the Baltic, Black, Okhotsk, and Bohai seas.
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Sea ice plays an important role in the Earth’s climate system.

Due to the much higher surface albedo compared with seawater

(Perovich et al., 2002), sea ice reflects much of the incident solar

radiation back to the atmosphere, thus keeping the underlying

ocean cooler in summer than it would be in open water. The

presence of sea ice prevents rapid exchange of heat and mass

between the underlying water and the overlying atmosphere.

Freezing and melting of sea ice alters the oceanic salinity, thus

influencing the global ocean circulation and freshwater budget (Liu

et al., 2019b; Ferster et al., 2022). Polar sea ice is one of the largest

ecosystems on Earth (Arrigo, 2014), playing an important role in

the global ecosystem. It constitutes a unique habitat for many biota,

providing feeding grounds and nurseries for microbes, meiofauna,

fish, birds, and mammals (Steiner et al., 2021).

A large number of satellite sensors have been developed for

different sea ice observations. However, most sea ice remote sensing

products contain defects due to the limitations of individual

sensors. For example, due to many factors (including smooth

surface, absence of snow, brine content), the sea ice concentration

(SIC) of thin sea ice (<30 cm) is commonly underestimated by most

passive microwave radiometer (PMR) SIC algorithms (Cavalieri,

1994; Kern et al., 2019). For sea ice thickness (SIT) remote sensing,

the Soil Moisture and Ocean Salinity (SMOS) has high uncertainty

for measuring thick (over 1 m) sea ice (Tian-Kunze et al., 2014)

whereas the CryoSat-2 has high uncertainty for measuring thin

(below 1 m) sea ice (Ricker et al., 2017). In order to overcome such

shortcomings, there have been some studies to merge multisensor

data, such as the merging of SMOS SIT and CryoSat-2 SIT (Ricker

et al., 2017; Wang et al., 2020); merging of SSMIS SIC, AMSR2 SIC,

and ice chart (Wang et al., 2020); merging of AMSR2 SIC and

MODIS SIC (Ludwig et al., 2020); and fusion of AMSR2 SIC and

SAR SIC (Khachatrian et al., 2023).

Multisensor data fusion (MDF) is a process/technique of

combining observations from multiple sensors to provide a more

robust, accurate, and complete description of an object,

environment, or process. An extensive review of the MDF

approaches and its applications is presented in Khaleghi et al.

(2013). The purpose of fusing multisensor data is to obtain better

estimates of geophysical parameters or new information that could

not be obtained with any single sensors. In this study, we introduce

a new MDF method, multisensor optimal data fusion (MODF), to

fuse operational sea ice observations around Svalbard.

In sea ice research, MDF and multisensor data merging (MDM)

are often interchangeably used. However, they are thus far only

applied for univariate applications (e.g., Ricker et al., 2017; Ludwig

et al., 2020; Wang et al., 2020; Khachatrian et al., 2023). In the

present study, we confine the MDM or merging only for

combination of univariate multisensor observations; that is, all

the data from the multisensors describe the same variable or

parameter. By contrast, the MDF or fusion is denoted for

combination of multivariate multisensor observations, in which

the observations are composed of different variables or parameters.

MDF can be seen as an extension of MDM, where the univariate

multisensor observations are a subset of the multivariate
Frontiers in Marine Science 02
multisensor observations (see details in Section 3). As far as the

authors know, there has been no such MDF study for sea ice.

A full MDF of sea ice observations shall include all aspects of sea

ice parameters, for example sea ice concentration (extent, area,

thickness, type, volume, age, drift, deformation, ridges, leads,

polynyas, melt ponds, salinity) and sea ice surface albedo

(roughness, temperature, emissivity). As a starting study of MDF

for operational purposes, here we focus on the two most important

parameters: SIC and SIT. These two variables are the central for the

determination of ship categories navigating in the polar waters.

Another sea ice parameter, sea ice volume (SIV), is also included

here which can be deduced from the combination of SIC and SIT.

SIV is important in sea ice modeling and data assimilation, as it is a

basic variable in sea ice models (Hunke et al., 2015; Wang et al.,

2023). Our main purpose here is to generate a united, consistent,

and multifaceted daily sea ice observations for monitoring and

prediction applications. Such a framework shall also be useful for

the construction of consistent sea ice Essential Climate Variables

(Lavergne et al., 2022; Sandven et al., 2023), which include more sea

ice parameters.

The paper is organized as follows. In section 2, we introduce the

study area and the data. In section 3, we describe the theoretical

framework of the multisensor optimal data fusion (MODF) for

fusing the multivariate operational sea ice observations. Some

critical navigational information such as sea ice edge (SIE) and

marginal ice zone (MIZ) are also introduced here as extra

information from the fusion of SIC and SIT observations. The

MODF results are presented in section 4, with the focus on a

consistent observation and estimate of the operational sea ice

conditions around Svalbard. In section 5, we discuss some issues

on the evaluation and future applications. The conclusions are

summarized in section 6.
2 Study area and data

Svalbard is the northernmost territory of Norway, composed of

the Svalbard Archipelago in the Arctic Ocean about midway

between mainland Norway and the North Pole (Figure 1).

Compared with other areas at similar latitudes, the climate of

Svalbard and the surrounding seas is considerably milder, wetter,

and cloudier, due mainly to the atmospheric heat and moisture

transport associated with the Icelandic low and the warm West

Spitsbergen Current (AMAP, 2017). As a result of the mild climate

and the rich marine bioresources, Svalbard waters have long been

an area of more maritime activities from a pan-Arctic perspective

(Olsen et al., 2020). Along with the reducing Arctic sea ice, there is a

continuous growth in marine activities such as shipping, fisheries,

tourism, and oil and gas exploration around Svalbard (AMAP,

2017; Olsen et al., 2020), with remarkable increases in the

operational seasons and navigational areas (Stocker et al., 2020;

Müller et al., 2023). It is therefore critically important to frequently

monitor and accurately predict the sea ice conditions to assist safe
frontiersin.org
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operations for ship traffic, fisheries, search and rescue, and other

marine operations.

