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Rain-on-snow (ROS) events are becoming an increasingly common feature of
the wintertime climate Svalbard in the High Arctic due to a warming climate.
Changes in the frequency, intensity, and spatial distribution of wintertime ROS
events in Svalbard are important to understand and quantify due their wide-
ranging impacts on the physical environment as well as on human activity.
Due to the sparse nature of ground observations across Svalbard, tools for
mapping and long-term monitoring of ROS events over large spatial areas are
reliant on remote sensing, snow models and atmospheric reanalyses. However,
different methods of identifying and measuring ROS events can often present
different interpretations of ROS climatology. This study compares a recently
published Synthetic Aperture Radar (SAR) based ROS dataset for Svalbard to
ROS derived from two snow models and a reanalysis dataset for 2004–2020.
Although the number of ROS events differs across the datasets, all datasets
exhibit both similarities and differences in the geographical distribution of ROS
across the largest island, Spitsbergen. Southern and western coastal areas
experience ROS most frequently during the wintertime, with the early winter
(November–December) experiencing overall most events compared to the
spring (March–April). Moreover, we find that different temperature thresholds
are required to obtain the best spatial agreement of ROS events in themodel and
reanalysis datasets with ground observations. The reanalysis dataset evaluated
against ground observations was superior to the other datasets in terms of
accuracy due to the assimilation of ground observations into the dataset. The
SAR dataset consistently scored lowest in terms of its overall accuracy due
to many more false detections, an issue which is most likely explained by the
persistence of moisture in the snowpack following the end of a ROS event. Our
study not only highlights some spatial differences in ROS frequency and trends
but also how comparisons between different datasets can confirm knowledge
about the climatic variations across Svalbard where in-situ observations
are sparse.
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1 Introduction

Rain-on-snow (ROS) events are most pronounced in high
latitude and high-altitude regions where there exists snow cover.
ROS events have wide-ranging consequences for nature and
society. Amongst the numerous impacts of ROS events are short-
term increased avalanche risk in mountainous areas (Eckerstorfer
and Christiansen, 2012; Abermann et al., 2019), increased soil
temperature and permafrost degradation (Westermann et al., 2011)
and icing and damage to vegetation (Bjerke et al., 2014). Ground
icing may impact ungulate populations by restricting access to
food, which can result in increased mortality and large die-offs
(e.g., Hansen et al., 2011; Hansen et al., 2014; Forbes et al., 2016).
Pronounced wintertime warming across the Norwegian archipelago
of Svalbard in the High Arctic has already been documented
(Isaksen et al., 2016; Isaksen et al., 2022) as well as an increase in the
frequency of wintertime ROS (Peeters et al., 2019). Ongoing climate
warming is expected to result in a threefold increase in the frequency
of winter warming events by 2100 (Vikhamar-Schuler et al., 2016;
Hanssen-Bauer et al., 2019) leading to changes in wintertime
rainfall, melting and refreezing with subsequent impacts on land
and glaciers (Van Pelt et al., 2021). To understand which areas are
most vulnerable to ROS impacts at present and in the future, reliable
observations of the spatial and temporal variations in ROS activity
are crucial.

Synthetic Aperture Radar (SAR) is an active microwave sensor
that has been widely implemented for wet snow mapping (e.g.,
Nagler and Rott, 2000; Nagler et al., 2016; Karbou et al., 2021).
This is possible due to its sensitivity to the presence of liquid
water in the snowpack, which causes a strong attenuation of
the backscattered radar signal. Recently, a SAR-based approach
for detecting ROS events across Svalbard has been presented,
based on SAR wet snow detection maps (Vickers et al., 2022).
This approach was shown to detect the onset of ROS events well
when compared against meteorological observations, however only
a limited number of station observations were presented, and a
more thorough examination of its representativity over archipelago-
wide scales is needed. Amongst the available tools for comparing
remote sensing observations of ROS events to, are ground (in-
situ) observations, reanalysis datasets, snow, and regional climate
models. Snowmelt is driven by land-atmosphere interactions that
can be estimated using simple melt-air temperature relationships
such as the positive-degree day model, or more sophisticated snow
models that solve the surface energy balance and can simulate
snow cover over longer time-periods and larger spatial domains
than observational datasets. However, the definition of a ROS
event is dependent on the variables available to detect ROS.
Earlier model-based studies of ROS climatology across Norway
have implemented thresholding approaches to variables such as
air temperature, daily precipitation and snow cover or snow water
equivalent based on the seNorge gridded dataset (Pall et al., 2019)
and the Weather Research and Forecasting (WRF) regional climate
model (Mooney and Li, 2021). The ROS climatology derived from
such datasets is therefore also highly dependent on the thresholds
chosen for these variables. Moreover, there has to date not been
carried out studies of ROS climatology across Svalbard using these
datasets, despite the significance of this climate sensitive region
where ROS can result in serious societal and ecological impacts.

Moreover, reliable forecasting and projections of future ROS events
using climate models are becoming of increasing importance to
quantify the future risks and consequences under ongoing changes
in climate.

The primary objective of this study is therefore to compare
the recently published SAR-based ROS climatology of Svalbard
(Vickers et al., 2022) to ROS events across Svalbard derived
from atmospheric reanalyses, snow model datasets and ground
observations and examine their similarities and differences.
Specifically, the Copernicus Arctic Regional Reanalysis (CARRA)
dataset (Schyberg et al., 2020) and two independent snow models;
the Energy balance—snow and firn model (EBFM; Van Pelt et al.,
2019) and the seNorge snow model developed at the Norwegian
Water Resources and Energy Directorate (Saloranta, 2016) that
provide estimates of snow water equivalent (SWE), are used
to provide estimates of ROS occurrence across Svalbard. ROS
derived from these datasets are compared with those produced
using the SAR approach (Vickers et al., 2022) to examine the
temporal and spatial differences in ROS frequency between the
remote sensing and model data, for the winter season. To produce
results comparable to earlier studies on ROS across Norway, we
apply the same methods of detection using the simulated seNorge
gridded snow and weather data (Pall et al., 2019) to the CARRA
reanalysis and EBFM output and examine the similarities and
differences between the three model datasets as well as between the
remote sensing and model detections for the overlapping period of
data coverage.

2 Materials and methods

The SAR rain-on-snow dataset used in this study is described in
detail by Vickers et al. (2022) such that only a brief summary of the
dataset will be given here. The SAR ROS dataset is derived from wet
snow maps produced on a grid with 100 m × 100 m pixel spacing
using three different SAR sensors spanning the period 2004–2020,
with the latest period (2014 onwards) providing frequent coverage
by the Sentinel-1 satellites. ROS events are detected when the pixel
classification in the wet snow maps changes from dry to wet, and
the duration of an event is counted until the pixel is classified as
dry snow again or in some cases, bare ground. Subsequently a major
limitation of this approach is that ROS events can only be detected
outside of the spring snowmelt season when the snowpack is not
continuously wet.Moreover, SAR cannot determinewhether thewet
snow is due to rain or due to melt. The SAR dataset forms the basis
for the comparisons of ROS obtained using the seNorge and EBFM
snow models and the CARRA dataset. In Table 1 an overview of the
different datasets and how ROS was calculated from the variables
available, is provided.

2.1 Study area

The Svalbard archipelago is located approximately halfway
between the Norwegian mainland and the North Pole, and spans
latitudes between 74 and 81°N and longitudes between 10 and 35°E.
The archipelago covers a total area of 61,000 km2 of which 57% is
glaciated (Nuth et al., 2013) and the remaining land area is covered

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2024.1342731
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Vickers et al. 10.3389/feart.2024.1342731

TABLE 1 Dataset overview and ROS detection approach.

Dataset Spatial resolution Availability Variables ROS detection

Synthetic Aperture Radar 100 m 2004–2020 Wet snow maps Dry to wet snow transition

seNorge 1 km 2013–2022 T2, RR, SWE T2 > −1.0°C, RR > 1 mm, SWE > 3 mm

EBFM 1 km 1957–2022 T2, RR, SWE T2 > 0.5°C, RR > 1 mm, SWE > 3 mm

CARRA 2.5 km 1991–present T2, RR, SWE T2 > −0.5°C, RR > 1 mm, SWE>3 mm

In-situ/ground observations Point variable TAM, RR, SD TAM > 0.0°C, RR > 1 mm, SD > 2 cm

T2, mean daily 2 m air temperature; RR, total daily precipitation; SWE, snow water equivalent; SD, snow depth.

by either barren rock or vegetation (Figure 1). The climate in the
western part of the archipelago is influenced by theWest Spitsbergen
Current (Walczowski and Piechura, 2011) which produces a climate
that is milder compared with that experienced at similar latitudes
elsewhere. Meteorological data recorded at Svalbard Airport, close
to Longyearbyen, show that the mean annual temperature in the
period of study (2000–2023) ranges from −6.1°C (2003) to 0°C
(2016), while annual precipitation ranges from a minimum of
121.8 mm (2021) up to 310 mm (2016). At Ny Ålesund in the
northwest of the archipelago, the climate is substantially wetter,
with total annual precipitation ranging from a minimum of 305 mm
(2019) up to 749 mm (2018) while annual mean temperatures are
similar to those measured at Longyearbyen. The onset of seasonal
snow on land observed using optical remote sensing typically occurs
from September onwards, while snow disappearance can take place
from mid-May in low-lying central parts of the archipelago to
July over mountainous areas and in northern areas in Svalbard
(Vickers et al., 2020).

2.2 seNorge dataset

The seNorge snow model (Saloranta, 2016) is a relatively simple
single-layer snow model which utilizes 3-hourly or daily mean
air temperature and a sum of precipitation as input forcing. Solid
precipitation is defined as precipitation occurring at when the 2 m
air temperature is ≤0.5°C. Snow and ice melt are calculated using
the extended degree-day model including air temperature and solar
radiation terms. The two parameters of the melt algorithm have
subsequently been estimated based on 3,356 quality controlled
daily melt rates observed by the Norwegian snow pillow network
(Saloranta, 2014). The sub-grid snow distribution algorithm in
the model assumes a uniform probability distribution of snow
amounts within the grid cells. The main effect of the sub-grid
snow distribution is to reduce the grid cell average melting rates
towards the late melt season rates when significant areas of bare
ground are present in the grid. For the seNorge snow model
application for Svalbard the 3-hourly input data are aggregated from
the hourly meteorological forcing data obtained and downscaled
to a 1 km × 1 km grid from the operational AROME Arctic
numerical weather prediction model (NWP) (Müller et al., 2017).
Input precipitation in the current model application is scaled by a
factor 0.75, based on initial evaluation of the first model results.

Model parameter values are set to the same values as those in
the application for mainland Norway, except the spatial snow
distribution parameter CF is increased from the default value of
0.5–0.85, giving larger variance for sub-grid snow distribution.
The model application for Svalbard starts at bare ground initial
conditions in September 2012. Following this, snow/firn older than
1 year is removed from the model’s snow store on 1 September each
year. The two first snow seasons may therefore be considered as
a model spin-up period at higher elevation areas with perennial
snow. This study has utilized the operational seNorge temperature,
precipitation, and snow water equivalent (SWE) products for the
Svalbard area, updated daily and including a forecast for the two
coming days.