The MDF of operational sea ice observations is performed for

the sea areas around Svalbard, as shown by the thick rectangle in

Figure 1. This is the model domain for the Barents-2.5-km

operational ocean and sea ice forecast model at the Norwegian

Meteorological Institute (Duarte et al., 2022; Röhrs et al., 2023),

with the horizontal model grid resolution of 2.5 km. The Barents-

2.5-kmmodel does not contain ocean and sea ice information in the

Baltic Sea. For consistency, we have also removed the sea ice in the

Baltic Sea in this study. The fused sea ice observations will be further

utilized for operational analysis and forecast.
2.1 SIC observations

There have been a large number of SIC observation through

remote sensing (Kern et al., 2019). In this study, we use two high-

resolution operational SIC products. One is the AMSR2 SIC data

produced at the University of Bremen, and the other is sea ice chart

from the Norwegian Meteorological Institute’s Ice Service (NIS).

Figure 2 shows an example of the original SIC and standard

deviation (SD) from these two data sets for 16/03/2022, as a

typical winter sea ice condition in the Arctic.

2.1.1 AMSR2 SIC
The AMSR2 microwave radiometer onboard the GCOM-W1

satellite measures the microwave emission from the Earth, at a
Frontiers in Marine Science 03
nominal incident angle of 55° and a swath width of 1,450 km. The

AMSR2 SIC dataset we used here is version 5.4 with a grid

resolution of 3.125 km, which utilizes the highest spatially

resolving AMSR2 channels at 89 GHz (Melsheimer, 2019). It uses

the same ARTIST sea ice (ASI) algorithm, as it was developed for

the AMSR-E 89 GHz channel (Spreen et al., 2008). It has a higher

spatial resolution than most other AMSR2 SIC datasets, but the

atmospheric influence can be higher. The uncertainty is calculated

following the same procedure in Spreen et al. (2008), where the

overall error sums from three sources: the radiometric error from

the bright temperature, the variability of the tie points, and the

atmospheric opacity. The uncertainty is expressed in terms of SD. It

is noted that this uncertainty does not account for individual,

spatially varying atmospheric and surface effects as for example

discussed in Rückert et al. (2023) and Rostosky and Spreen (2023).

2.1.2 NIS ice chart
Due to the large uncertainties in the PMRs for low SIC

conditions (Cavalieri, 1994; Kern et al., 2019), we choose the NIS

sea ice chart to mitigate the defect. The ice chart is produced based

on manual interpretation of satellite data (Dinessen and Hackett,

2018), being a typical manually analyzed product. The ice charting

employs a variety of satellite observations to obtain a more realistic

SIE and MIZ. The main satellite data used are the weather-

independent SAR data from RadarSat-2 and Sentinel-1. The

analyst also uses visual and infrared data from METOP, NOAA,

and MODIS in cloud-free conditions. These satellite data cover the

charting area several times a day and are resampled to 1-km grid

spacing. The NIS ice chart includes seven ice categories following

the WMO sea ice nomenclature (WMO, 2014): fast ice (SIC = 10/

10), very closed drift ice (9−10/10), closed drift ice (7−8/10), open

drift ice (4−6/10), very open drift ice (1−3/10), open water (<1/10),

and ice free (0). For practical use, a mean value is applied to denote

the different ice categories in the ice chart. The uncertainty is

approximated as the half of the range of the corresponding ice

category, except being 0.01 for the fast ice. Apparently, this

uncertainty is a very coarse estimate.
2.2 SIT observations

Remote sensing of SIT is much more difficult. There is thus far

no sub-daily to daily SIT observation covering the whole Barents-

2.5-km domain. The daily SMOS SIT has a high temporal resolution

but with limitations of no observation north of 85°N and large

uncertainties for SIT over 1 m. The weekly CS2SMOS SIT has better

spatial coverage but has a limitation of weekly temporal resolution.

In this study, we use these two products to generate a daily SIT data

to cover the whole domain.
2.2.1 SMOS SIT
The SMOS SIT is retrieved from brightness temperature

measured at the L-band (1.4 GHz) from ESA’s SMOS mission.
FIGURE 1

Study area: Barents-2.5km model domain shown by the
thick rectangle.
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The retrieval algorithm is based on a thermodynamic sea ice model

and a three-layer radiative transfer model, which applies an iterative

method to calculate SIT using bulk ice temperature and bulk ice

salinity (Tian-Kunze et al., 2014). The SMOS SIT uncertainty is

calculated based on the following factors: uncertainty of the

measured brightness temperature, uncertainties of the auxiliary

data sets (JRA55 reanalysis and sea surface salinity climatology),

and the assumptions made for the radiation and thermodynamic

models. The uncertainty increases rapidly with increasing SIT, and

it is strongly recommended to use only data with a saturation ratio

(provided in the dataset) less than 100% (Tian-Kunze et al., 2014).

The data is gridded at the 12.5-km grid spacing on polar

stereographic projection and is available from mid-October to

mid-April in the Arctic. During winter seasons, the data is

generated operationally by Alfred Wegener Institute (AWI),

Germany, on daily basis with 24-h latency. SMOS SIT is obtained

from ESA data collections (ESA, 2023a, version 3.3, accessed on

07.07.2023). As an example, the SMOS SIT and its SD on 16/03/

2022 are shown in Figures 3A, B.
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2.2.2 Weekly CS2SMOS SIT
The weekly CS2SMOS SIT is also produced by AWI and distributed

via the ESA web portal (ESA, 2023b, version 2.05, accessed on

07.07.2023). CS2SMOS provides weekly SIT retrievals from merging

daily SMOS thin SIT retrievals (Tian-Kunze et al., 2014) and SIT

retrievals from CryoSat-2 (Hendricks and Paul, 2023), using an optimal

interpolation approach (Ricker et al., 2017). The uncertainty of the

CS2SMOS SIT is a natural part of the optimal interpolation. The data

are projected onto the 25-km EASE2 Grid, based on a polar aspect

spherical Lambert azimuthal equal-area projection. Figures 3C, D show

the weekly CS2SMOS SIT and its SD on 16/03/2022, being an estimate

of SIT and its SD during 13–19/03/2022.
3 MODF method

In this section, we describe the theoretical framework of MODF,

which includes regridding, univariate multisensor optimal data

merging (MODM), multivariate consistency check, and generation
frontiersin.or
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FIGURE 2