2.3 CARRA dataset

The East domain of the Copernicus Arctic Regional Reanalysis
(CARRA) dataset covers both Northern Norway and Svalbard
and provides 3-hourly reanalyses and short-term hourly forecasts
of atmospheric and surface meteorological variables at 2.5 km
resolution, on 65 vertical levels (Schyberg et al., 2020; Yang et
al., 2020). CARRA data has been evaluated and shows added
value compared to other reanalysis datasets for Svalbard (e.g.,
Køltzow et al., 2022). For this study we obtained the 2 m air
temperature and snow water equivalent (SWE) reanalyses at 3-
hourly resolution, which were averaged to obtain daily values. Snow
on the ground is modelled using the one-layer snow scheme of
Douville et al. (1995) with falling precipitation divided into solid
and liquid phases based on the processes in the atmosphere and
not by a temperature threshold. In addition, an adjustment against
observed snow depths once per day (usually 06 UTC) to produce
the final SWE values. For precipitation data, to obtain the 24-h
accumulated precipitation values we downloaded precipitation data
at lead times of +6 and +30 h with initial time 00UT, equivalent
to precipitation from 0600UTC to 0600UTC the following day.
The +6 h lead time precipitation values were subtracted from the
+30 h lead time values to obtain the 24-h precipitation for a
given day. Observations of 2 m air temperature and snow depth
are among the observations that are assimilated in CARRA and
thereby constrain the dataset in the proximity of observation
sites. However, observations of precipitation are not assimilated in
CARRA. CARRA data are available from 1991 to the present year;
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we obtained data to overlap with the period of the SAR dataset
(2004-2020).

2.4 EBFM dataset

The coupled energy balance—snow and firn model (EBFM)
(Van Pelt et al., 2012) has been earlier used for studies of the long-
term climatic mass balance of glaciers in Svalbard (Van Pelt et al.,
2019; Van Pelt et al., 2021), as well as seasonal snow conditions
and runoff on glaciers and land since 1957 and up to 2060.
EBFM solves the surface energy balance to calculate surface melt
and temperature, which provides upper boundary conditions
for a snow and firn layer model, simulating the multi-layer
evolution of snow density, temperature, and water content
(Van Pelt et al., 2012). In Van Pelt et al. (2019), the model was
forced by downscaled meteorological fields of precipitation, air
temperature, relative humidity, wind speed, cloud cover and
air pressure from the NORA10 hindcast dataset, generated
with the High-Resolution Limited Area Model (HIRLAM)
(Reistad et al., 2011). For calibration and validation of the model
and meteorological downscaling, in situ on-glacier measurements
of weather conditions, stake mass balance and subsurface density
were utilized; no calibration or validation was performed for
snow and weather conditions in non-glacier terrain, potentially
deteriorating performance in these areas. From the large dataset
presented in Van Pelt et al. (2019), SWE is extracted across Svalbard
at 1 km × 1 km spatial resolution and daily temporal resolution
overlapping the entire SAR period (2004-2020). These calculations
are performed every 3 h; the 2 m air temperature is provided by the
NORA10 dataset.

2.5 ROS detection

To detect ROS days from the EBFM, CARRA and seNorge
datasets, a thresholding approach was applied to the daily mean
temperature T, total daily precipitation RR and snow water
equivalent SWE datasets, a methodology which has been applied
in earlier studies of ROS (e.g., Pall et al., 2019; Wickström et al.,
2020). The same thresholds were applied to total daily precipitation
(1 mm) and SWE (3 mm) as was applied to meteorological data in
Vickers et al. (2022) for consistency. For the temperature threshold,
we used the temperature threshold intrinsic to the model datasets
for partitioning rain and snow. As outlined in Sections 2.2, 2.4,
the temperature threshold applied for detecting snow was T ≤
0.5°C and T < 0.6°C in the seNorge and EBFM snow models,
respectively. Therefore, for detecting ROS, we applied a threshold
of T = 0.5°C. Solid and liquid precipitation in the CARRA dataset
on the other hand are calculated from atmospheric processes and
are thus not temperature dependent. For consistency in this study,
we applied the same temperature threshold of 0.5°C to detect
ROS days in the CARRA dataset. The ROS climatology derived
using these thresholds was used as a first comparison to the SAR
dataset. However, the temperature threshold at which the snow-rain
transition occurs is known to vary across Norway (Jennings et al.,
2018), with coastal climates typically experiencing a lower snow-
rain transition temperature while inland areas with continental

type climates experience a higher temperature threshold. Moreover,
the snow-rain transition is not only determined by the surface
temperature but also by the vertical profiles of temperature and
humidity. To test the sensitivity of the ROS detections to the
threshold applied to the daily mean temperature, we also computed
a ROS climatology at five different temperature thresholds ranging
from−1°C to+1°C in 0.5°C increments and compared the detections
to ground observations of ROS. Moreover, this tuning allowed for
an examination of the temperature threshold which produced a
ROS climatology that agreed best with that obtained using ground
observations. The method by which the accuracy of the different
datasets at each temperature threshold were evaluated, is outlined
in Section 2.6. In Section 3 we present the results obtained with
the standard 0.5°C threshold, as well as those obtained with the
temperature threshold that resulted in the highest accuracy with
respect to the ground observations. In both cases a ROS event is
defined as a series of consecutive days where the ROS criteria are
met in order to compare the ROS climatologies to the SAR dataset.
This approach was taken since SAR cannot distinguish individual
consecutive days with rain once the snowpack is initially wet and
therefore only detects the end of an event once the snowpack is
classified as dry again. As such, a similar definition of a ROS event
is required for the model and reanalysis data in order to make
comparisons of the number of events per winter. To compare the
SAR results with each of the model or reanalysis datasets, the SAR
results are first resampled from the original grid at 100 m grid
spacing, to the same grid as the models which have either 1 km
or 2.5 km grid spacing using a nearest neighbor interpolation. This
method of resampling therefore does not take into account the
topography, which can potentially incur errors due to the binary
nature of the wet snow maps.

2.6 In-situ observations

We utilized meteorological observations made at Ny Ålesund,
Longyearbyen and Hornsund to evaluate the ROS detections
obtained using the seNorge and EBFM snow models and CARRA
data as well as to compare the temporal variations of ROS
derived from the models with the SAR observations of wet snow.
These in-situ observations were downloaded from the seklima
database (https://seklima.met.no) managed by the Norwegian
Centre for Climate Services (NCCS). The approach by which the
meteorological observations of air temperature, precipitation and
snow depth were applied to identify ROS events is described in
Vickers et al. (2022). In this evaluation, we compare individually
detected ROS days detected using the different temperature
thresholds to determine the correct, missed, or false detected
ROS days estimated by the model and reanalysis datasets. We
use the seven winters with complete time series of mean air
temperature, total daily precipitation, and snow depth at the three
sites (2013–2020). In this study we have also chosen to evaluate the
F1 score (Tharwat, 2018), which is widely used in the evaluation
of machine learning models and is suited to binary classification
problemswith unbalanced classes. In this evaluation, there aremany
more non-ROS days than there are ROS days and as such, the F1
score is less affected by correct detection of non-ROS days and
instead gives equal weight to the false detection of ROS days (false
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FIGURE 1
The Svalbard archipelago illustrated with land (brown/grey) and glaciers (white) shown. Ground observations made at Ny Ålesund, Longyearbyen and
Hornsund are utilized in this study.

positives, FP) as well as the ROS days which were missed (false
negatives, FN). The F1 score is defined in terms of the true positive
(TP), false positive and false negative rate as,

F1 =
TP

TP+ 1
2
(FP+ FN)

The true positive, false positive, false negative and true negative
rates, together with the overall F1 score are averaged over the seven
winters and over all three sites to determine which temperature
threshold produced the best F1 score for each dataset. The results
of this temperature threshold sensitivity testing are shown in
Figure 1A. The metrics obtained with the optimised temperature
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TABLE 2 Accuracy metrics evaluated at Ny Ålesund.

Dataset True positive rate False positive rate False negative rate True negative rate F1 score

SAR 0.72 0.14 0.28 0.86 0.28

seNorge 0.45 0.02 0.55 0.98 0.43

EBFM 0.69 0.03 0.31 0.97 0.57

CARRA 0.80 0.03 0.20 0.97 0.58

TABLE 3 Accuracy metrics evaluated at Longyearbyen.

Dataset True positive rate False positive rate False negative rate True negative rate F1 score

SAR 0.55 0.18 0.45 0.82 0.21

seNorge 0.57 0.03 0.43 0.97 0.38

EBFM 0.51 0.04 0.49 0.96 0.29

CARRA 0.84 0.04 0.16 0.96 0.50

TABLE 4 Accuracy metrics evaluated at Hornsund.

Dataset True positive rate False positive rate False negative rate True negative rate F1 score

SAR 0.78 0.22 0.22 0.78 0.21

seNorge 0.56 0.05 0.44 0.95 0.33

EBFM 0.62 0.08 0.38 0.92 0.29

CARRA 0.78 0.05 0.22 0.95 0.48

thresholds are presented for each meteorological station together
with those for the temperature-independent SAR dataset in
Tables 2–4 and described in Section 3.5.

3 Results

In this section we present results showing the winter ROS
climatology derived from the seNorge, CARRA and EBFM datasets
in Sections 3.1–3.3, respectively, compared with the SAR results
averaged for the overlapping period, as well as the monthly ROS
climatology averaged for the 2013–2019 period which overlaps all
datasets (Section 3.4). Two examples where the datasets have been
compared to ground observations are presented and described in
Section 3.5.

3.1 seNorge

Figure 2A illustrates the ROS events detected by the SAR
approach, averaged for the 2013–2019 period which overlaps
with the seNorge dataset, which is shown in Figure 2B for the

temperature threshold of 0.5°C. The mean difference between the
SAR and seNorge datasets shown in Figure 2C shows that the
SAR dataset exhibits a distinctly higher number of ROS events
compared to seNorge, with the land areas having on average
1.79 events greater than in the seNorge dataset. Evaluation of the
seNorge ROS day detection against ground observations indicated
that the highest F1 score of 0.37, when averaged across all three
measurement sites, was obtained with temperature thresholds of
−1.0°C and also −0.5°C (Figure A1A). However, the mean true
positive rate at −1.0°C was 6% higher than at −0.5°C while the
false positive rate was only 1% greater. Therefore the −1.0°C
threshold is taken to be the optimum threshold and results for
this threshold are illustrated in Figures 3A–C. At this threshold
there are similarities in the geographical distribution of ROS
events produced using the SAR and seNorge datasets, with the
highest number of events per winter found along the west and
southern coasts of Svalbard. However, the primary difference in
ROS climatology using the −1.0°C temperature threshold, is that
the much higher number of ROS events in the seNorge dataset
produced a somewhat better agreement with the SAR dataset,
as indicated by the slightly lower RMSE of 1.62. for land areas.
The mean differences in number of ROS events between the two
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FIGURE 2
The average geographical distribution of ROS events for 2013–2019, detected using SAR (A) and seNorge dataset (B) when the seNorge temperature
data were thresholded at 0.5°C to detect rainfall. This threshold is used in the seNorge snow model for partitioning rain and snow. The difference in
number of events between the two (SAR—seNorge) is shown in (C).

ROS climatologies, shown in Figure 3C indicate that the largest
differences occur in areas where there are already most ROS
events in both datasets, along the west and southern coasts. These
ROS events can largely be attributed to low elevation areas in
the vicinity of ice-free sea due to the influence of the West
Spitsbergen Current and milder winter climate. However, there are
also notable differences in the number of detected ROS events across
Edgeøya in the east and along the eastern coast of Nordaustlandet.
At this temperature threshold, the SAR dataset detects several
more events per winter in the northern and central parts of
Edgeøya when compared to seNorge, while the seNorge dataset
detects more ROS events along the western and southern coasts of
Spitsbergen, as well as southern parts of Edgeøya and eastern parts of
Nordaustlandet.