Original AMSR2 SIC and SD (A,B) and NIS ice chart (SIC and SD (C, D)) on 16/03/2022. The AMSR2 data is obtained from the University of Bremen,
and the NIS ice chart is from the Norwegian Meteorological Institute.
g

https://doi.org/10.3389/fmars.2024.1366002
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1366002
of new variables. The MODM has been used to optimally merge

univariate multisensor observations (Wang et al., 2020), and it is here

integrated as an important component of MODF.
3.1 Regridding

It is common that different remote sensing products have

different projections and grids. Similarly, different applications

would also have their own special projections and grids. For

solving a certain desired application, we would thus need to

remap the different satellite observations to the dedicated grid of

the application. There are two common methods for such

remapping: regridding and resampling. The essential difference

between regridding and resampling lies in that regridding is

performed on the grids, whereas resampling is performed on the

points. Whether to use the regridding or resampling method

depends mainly on the properties of the desired parameters. For

example, if we need to remap the SIC, which is the fraction of the
Frontiers in Marine Science 05
ice-covered area to the total area in a grid, then the regridding

method shall be used. By contrast, if we need to remap the sea ice

velocity field, then the resampling method shall be used at the grid

points. In this case, the velocity inside a grid can be well-

interpolated from the surrounding grid points, whereas using the

grid-mean velocity is generally uncommon. In this study, for

remapping the SIC and SIT, we use the regridding method, which

can generally be separated in upgridding and downgridding.
3.1.1 Upgridding and downgridding
Upgridding refers to the process of regridding a source field to a

finer-resolution destination field. This applies to both temporal and

spatial fields. In this study, regridding of the weekly mean

CS2SMOS SIT to daily would require upgridding in the temporal

space, whereas both of the SMOS SIT (spatial resolution 12.5 km)

and the CS2SMOS SIT (spatial resolution 25 km) would need

upgridding of the two-dimensional spatial SIT to the Barents-2.5-

km domain. Upgridding is generally performed through the
B

C D

A

FIGURE 3

Original SMOS SIT and SD (A, B) and weekly CS2MSOS SIT and SD (C, D) on 16/03/2022. The weekly CS2SMOS SIT and SD are an estimate of
weekly mean SIT and its SD during 13–19/03/2022. All the data are from AWI via ESA. The units are meters for both SIT and SD.
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interpolation technique, which is typically composed of nearest

neighbor, linear, and cubic interpolations.

In contrast to the upgridding, downgridding is the process of

regridding a source field to a coarser-resolution destination field. In

the present study, the sea ice chart SIC has a spatial resolution of 1

km, and it would require downgridding to the relatively coarser

resolution for the Barents-2.5-km domain. While the common

interpolation methods, such as the nearest neighbor, linear, and

cubic interpolation, are generally applicable for downgridding,

conservative interpolation methods are preferred for some special

cases which require high accuracy for tiny changes (Pletzer and

Fillmore, 2015).
3.1.2 Effect of regridding on uncertainty
Due to the importance of observation uncertainty on data

assimilation, it is essential to accurately determine the

uncertainties of satellite observations due to regridding. To the

authors’ knowledge, such an effect has not been considered thus far

in the data assimilation community.

The effect of downgridding on the uncertainty may be derived

as follows. Denote x1, x2,…, xl as l independent observations with

SDs s1,s2,…,sl , then the total is

S = x1 + x2 +⋯+xl (1)

which has variance

Var(S) = Var(x1) + Var(x2) +⋯+Var (xl) = o
l

k=1

s 2
k : (2)

The mean of these measurements �x is simply given by

�x = S=l : (3)

The variance of the mean can then be calculated according to

the Equations (1–3) such that

Var(�x) = Var(S=l) =
1
l2
Var(S) =

1
l2 o

l

k=1

s 2
k : (4)

From Equation (4) we get the corresponding SD

s�x =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ol

k=1s 2
k

q
l

: (5)

If the uncertainties of all the l observations are equal, namely,

sk = s then Equation (5) can be simplified as

s�x =
sffiffi
l

p : (6)

Due to different manipulations of data, the effect of upgridding

on the uncertainty may differ between temporally and spatially. For

temporal upgridding such as the weekly CS2SMOS SIT into daily

SIT, an inverse process to the downgridding shall be applied. If we

assume that the daily SIT observations are independent on each

other and their uncertainties are approximately equal, then the daily

uncertainty s can be estimated from the weekly uncertainty sx such

that
Frontiers in Marine Science 06
s =
ffiffi
l

p
s�x , (7)

where l = 7 in this case.

Equations (5–7) indicate the resulting uncertainty tends to

decrease during downgridding and increase during upgridding.

However, spatial upgridding of satellite observations may need

special attention. It is noted that, for satellite products such as the

AMSR2 SIC, SMOS SIT, and CS2SMOS SIT, their spatial

resolutions may already be at the highest of the products.

Therefore, upgridding does not produce more independent

observations. As a consequence, the uncertainty would be unlikely

to increase as significantly as the temporal upgridding. Further

studies are needed to accurately determine the uncertainty

variations for this situation. In this study, the uncertainties are

assumed unchanged during the spatial upgridding.
3.2 MODM

Using the regridding method above, we can remap the individual

sea ice observations to the dedicated area (here the Barents-2.5-km

domain). These regridded multiple observations can be merged for

the same univariate observations, using the MODM method (Wang

et al., 2020). MODM here is used as a component of MODF. For self-

containment, the main theoretical framework of MODM is described

here with some minor modifications.

3.2.1 General solution
Consider a state variable vector x (column vector) such as SIC

for a certain spatial domain such as the Barents-2.5-km domain

(Figure 1), on a regular grid with the total grid number of n.

Suppose we have m observations xk, k =  1,…,m, for the true state

vector xt . These observations are assumed to be taken with different

instruments, and their error vector associated with each

measurement is ϵk = xk − xt . We note that the observations are

also assumed independent during the temporal regridding process

in section 3.1.2. However, those observations are generally obtained

using the same instrument but differ in the temporal distributions.