3.2 CARRA

Figure 4A shows the results for the SAR dataset averaged over
2004–2020 and re-projected from the native 100 m grid to the spatial
resolution of the CARRA dataset (2.5 km). The corresponding
CARRA results derived using the temperature threshold of 0.5°C
are shown in Figure 4B and the mean differences between the
SAR and CARRA ROS datasets are shown in Figure 4C. Unlike
seNorge, the ROS climatology from CARRA exhibits more events
than the SAR dataset along the coastal areas and also in some
of the valleys across Nordenskiöld Land, while inland areas
generally exhibit fewer ROS events than SAR. Like seNorge, there
are also a lot more ROS events in SAR across Edgeøya when
compared to CARRA.

The F1 score for the CARRA ROS dataset, with respect to
the ground observations between 2013 and 2019, was highest and
almost identical at temperature thresholds of 0°C (0.53) and −0.5°C
(0.52). However, since the mean true positive rate at −0.5°C was

around 10% higher than at 0°C (Figure A1B) we present the results
obtained at a temperature threshold of −0.5°C. Coincidentally, this
temperature threshold also resulted in the smallest RMSE with
respect to the SAR dataset, when averaged over the entire time series
of the dataset (2004–2020). The ROS climatology obtained using
the temperature threshold of −0.5°C is shown in Figures 5A–C. At
both temperature thresholds, ROS events detected by CARRA are
most frequent in the southern and western parts of the archipelago,
while much fewer events are detected in the east and north.
The greatest difference between the SAR and CARRA datasets is
again found on the northern end of Edgeøya, where there are on
average no ROS events detected by CARRA, while SAR detects
on average 2–3 events per winter. CARRA detects of the order of
1–2 more ROS events per winter than SAR in areas close to the
southwestern coast, as indicated by the brown tones in this region
in Figure 5C.

3.3 EBFM

The results for ROS detected using NORA10 and EBFM SWE
data using the standard temperature threshold of 0.5°C to detect
rain, are presented in Figures 6A–C. At this threshold Figure 6B
shows an overall higher number of winter ROS events captured
by the EBFM model compared to SAR, not only in the high-
ROS areas along the southern and western coasts, but also more
ROS further inland. Across Edgeøya there is in fact much better
agreement between SAR and EBFM compared to the results from
seNorge and CARRA, with respect to the distribution and intensity
of ROS across Edgeøya. Nevertheless, the tuning of the temperature
threshold to the ground observations showed that in fact, a threshold
of 0.5°C produced the best F1 score when averaged over all three
observation sites and seven winters of data (Figure A1C). The
archipelago averaged RMSE of 0.998, with respect to SAR is slightly
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FIGURE 3
The average geographical distribution of ROS events for 2013–2019, detected using SAR (A) and seNorge dataset (B) when the seNorge temperature
data were thresholded at the optimized threshold of −1.0°C to detect rainfall. The difference in number of events between the two (SAR—seNorge) for
this threshold is shown in (C).

FIGURE 4
The average geographical distribution of ROS events for 2004–2020, detected using SAR (A) and the CARRA dataset (B) when the CARRA temperature
data were thresholded at 0.5°C to detect rainfall. The difference in number of events between the two (SAR—CARRA) is shown in (C).

lower compared with that obtained for seNorge at the optimized
temperature threshold of −1.0°C (1.15) and slightly higher than that
forCARRA (0.823) at its optimised temperature threshold of −0.5°C.
Figure 6C also shows that the greatest differences between EBFM
and SAR are in fact located in the already high-ROS areas, i.e., EBFM
detectsmoreROS events than SAR in the southern andwestern parts
of Svalbard, which are areas where ROS occur most frequently in
the winter.

3.4 Mean monthly ROS events

In this section we present the monthly ROS climatology for the
winter season (November-April), detected using the remote sensing,

model, and reanalysis datasets. Here, ROS is detected using the F1
score-optimised temperature thresholds in the seNorge (−1.0°C),
CARRA (−0.5°C), and EBFM (0.5°C), datasets. The number of
ROS events per month has been averaged only over the period
overlapping all datasets (2013–2019). Figure 7 illustrates the ROS
events per month determined using SAR, seNorge, CARRA and
EBFM. All datasets show that November stands out as the month
with the greatest land area affected by ROS events. The geographical
distribution of ROS events in November shows that the large
majority of ROS events occur not only in the southern and western
coastal areas, but also across inland areas in central and southern
Spitsbergen. Across all datasets there are generally fewer ROS
events in December compared with November, but nevertheless
a higher number of ROS events compared with January. ROS

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2024.1342731
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Vickers et al. 10.3389/feart.2024.1342731

FIGURE 5
The average geographical distribution of ROS events for 2004–2020, detected using SAR (A) and the CARRA dataset (B) when the CARRA temperature
data were thresholded at −0.5°C to detect rainfall. The difference in number of events between the two (SAR—CARRA) is shown in (C).

FIGURE 6
The geographical distribution of ROS events for 2004–2020, detected using SAR (A) and the EBFM dataset (B) when the temperature data were
thresholded at 0.5°C. The difference in number of events between the two (SAR—EBFM) is shown in (C).

events during January are confined to the south and west coast of
Spitsbergen, but in the seNorge dataset the spatial extent of ROS
events is confined to a much smaller region mostly in southern
Spitsbergen.

The geographical distribution of ROS events in February is very
similar to January in the SAR, EBFM and seNorge datasets, with the
exception of Edgeøya where there are no ROS events in February
in the EBFM dataset but a small increase in events over Edgeøya
in the CARRA dataset. The CARRA dataset, however, suggests that
ROS events are more widely spread in extent across Spitsbergen in
February compared to January, as shown by the larger areas affected.
During March there are in general very few or no ROS events in
all datasets, although some ROS that are detected are confined to
the west coast in the EBFM and CARRA datasets. In April there are
on average virtually no ROS events over the entire archipelago in

the SAR and seNorge datasets. However, the EBFM dataset exhibits
a small number of ROS events confined to the east and west coast
of Spitsbergen while CARRA exhibits a few events confined to the
western coast.

3.5 Comparison with in-situ observations
at the optimized temperature thresholds

Figure 8 compares time series of ROS precipitation and snow
depth from in-situ observations at Ny Ålesund for the 2014–2015
winter with the SAR wet snow fraction (Figure 8A), and the time
series of ROS precipitation and SWE determined from the seNorge
(Figure 8B), EBFM (Figure 8C) and CARRA (Figure 8D) datasets at
the pixels in which the Ny Ålesund observational site was located. In

Frontiers in Earth Science 09 frontiersin.org

https://doi.org/10.3389/feart.2024.1342731
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Vickers et al. 10.3389/feart.2024.1342731

FIGURE 7
Monthly frequency of ROS events, averaged over the period 2013–2019, for all four datasets. From left to right are the results for the SAR, seNorge,
CARRA and EBFM datasets respectively. For the seNorge, CARRA and EBFM datasets, ROS events have been detected using the optimized temperature
thresholds.

the case of the in-situ observations, the ROS precipitation is simply
the total daily precipitation on days where the mean air temperature
exceeded 0°C.

For the seNorge, EBFM and CARRA datasets we show the
ROS time series obtained with the temperature threshold that
produced the highest mean F1 score when tuned against the ground
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FIGURE 8
(A) Time series of the SAR wet snow fraction (dark blue), in-situ snow depth (grey) and ROS precipitation (light blue bars, daily precipitation on days
where the mean daily temperature was >0°C) at Ny Ålesund followed by the time series of SWE (grey) and ROS precipitation for pixels within which the
Ny Ålesund site was located, in the (B) seNorge, (C) EBFM and (D) CARRA datasets.

observations. During this winter season there were multiple ROS
events detected in the ground observations; 2 days in November,
2 days in the second half of January, 1 day in February, 2 days in
March and a day with a small amount of rain in mid-April. For
all of these events there are increases in the wet snow fraction
detected by SAR which coincide with the timing of the precipitation
events in the ground data. Snow depths were transient and generally
<20 cm in early winter (November–December) while generally
>30 cm from February onwards. The SWE time series from the
CARRA dataset show temporal variations that are qualitatively
well correlated with the observed variations in snow depth at
Ny Ålesund, despite that the CARRA data represent SWE in a
2.5 km × 2.5 km area.

In contrast, both the seNorge and EBFM datasets do not reflect
the same temporal variations in SWE that are seen in both the
CARRA dataset and the in-situ observations of snow depth. The
EBFM SWE time series exhibits much higher values than the

seNorge and CARRA datasets from the beginning of the time
series, indicating that the onset of snow cover began well before
November. On the other hand, SWE is close to zero at the beginning
of November in the seNorge dataset and increases very gradually
over the course of the winter. Compared to the in-situ data, seNorge
detected only one of the ROS days in November and March but did
not detect the small event in April. The CARRA dataset detected all
the ROS days across the winter that were also detected in the in-situ
data. In addition, twomore days with ROS were detected in CARRA
in November that were not exhibited in the in-situ observations,
but this may be attributed to the different temperature thresholds.
The EBFM model, using the “tuned” temperature threshold of 0.5°C
managed to capture almost all of the ROS days detected in the in-
situ observations, while missing only one of the ROS days in March.
The amount of rain detected at this threshold for the ROS event in
January was, however, much smaller than the precipitation detected
in the ground observations.
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FIGURE 9
Same as for Figure 8, but for the 2016–2017 winter season at Longyearbyen. (A) SAR (B) seNorge (C): EBFM (D) CARRA.

Figure 9 shows the same time series as Figure 8, but for the
2016–2017 winter season at Longyearbyen. During this winter
the ground observations exhibit one main ROS event in the first
half of February 2017, as shown by the increase in SAR wet
snow fraction together with precipitation lasting 5 days. Again,
the temporal variations in the SWE time series from the CARRA
dataset (Figure 9D) follow closely the observed variations in snow
depth, whereas SWE in the seNorge dataset is close to zero before
December 2016 and overall lower than the SWE in CARRA during
the latter part of the winter (Figure 9B). However, both the ROS
events in December and the major ROS event during February
2017 were detected in the seNorge dataset, and in many more
ROS days were detected in December compared to the ground
observations when the tuned threshold of −1.0°C was applied to
the seNorge data. By contrast, the EBFM dataset also detected a
similar number of ROS days in December as the seNorge dataset at
the rain temperature threshold 0.5°C, despite this threshold being
1.5°C greater than the seNorge temperature threshold. However,

while themajor ROS event during February 2017was not completely
captured by the EBFMdataset, there were in fact two additional ROS
events in November 2016 detected in the EBFM dataset that were
missed by the ground observations. All the ROS events detected in
the in-situ data were also detected in the CARRA dataset, as well
as the two additional events in early November 2016. These events
corresponded to record precipitation measured at Svalbard airport;
however, the snow depth may have been too low to be detected
as a rain-on-snow event in the ground observations due to being
below the threshold set on snow depth (2 cm). Like the 2014–2015
season at Ny Ålesund shown in Figure 8, there is much higher and
earlier onset of SWE in the EBFM dataset compared with seNorge
and CARRA.