We assume that all the observations have been regridded and

that all the error vectors are random, unbiased, and normally

distributed. Thus, for the kth observation error vector, we have

the mean μ = E(ϵk)  =  0 and covariance Rk = E(ϵkϵ
T
k Þ; where E

denotes expectation operation and the superscript “T” denotes

transpose. The probability density function (PDF) of such a error

vector can be expressed as,

f (ϵk) =
1

(2p)1=2jRkj1=2
exp  −

1
2
ϵTkR

−1
k ϵk

� �
, (8)

where Rkj j denotes the determinant of Rk. If we further assume that

the observation error vectors are not mutually correlated, that is,

E(ϵjϵ
T
k )  =  0, when j ≠ k, the PDF of the joint multivariate normal

distribution for all the observation error vectors can be extended

from Equation (8) and expressed as (Todling, 1999)
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f (ϵ1, ϵ2,⋯, ϵm) =
Ym
k=1

1

(2p)m=2jRkj1=2
exp −

1
2
ϵTkR

−1
k ϵk

� �
, (9)

where P denotes the multiplication operator. It is thus easy to see

from Equation (9) that the maximum likelihood estimate of f (ϵ1,

ϵ2,…, ϵm) is obtained by equivalently minimizing the following cost

function

J(x) = o
m

k=1

ϵTkR
−1
k ϵk = o

m

k=1

(x − xk)
TR−1

k (x − xk), (10)

where the optimal estimate is considered as an approximate to the

true value. Differentiate J(x) in Equation (10) against x and set it as 0,

∂

∂ x
J(x) =

∂

∂ xo
m

k=1

(x − xk)
TR−1

k (x − xk) = 2o
m

k=1

R−1
k (x − xk) = 0: (11)

From Equation (11) we thus have the optimal estimate xo vector

xo = om
k=1R

−1
k

� �−1o
m

k=1

R−1
k xk, (12)

and the optimal observation error vector

ϵo = xo − xt = om
k=1R

−1
k

� �−1o
m

k=1

R−1
k ϵk : (13)

Since all the estimates are assumed as unbiased, normally

distributed, and not mutually correlated, from Equation (13) we

get the optimal observation error covariance

R = E(ϵoϵ
T
o ) = om

k=1R
−1
k

� �−1
: (14)

The optimal estimate Equation (12) can be rewritten as

xo = Ro
m

k=1

R−1
k xk : (15)

It is noted that the error covariance is symmetric and semi-

positive definite. Consider the process for two data sets to be

merged with the error covariance being R1 and R2, respectively.

According to Equation (14), the merged data error covariance is

R = (R−1
1 + R−1

2 )−1 = ½R−1
1 (R1 + R2)R

−1
2 �−1 = R2(R1 + R2)

−1R1

= R1 − R1(R1 + R2)
−1R1 = R2 − R2(R1 + R2)

−1R2 :

(16)

From Equation (16) and consider the properties of positive

definite matrix, we see that the trace of R has the following property:

tr(R) ≤ tr(R1), tr(R2) : (17)

Equation (17) indicates that the sum of the error variance of merged

data is no larger than any of the individual observations. For more

observations, we can use this analysis successively. With more and

more observations, the sum of the merged error variance will

become smaller and smaller. Therefore, the MODM process is to

combine multiple observations with reducing uncertainty and

increasing confidence. In addition, the MODM method can

significantly reduce the computational cost and storage for data

assimilation, as assimilating the merged multisensor observations is
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equivalent to assimilating the individual observations concurrently

(Wang et al., 2020).

3.2.2 Simplification of MODM
In recent years, more and more sea ice remote sensing

observations begin to provide local variance or SD as a measure

of uncertainty (Tian-Kunze et al., 2014; Ricker et al., 2017; Tonboe

et al., 2016; Lavergne et al., 2019). Accordingly, the MODMmethod

may be simplified by further assuming that each observation error

vector is spatially uncorrelated. In this case, the kth error

covariance, Rk (Equation 14), becomes

Rk = E(ϵkϵ
T
k ) =

s 2
1,k

⋱

s 2
j,k

⋱

s 2
n,k

2
666666664

3
777777775
, (18)

where sj,k is the SD of the kth observation at the jth grid, where

k =  1,…,m and j =  1,…, n. In this case, the error covariance

(Equation 14) and the optimal estimate (Equation 15) of the

multisensor observations can be expressed on individual grid

(Equation 18),

sj = om
k=1s

−2
j,k

� �−1=2
, (19)

xj = s2
j o

m

k=1

xj,ks
−2
j,k , (20)

where j =  1,…, n is the grid ordinal number. Equations (19) and

(20) are used in this study for MODM of SIC and SIT.
3.3 Multivariate consistency

Due to the inherent defect of PMRs in the observation of low SIC,

it is common that some of the sea ice close to the SIE is

underestimated or even removed by weather filters. For such

situations, the SIC can be improved by using a sea ice chart which

is based on a large variety of sea ice satellite observations. However,

there is no similar observations yet for the SIT; therefore, a reasonable

treatment must be presented to mitigate the deficiency. One such

solution is the empirical relationship between SIC and SIV for thin

sea ice (Fritzner et al., 2018), which is based on a non-linear

regression for SIT up to 0.4 m. The corresponding SIT can thus be

easily obtained via SIT = SIV/SIC as follows (Wang et al., 2023):

hm = 0:02e2:8767am , (21)

where a and h denote SIC and SIT, hm denotes the missing SIT, and

am denotes the SIC in the areas where a > 0 but the original SIT h0 =

0. It is noted that the valid SIC range in Equation (21) is also slightly

extended such that am ∈  (0, 1� (Wang et al., 2023). The

corresponding uncertainty for this newly created SIT hm can be

estimated through the Gaussian propagation of uncertainty

together with Equation (21) such that
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shm = 2:8767hmsam : (22)

Thus, the overall fused SIT uncertainty can be approximated as

sh = (s2
hm + s 2

h0 )
1=2, (23)

where sh0 is the SD of the original SIT h0.
3.4 Generation of new variables

One of the main purposes of the MDF is to generate new

variables that are not possible with any single variables. Here, we

show from the combination of SIC and SIT, we can obtain a series

of more robust, accurate, and complete description of the sea

ice conditions.

3.4.1 Sea ice volume
Sea ice volume (SIV) is not directly observed, and there has been

no studies to estimate the SIV uncertainty. Here, we deduce the

formulation for SIV (V) based on the observed SIC (a) and SIT (h)

and their SDs saand sh. It is generally reasonable to assume that a

and h are two independent random variables; thus, V can be simply

expressed as

V = ha, (24)

and its SD can be calculated according to the variance of the

products (Goodman, 1960)

sV = (h2means
2
a + a2means

2
h + s 2

as
2
h )

1=2, (25)

where the subscript “mean” denotes the mean values of SIC and SIT.

It is noted that Equation (25) is the exact variance of products,

whereas the Gaussian propagation of uncertainty is an approximate

solution after neglecting high-order derivatives and cross-

correlated terms.
3.4.2 Sea ice edge
According to the World Meteorological Organization (WMO,

2014), SIE is defined as the demarcation at any given time between

open sea and sea ice of any kind. It can generally be separated into

two types: compacted and diffuse. The compacted SIE refers to the

close and clear-cut SIE, which is compacted by wind or current,

usually on the windward side of an area of drift ice. The diffuse SIE

refers to the poorly defined SIE, which has an area of dispersed ice,

usually on the leeward side of an area of drift ice. In practical usages,

SIE is often defined as the demarcation where SIC = 0.15 in the sea

ice and climate modeling communities. By contrast, it is often

defined as the demarcation where SIC = 0.1 in the sea ice charting

community, such as the NIS ice chart (https://cryo.met.no) and US

National Ice Center (NIC) ice chart (https://usicecenter.gov/

Products). Wang et al. (2023) argue that choosing SIC = 0.1 as

the demarcation for SIE has several benefits. Most importantly, it

has a clear physical representation that distinguishes open water

(SIC<1/10) and very open drift ice (SIC in 1–3/10). In addition, it

provides a consistent definition for the joint sea ice modeling and
Frontiers in Marine Science 08
charting community. In this study, we also use SIC = 0.1 as the

demarcation for SIE.

3.4.3 Marginal ice zone
MIZ is generally referred to the transition region from open

water to dense pack ice that is affected by open ocean processes

(Wadhams, 1986; Johannessen et al., 1987), although its accurate

definition is still under intensive discussion from different

viewpoints and concerns. Typical MIZ conditions are found along

the southern edges of the ice pack in the Bering, Greenland, and

Barents seas, in the Baffin Bay, and along the complete northern

edge of the Antarctic ice cover (Røed and O’Brien, 1983). There

have been several definitions for the MIZ. The most widely used one

is solely based on SIC, commonly defined as the region where SIC ∈
[0.15,0.8]. In order for a consistent definition in both ice charting

and sea ice modeling, the MIZ is here defined as follows

MIZt = regions where a ∈ ½0:1, 0:8� (26)

where a is the SIC, and the subscript “t” denotes traditional. This

traditional definition has been applied in a variety of applications,

such as sea ice charting (e.g., the NIC ice chart), satellite

observations (e.g., Strong, 2012; Liu et al., 2019a), sea ice

modeling (e.g., Wang et al., 2023), primary productions (e.g.,

Barber et al., 2015), marine ecosystems (e.g., Wassmann, 2011;

Arrigo, 2014), and ship navigation (e.g., Palma et al., 2019).

The above traditional definition of MIZ provides a reasonable

quantification of the MIZ extent. However, it is often inadequate for

a detailed description of MIZ dynamics (see Bennetts et al., 2022

and references therein). In such cases, the effect of waves must be

taken into consideration. To observe the dynamical MIZ, Dumont

(2022) suggests three approaches, in which sea ice displays vortical

motions, wavy motion, or a dominant floe size less than an upper

value (in the order of 200 m–500 m). We comment that the vortical

and wavy motions are generally unstable features, so they are not

proper for a consistent determination of the dynamical MIZ. For

example, the ice eddies or waves in the ice could be temporally

diminished in the MIZ whereas the ice floes remain unchanged. In

such cases, the extent of the MIZ should remain according to the

floe size method, rather than vanished according the other two

methods. Therefore, the floe size method appears to be the most

appropriate method for observing the dynamical MIZ.

The sea ice floe size is not operationally observed for the sea

areas around Svalbard. As an alternative, we approximate the

dynamical MIZ using combined SIC and SIT based on the model

results from a coupled wave and ice model (Dumont et al., 2011),

MIZd = regions where

a ∈ ½0:1, 0:85�,   h ≤ 2:0

or

a > 0:85,   h ≤ 10:5 − 10a

8>><
>>:

(27)

where a and h denote SIC and SIT and the subscript “d” denotes

dynamical. The lower SIC bound of 0.1 is here used to be consistent

with the SIE. Compared with the traditional MIZt the dynamical

MIZd also includes part of the very close drift ice, although the SIT

tends to be thinner with increasing SIC.
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It is noted that the dynamical MIZ formulation Equation (27) is

solely based on the simulation results at the Fram Strait of a 1D

coupled wave-ice model (Dumont et al., 2011). Its accuracy and

validity for other sea areas needs further verification. The upper SIC

bound of 0.85 is used here to be consistent with the simulation

results (Dumont et al., 2011), which is slightly larger than the

traditional upper bound of 0.8 (see Equation 26). This difference

can partly be explained by the constraint h ≤ 2.0 in Equation (27).

For h > 2.0 m, the upper SIC bound is supposed to become lower

than 0.85 and approach to 0.8.
4 Results

In this section, we fuse the AMSR2 SIC, NIS ice chart, SMOS

SIT, and weekly CS2SMOS SIT to generate a united, consistent, and

multifaceted daily description of the sea ice for the Barents-2.5-km

area. The corresponding data are available at https://doi.org/

10.5281/zenodo.10726427.
4.1 MODF of SIC

The original SIC and their SD of the AMSR2 and NIS ice chart

are shown in Figure 2. The AMSR2 covers the whole northern

hemisphere, whereas the NIS ice chart only covers the European

Arctic. The regridding of the SIC and SD is performed using the

nearest neighbor interpolation method. The effects of spatial

regridding on the uncertainties are ignored. The regridded SIC

and SD in the Barents-2.5-km domain are shown in Figures 4A–D.