As outlined in Section 2.6 a set of metrics were evaluated to
1) determine an optimized temperature threshold for detecting
ROS events in each of the temperature-dependent datasets and
2) compare the ROS detection accuracy of each dataset against
the in-situ data at three meteorological stations. In contrast to

Frontiers in Earth Science 12 frontiersin.org

https://doi.org/10.3389/feart.2024.1342731
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Vickers et al. 10.3389/feart.2024.1342731

the preceding sections comparing the geographical similarities and
differences in ROS detections, this evaluation provides an indication
of the temporal accuracy of the different datasets at specific sites. A
summary of the F1 score, true positive, false positive, false negative
and true negative rates for each dataset is shown in Tables 2–4 for Ny
Ålesund, Longyearbyen andHornsund respectively. In general, both
the SAR and CARRA datasets detect a larger percentage of the ROS
days detected in the ground observations compared with seNorge
and EBFM on average, as indicated by the higher true positive rate
at all three sites evaluated. However, since rainwater in the snowpack
does not refreeze immediately following a ROS event, wet snow can
often be detected in the SAR dataset even several days after a ROS
event finishes. This leads to a higher rate of false detections with
respect to the ground data, leading to an overall lower F1 score
for SAR at all sites. CARRA on the other hand scored highest with
respect to the true positive rate of around 0.8 at all three sites, The
seNorge and EBFM datasets on the other hand, correctly detects
on average fewer ROS days compared to SAR and CARRA, with a
true positive rate in the range 0.5–0.6 but with a correspondingly
low false positive rate. As a result, the F1 score is highest for the
CARRA dataset at all sites and lowest for the SAR dataset, while
the F1 score for the seNorge and EBFM dataset are similar at all
sites, except at Ny Ålesund where EBFM performed somewhat
better due to a higher true positive rate and low false positive rate.
Moreover, both seNorge and EBFM have a higher F1 score at all
three sites compared to SAR despite the SAR dataset scoring higher
true positives at two of the sites. As noted earlier, this is largely
due to days with wet snow detected after the end of a rain event
resulting from non-immediate freezing of the snowpack. Across all
three sites evaluated, the F1 score for all datasets was highest at the
northernmost station Ny Ålesund, and lowest at the southernmost
station, Hornsund.

4 Discussion

4.1 Threshold sensitivity

For the temperature dependent datasets it was found that
applying a daily mean temperature threshold of 0.5°C to partition
rain and snow produced quite different detection of ROS events
depending on the dataset. Fewest events were detected in the
seNorge dataset, while the CARRA and EBFM datasets produced
a ROS climatology that was spatially similar. Moreover, the ROS
events detected in the EBFM dataset also agreed better with SAR
over Edgeøya, where both seNorge and CARRA did not detect
many events on average. The temperature sensitivity of the seNorge,
CARRA and EBFM datasets was investigated by producing ROS
climatologies at different temperature thresholds and comparing
them to the SAR datasets. By tuning the temperature threshold
against ground observations, the highest accuracy, as determined
by the F1 score was obtained at a threshold of −0.5°C for
the CARRA dataset, −1.0°C for the seNorge dataset, and at a
threshold of +0.5°C for the EBFM dataset. This may support the
work of Jennings et al. (2018) who found the rain-snow transition
temperature was lower for maritime climates compared with
continental climates due to the higher relative humidity. Since most
ROS occur in the southern and western land areas of Svalbard,

it is likely that the best-fit temperature threshold is influenced
by the rain-snow transition temperature of these areas, which are
characterized by predominantly maritime climates. Alternatively,
the different temperature thresholds may be compensating for
biases in the different air temperature forcings used by the
datasets. Moreover, precipitation (and its elevation gradient) in
EBFM is calibrated so that it matches well with observations of
winter mass balance on glaciers. This may explain the higher
temperature threshold required to produce better agreement with
the ground observations due to the different climatic conditions
over glaciated areas, However, the EBFM dataset also tended to
detect events during the early part of the winter, which were not
detected in the ground observations due to SWE values being a
much greater.

Using the thresholding approach, ROS detection is also
influenced by the precipitation thresholds applied to the datasets.
Pall et al. (2019) investigated ROS across mainland Norway by
applying a precipitation threshold of 5 mm, which they note is best
adapted for flood impacts. The lower threshold of 1 mm was used in
this study to produce comparable results to earlier work on winter
ROS in Svalbard that apply this threshold (Wickström et al., 2020)
and to capture multi-day ROS events; a disadvantage of the method
by which we defined ROS events means that choosing a higher
threshold may split a single long event (e.g., February 2017) into
multiple single ROS days or events, as exhibited by the EBFMdataset
(Figure 9) and therefore not represent very well the ROS events
brought about by large-scale low-pressure systems lasting several
days. Moreover, this definition of ROS event means that lower ROS
temperature thresholds may actually result in a fewer number of
overall events compared to those counted at a higher temperature
threshold when multi-day events are split into single ROS days. This
effect is demonstrated by the lower number of events along the west
coast of Spitsbergen in the CARRA dataset at a threshold of −0.5°C
(Figure 5) compared to the number of events at a threshold of +0.5°C
(Figure 4). In addition, the generally lower precipitation amounts
in the model datasets compared to the observed precipitation,
means that a higher precipitation threshold would produce a
ROS climatology with a lower number of ROS events in the
model or reanalysis datasets compared to the ground observations.
Several of the ROS events present in the in-situ data where the
measured precipitation exceeded 5 mm/day were correctly detected
by the models (CARRA, EBFM) even though the model/forecast
precipitation was <5 mm in several of these events. These events
would have been missed if a higher threshold of 5 mm had been
applied. Therefore, we believe that the ROS climatology depicted
by the models is better represented using the lower precipitation
threshold. On the other hand, for future studies that are more
focused on impactful ROS events, a higher precipitation threshold
would be recommended. Overall, these considerations emphasise
the difficulty in characterising and quantifying ROS events due to
the sensitivity to thresholds and definition of a ROS “events” versus
individual ROS days.