While the overall sea ice distributions are similar, there are
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noticeable differences between the AMSR2 SIC and the NIS ice

chart. One notable difference is the very open drift ice (SIC 1–3/10)

north of Svalbard and Franz Josef Land, which is clearly recognized

in the ice chart, but identified as ice free (SIC = 0) in the AMSR2

SIC. This is the shortcoming commonly in the PMWs, which have

low capabilities in accurately determining low SIC (Cavalieri, 1994;

Kern et al., 2019). It is noted that such high uncertainty is very well

described in the AMSR2 product (Figure 4B). Application of a large

variety of remote sensing products in the ice charting effectively

improves the identification of the very open drift ice. Another

prominent difference is the fine features within the very close drift

ice (9–10/10), which are clearly seen in the AMSR2 SIC (Figures 4A,

B), but missing in the ice chart (Figures 4C, D). This is one

shortcoming in the manual ice charting, as such features could

often be ignored by the analyst.

In order to compensate for the missing features in the very

close drift ice in the ice chart, one feasible method is to increase

the corresponding uncertainty. In this study, we have set the SD

for the very close drift ice in the ice chart as 0.3 during the SIC

MODM. This seems to be a reasonable estimate based on the

merged SIC and its SD (Figures 4E, F). Merging of the AMSR2 SIC

and ice chart SIC follows Equations (19) and (20). On the whole,

the merged SIC SD resembles the NIS ice chart SD (cf. Figures 4F,

D), due mainly to the much higher uncertainties in the AMSR2

open water and ice free areas (Figure 4B). The fine features in the

AMSR2 are very well maintained in the merged SIC (cf.

Figures 4A, E). Similarly, SIC (lower). The data in the Baltic Sea

have been removed according to the Barents-2.5-km model

setting. The very open drift ice in the north of Svalbard and

Franz Josef Land and in the northeast Barents Sea is very well

preserved (cf. Figures 4C, E).
B C D

E F

A

FIGURE 4

SIC and its SD on 16/03/2022: regridded AMSR2 (A, B), ice chart (C, D) and merged (E, F).
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there is a noticeable difference in the Arctic central pack ice in

the AMSR2 SIC and ice chart, particularly north of the very open

drift ice between Svalbard and Franz Jozef Land. It was observed as

very close drift ice in the ice chart but identified as ice free in the

AMSR2 SIC. This difference is most probably caused by the

different time of the observations. The relatively large SD also

suggests a strong diurnal variation there (Figure 4F). The merged

SIC along this high SD area is around 0.45 (Figure 4E), being a

weighted average between the AMSR2 SIC and the ice chart SIC.
4.2 MODF of SIT

The MODF of SIT includes two parts. The first part is the

MODM of daily SMOS SIT and weekly CS2SMOS SIT to form a

merged daily CS2SMOS SIT, and the second part is a

consistency check of the merged daily CS2SMOS SIT with the

merged SIC.

4.2.1 MODM of SIT
The MODM of SIT follows much of the same procedure for the

SIC. The original SIT and SD for the daily SMOS and weekly

CS2SMOS are shown in Figure 3, both covering the whole northern

hemisphere, with the spatial resolutions of 12.5 km and 25 km,

respectively. These two SIT products are firstly upgridded to the

Barents-2.5-km domain using the nearest-neighbor interpolation

(Figures 5A–D). For clarity purposes, the uncertainties have both

remained unchanged during the regridding. It can be seen that there

are considerable differences in these two products (Figure 5). The

SMOS SIT has a relatively large data hole around the North Pole.

The uncertainty increases rapidly when the observed SIT is over 1

m, as can also be seen in Figures 5A, B. By contrast, the weekly

CS2SMOS SIT has a full coverage of the whole domain, with the SIT

generally up to 3 m (Figure 5C). The CryoSat-2 SIT has large

uncertainties when it is thinner than 1 m (Ricker et al., 2017), and

the weekly CS2SMOS SIT effectively reduces the overall uncertainty

by combining the CryoSat-2 SIT and the SMOS SIT.

It is noteworthy that the weekly CS2SMOS SIT is a weekly

mean; therefore, it can be biased when used for daily purposes. One

such case can be seen in the north Greenland Sea, west of Svalbard

(cf. Figures 5A, C). We can see that the thin SMOS SIT there is

generally approximately 0.5 m (Figure 5A), whereas the weekly

CS2SMOS SIT is mostly over 1 m (Figure 5C). This discrepancy is

due mainly to the weekly average of the CryoSat-2 SIT and SMOS

SIT over the whole week, in which both thin and thick ice drifting

before and after the day are accounted for. Therefore, for daily

usage, a more accurate estimate of the thin ice should be closer to

the daily SMOS SIT. It is apparent that assimilation of such weekly

SIT as a daily data would introduce considerable systematic bias.

The merged daily CS2SMOS SIT and SD with and without the

temporal upgridding effect are shown in Figures 5E–H, in which the

subscript “0” denotes no temporal upgridding effect. It is seen that

the merged SD is noticeably larger than SD0 (cf. Figures 5F, H),

particularly for the larger SIT areas in the Arctic Ocean and

Greenland Sea. By contrast, the merged SIT is slightly lower than

SIT0 (cf. Figures 5E, G). On the whole, the merged daily CS2SMOS
Frontiers in Marine Science 10
SIT is closer to the SMOS SIT, whereas the SIT0 is closer to the

weekly CS2SMOS SIT, although the thick ice in both SIT and SIT0

are close to the weekly CS2SMOS SIT.

The merged thin SIT to the west of Svalbard is very close to that

in the SMOS SIT (cf. 5e and 5a), showing a successful merging as

discussed above. However, the overall distributions of the merged

SIT and SIT0 in the Kara Sea (east of Novaya Zemlya) appear much

closer to the weekly CS2SMOS ST than the SMOS SIT, although

more similarities are seen to the SMOS SIT when considering the

temporal upgridding effect (cf. Figures 5A, C, E, G). Since the SIT

there is generally approximately 0.7 m–0.9 m, a reasonable result

would be that the merged SIT is closer to the SMOS SIT rather than

the weekly CS2SMOS SIT. The most probable reason for the

discrepancy is that the uncertainty there in the weekly CS2SMOS

SIT (Figure 5D) is underestimated. This is confirmed by the weekly

CS2SMOS SIT SD, which is generally less than 0.06 m in this area

(Figure 5D). It is much lower than the SMOS SIT SD (generally

approximately 0.7 m as shown in Figure 5B), even after the

temporal downgridding from daily to weekly. A further

refinement of the weekly CS2SMOS SIT uncertainty would be

highly desirable.

4.2.2 Check of consistency
The fused SIT and its SD are generally similar to the merged

ones in much of the domain (cf. Figures 5I, J, E, F). Their differences

are calculated according to Equations (22) and (23), and shown in

Figures 5K, L. The differences are mainly located near the SIE, with

the additional thin SIT in several cm and additional SD below 1 cm.

Such a supplementary effectively overcomes the shortcoming of the

PMRs, thus generating a more consistent and accurate observation

of the SIE and MIZ compared with the merged SIT and SD. The

application of the ice chart also removes some coastal sea ice along

the mainland Norway (Figures 5K, L).
4.3 MODF of SIV

Direct observations of SIV and its SD are so far not feasible, so

they are calculated according to Equations (24) and (25) with the

observed SIC and SIT. Since SIC is a dimensionless variable, the

unit of SIV is the same as that of SIT, representing the mean SIT of

the concerned grid. On the whole, the SIV resembles the fused SIT

(cf. Figures 6A, 5I for reference). This is partly due to the fact that

the majority of the sea ice is very close drift ice (Figure 4E), with the

SIC close to 1. Different from the SIV, its uncertainty is nonlinearly

dependent on the SIC, SIT, and their uncertainties (Equation 20).

The overall distribution of the SIV SD is also close to the SIT SD

(Figures 6B vs. 5J).
4.4 SIE and MIZ

SIE and MIZ are byproducts of operational sea ice observations.

In this study, we focus mainly on their distributions; their

uncertainties are not estimated. As an example, Figure 7 shows

the MIZ distributions on 16/03/2022. The traditional MIZt is solely
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based on SIC (Equation 26), whereas the dynamical MIZd is based

on a combination of SIC and SIT (Equation 27). In this study, we

have set the SIE as the lower bound of MIZ, being the demarcation

where SIC = 0.1. The extra condition of SIT<2.0 m for MIZd in

Equation (27) generally has a minor effect on the SIE. As can be seen

from Figure 7, when using the same data sources, there are no

noticeable differences in the SIE between the MIZt and MIZd.

There are significant differences in the MIZt and MIZd. The

most prominent difference is the very close drift ice in the Barents

Sea, which was identified as dense pack ice in the MIZt (Figures 7A–

C), but as MIZ in the MIZd (Figures 7D–F). Such difference also

occurs in the Kara Sea and Greenland Sea. The SIT in these areas are

generally less than 0.8 m (Figure 5E). This indicates that either

lower SIC or low SIT can contribute to the MIZd.
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Different data sources have a strong impact on the

determination of MIZ. This can be clearly seen in the three

traditional MIZt (Figures 7A–C). As mentioned in section 4.1, a

large patch of very open drift ice in the ice chart north of Svalbard

and Franz Josef Land (Figure 7B) was identified as open water in the

AMSR2 MIZt (Figure 7A). By contrast, some fine features identified

by the AMSR2 SIC were missing in the ice chart (cf. Figures 7A, B).

Similar to the merging of SIC (Figure 4), the merged MIZt also

includes the very open drift ice identified in the NIS ice chart and

the fine features identified in the AMSR2 SIC. It remains to be

further discussed whether such fine features should be included in

the MIZt.

The MIZd is seen very sensitive to the SIC. A large part of the sea

ice in the Kara Sea is identified as dense pack ice according to the
B C D

E F G H

I J K L

A

FIGURE 5

SIT and its SD on 16/03/2022: regridded daily SMOS SIT (A, B), regridded weekly CS2SMOS SIT (C, D), merged daily CS2SMOS SIT with temporal
upgridding effect (E, F), merged daily CS2SMOS SIT without temporal upgridding effect (G, H), fused SIT and increment (I–L). The fused increments
denote the SIT and SD differences of fused–merged. The units of the SIT and SD are m; the units of the increments are cm.
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AMSR2 SIC (Figure 7D), whereas the ice in the whole Kara Sea is

classified as MIZ according to the ice chart (Figure 7E), both using

the fused SIT (Figure 5F). Since we use the same SIT for

determining the MIZd, the differences are mainly caused by the

difference in the SIC. The SIC in the ice chart is 0.95, whereas the

SIC in the AMSR2 is very close to 1 for the dense pack ice region.

Similar results occur in the Greenland Sea, where some small
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patches of the very close sea ice are identified as dense pack ice

(Figures 7D, F), whereas it is almost all identified as MIZ when

using the NIS ice chart (Figure 7E). This indicates that the NIS SIC

is generally of coarse resolution in the SIC space and would be

insufficient for the accurate determination of the MIZd. It is noted

that the current MIZd is parameterized based on the simulations

from one-dimensional wave-ice coupled model (see Equation 27) at
BA

FIGURE 6

Fused SIV (A) and its SD (B) per m2 on 16/03/2022. The units are meters for both SIV and its SD.
B C

D E F

A

FIGURE 7

MIZ distribution on 16/03/2022: traditional MIZt from (A) AMSR2, (B) NIS ice chart, and (C) merged SIC, and dynamical MIZd from (D) AMSR2, (E) NIS
ice chart, and (F) merged SIC. For the determination of MIZd, the fused SIT are used in all the three cases (D–F).
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the Fram Strait. Its feasibility and reliability remains to be further

verified for the whole Barents-2.5km area.
5 Discussion

5.1 Evaluation

No formal evaluation is performed in this study. This is partly

due to the fact that all the data are from observations, which are so

far among the best available data for sea ice observations. In such a

case, it is very difficult to find better observation data for evaluation,

and it is generally of limited values to evaluate the results with

lower-quality data (Wang et al., 2023).

Nevertheless, the natural limitations of the observations can

help justify the advantage of the MODF, as can be clearly seen from

the results. For example, for the MODF of SIC (Figure 4), it is well

known that the passive microwave remote sensing products have a

general shortcoming when applying for low SIC conditions (e.g.,

Cavalieri, 1994; Spreen et al., 2008; Kern et al., 2019), whereas the

manually analyzed sea ice chart tends to ignore some fine features

within the ice pack. Such deficiencies are almost perfectly mitigated

in the merged SIC. Compared with the original AMSR2 SIC and

NIS ice chart, the merged SIC clearly preserves the fine features in

the AMSR2 SIC and the very open drift ice observed in the ice

chart (Figure 4).

Similarly, for the MODF of SIT (Figure 5), the SMOS SIT only

covers a limited area with very large uncertainties for SIT over 1 m,

whereas the weekly CS2SMOS SIT only provides a weekly mean,

which is generally not adequate for accurate daily description,

particularly for sea ice under rapid movement or thermal growth. In

the present case, the weekly CS2SMOS SIT tends to overestimate a

patch of daily SIT in the Greenland Sea, which is corrected by merging

the SMOS SIT. The SIT is further improved via the multivariate

consistency check. With the improvements in both SIC and SIT, it is

straightforward to know that the fused SIV is improved.
5.2 Observation uncertainties

As shown in Equations (12, 19, and 20), the merged value is

strongly dependent on the original observation uncertainties.

Therefore, accurate determination of the original observation

uncertainties is critical to the final merged and fused results. In

this study, the SD of the AMSR2 SIC for the open water is

approximately 0.25, which results from three sources (Spreen

et al., 2008). Such a high value correctly depicts the large

uncertainties of PMRs for low SIC conditions (Cavalieri, 1994;

Kern et al., 2019). Similarly, we used a large uncertainty of 0.3 for

the very close drift ice in the NIS ice chart to account for the often

neglected fine features. On the whole, such high uncertainties

provide an important foundation for the successful SIC merging.
Frontiers in Marine Science 13
One special deficiency is noteworthy in the sea ice satellite

remote sensing: the uncertainty is often underestimated. For the SIC

merging case mentioned above, we have also tested using low

uncertainties for the low AMSR2 SIC and the NIS very close drift

ice. In such a case, the resulting merged SIC captures neither the

very open drift ice north of Svalbard and Franz Josef Land nor the

fine features observed in the AMSR2 SIC. Similar underestimate

occurs in the merging of SIT in the Kara Sea, where the weekly

CS2SMOS SIT is approximately 0.7 m with an SD below 0.06 m

(Figure 5). The resulting merged daily CS2SMOS SIT tends to be

closer to the weekly mean rather than the daily SMOS SIT. A further

study of the case would be highly desirable.
5.3 Further expansion of the observations

In this study, we have focused on the fusion of SIC, SIT, and SIV

for the operational purpose. This is due to the fact that for marine

operations such as the sea area around Svalbard, SIC, SIT, SIE, and

MIZ are the most important sea ice parameters for safe operations.

As can be seen in the analysis, SIE and MIZ can be deduced from

the observed SIC and SIT. SIV can also obtained from the

combination of SIC and SIT, which is important for sea ice

modeling and assimilation, as well as for overall sea ice mass

estimate. In general, sea ice velocity, temperature, and age are also

important for safe operations but considered as secondary. In

particular, initial sea ice velocity would soon lose its inertia in

several hours. Therefore, accurate prediction of sea ice velocity

would strongly rely on the initial SIC and SIT, as well as the model

quality rather than its initial velocity. Nevertheless, these

parameters can be included if they are necessary.

Accurate and consistent description of sea ice is an important

part of climate studies. A comprehensive set of sea ice variables,

such as SIC, SIT, SIV, sea ice drift, sea ice age, melt pond fraction,

and sea ice surface albedo, would be valuable for climate analysis,

simulation, evaluation, and prediction. There are emerging

discussions on such needs (e.g., Lavergne et al., 2022; Sandven

et al., 2023). The present framework can be naturally expanded with

more variables, longer time scale, and larger spatial coverage, thus

generating united, consistent, and multifaceted climate data sets.
6 Conclusions

Sea ice is one of the most severe threats to the marine operations

around Svalbard. With the continuous increasing of marine

activities around Svalbard, monitoring and prediction of sea ice is

urgently needed for safe and sustainable development. In this study,

we introduced a new MDF method, MODF, and applied it to fuse

the operational sea ice observations around Svalbard, with the focus

on the SIC and SIT. The results will be further used in the

operational Barents-2.5-km model (Duarte et al., 2022; Röhrs

et al., 2023) at the Norwegian Meteorological Institute.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1366002
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2024.1366002
The overall MODF method includes regridding, univariate

MODM, multivariate consistency check, and generation of new

variables. Individual SIC or SIT operational products have their

own spatial and temporal coverages and resolutions, which are

often different from the concerned applications. Regridding

(upgridding or downgridding) is therefore needed to remap such

products to the desired coverage and resolution. In this study, we

have used a simple nearest neighbor interpolation method for both

upgridding and downgridding. While the uncertainty would be

theoretically altered during the regridding, it is only considered

during the temporal upgridding of the weekly CS2SMOS SIT in this

study. Further studies are desirable to investigate the exact

regridding effect on the uncertainties.

The univariate MODM is here used to merge multisensor

observations of the same variable following Wang et al. (2020).

The advantage of the MODM is to extract the most confident parts

of the observations to form a refined variable. In this study, the NIS

ice chart has a higher capability to accurately depict the low SIC

area, whereas the AMSR2 SIC has the advantage to describe the SIC

more continuously and accurately away from the low SIC area.

Similarly, the weekly CS2SMOS SIT has low uncertainty for thick

sea ice, whereas SMOS SIT has low uncertainty for thin sea ice.

Merging of SMOS SIT and weekly CS2SMOS SIT thus provides a

refined daily SIT observation for both thin and thick sea ice. The

univariate MODM therefore provides a very efficient method to

combine different sensors for observing the same sea ice variable.

The multivariate MODF is an extension of the univariate

MODM, from single variable to multiple variables. For each

variable, the univariate MODM is firstly applied to form a refined

variable. A further combination of the multiple variables is

performed during the multivariate MODF via consistency checks.

Such consistency checks can supplement extra information for the

observations (Figure 5). In addition, new variables such as SIV, SIE,

and MIZ can be generated, which provide extra insight into the sea

ice observations.

The present study provides a fundamental framework for

managing multivariate multisensor observations. The main focus

here has been on the data fusion of operational sea ice observations

(SIC, SIT, SIV, and their uncertainties), which are the most

important for operational sea ice monitoring and predictions. It is

straightforward to extend the present data sets to include more

variables for climate studies, such as sea ice age, sea ice drift, melt

pond fraction, and snow depth (Lavergne et al., 2022; Sandven et al.,

2023). The MODF is also applicable for other environmental

observations in order to form a consistent, multifaceted, and

more robust and accurate description.
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