4.2 ROS climatology

The geographical pattern of ROS occurrence was generally
consistent across all datasets for Spitsbergen, with ROS events
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occurring most frequently throughout the winter along the western
and southern coastal land areas. Larger differences were found
across Edgeøya, where there were fewer ROS events detected in
both the seNorge and CARRA dataset compared to ROS detected
in the SAR datasets. This may be explained by the fact that
only temperature measurements are available at the meteorological
station on Edgeøya; the lack of precipitation and snow depth
data may thus contribute to poorer quality estimates of these
two parameters in the seNorge and CARRA datasets, which
incorporate ground measurements. On the other hand, there was
better agreement between the spatial distribution of ROS on
Edgeøya in the SAR dataset, with that exhibited by the EBFM
dataset. Overall, the SAR, EBFM and CARRA datasets detected
many more ROS events compared to the seNorge dataset when
the standard temperature threshold of 0.5°C was applied. However,
where the temperature threshold had been optimized against ground
observations, the resulting ROS climatology also agreed better with
the SAR ROS dataset.

These additional ROS events were not only detected across
the coastal “ROS hotspot” areas, but also across inland areas. The
precipitation in seNorge, EBFM and CARRA is based on various
NWP systems and not explicitly constrained by observations.
The sparse observation network for precipitation, and observation
errors for existing measurements in Svalbard make it difficult to
evaluate the quality of precipitation in these datasets. However,
an attempt to evaluate the precipitation from the HARMONIE-
AROME NWP, which is used by seNorge and CARRA, over
mainland Norway has shown a tendency towards underestimation
of winter precipitation in general and in coastal regions in particular
(Køltzow et al., 2020).

4.3 Performance of the datasets

Thecomparison of all four datasets against in-situmeasurements
at three sites (Ny Ålesund, Longyearbyen and Hornsund) indicated
that SAR and CARRA datasets tended to correctly detect the
highest number of observed ROS events compared to EBFM and
seNorge.However, it was also found that the EBFMdataset displayed
much higher SWE across the entire winter season compared to the
snow depth observations, which often resulted in more ROS events
detected in late autumn. While some of these detected ROS events
were also found in the in-situ data, there were also some falsely
detected ROS events in the EBFM data due to the too-high SWE
values. As noted earlier, the EBFM dataset is calibrated to match
observations of winter mass balance on glaciers, which typically
receive more accumulation than wind-exposed coastal sites. Hence,
it is not surprising that EBFM overestimates snow accumulation
and rainfall in Longyearbyen and Ny Ålesund. However, even
though SAR correctly detected a greater number of ROS days
than the EBFM dataset, the F1 score for SAR was lower due to
many more falsely detected ROS days. These days were the result
of the longer time needed for the snowpack to refreeze following
a ROS event and wet snow being detected on non-ROS days
following a ROS event, a problem highlighted in the earlier study of
Vickers et al. (2022).

In contrast to EBFM, seNorge generally displayed too low SWE
values compared to observed snow depths in early winter, while

the CARRA dataset was found to reproduce temporal variations
in SWE that correlated qualitatively very well with the observed
temporal variations in snow depth at all three sites. Overall, CARRA
scored highest with respect to the true positive rate as well as
the F1 score due to its lower levels of false positives and missed
events compared to EBFM and SAR, despite being the dataset
with lowest spatial resolution of 2.5 km. These results indicate that
while the geographical patterns of ROS are climatically similar
across both model and remote sensing datasets, there is greater
variation in the timing and intensity of the ROS events detected
across the datasets. It should also be noted that for the CARRA
dataset, there is also a high probability that the data agree quite
well with station observations, since both 2 m air temperature and
snow depth observations are assimilated into the CARRA dataset.
Isaksen et al. (2022) compare CARRA data to both assimilated
and unassimilated observations of temperature at Svalbard, finding
that the non-systematic errors increase when the data are not
assimilated. In comparison, data assimilation has not been done
for the meteorological forcing (NORA10) of the EBFM dataset
and is something that has evolved with time for the operational
era of AROME-Arctic used to force seNorge. Our results thus
highlight the need for more independent in-situ observations
that can be used as ground truthing for, and improvement of
model, reanalysis, and remote sensing datasets. In particular,
snow profiles, including information on snow temperature and
liquid water content would be a valuable resource for validation
of wet snow maps and the presence of moisture within the
snowpack. While the persistence of moisture in the snowpack
following a ROS event presents a challenge in estimating the
intensity and duration of an event using SAR, this information
can nevertheless be highly valuable in hydrological applications
such as those where surface runoff (e.g., Torralbo et al., 2023)
and transport of nutrients into water courses are of interest.
Moreover, the comparatively finer resolution of the SAR data lends
itself well to ecological studies where the presence of wet snow
can lead to the formation of ice crusts following a ROS event.
This information may be useful, for example, in identifying areas
which can pose challenges to reindeer grazing. The evaluation
of the SAR dataset against ground observations, models and
reanalyses indicates overall good correlations between the detection
of wet snow and the onset of wintertime ROS events in Svalbard,
where tundra ecosystems dominate, and wintertime mild weather
events are often brief and followed by a return to sub-zero
temperatures. Recent work combining multiple microwave satellite
sensors to produce a circumpolar record of ROS events also
concludes that the approach is most reliable over tundra biomes
(Bartsch et al., 2010). This may be due to the absence of land use
types that may complicate the interpretation of the backscattered
radar signal.

4.4 ROS impacts and outlook

All datasets indicate that in the present climate, many winter
ROS events are taking place in November, but southern and
western areas are nevertheless also impacted by ROS during
December to February. In contrast there were on average, very
few ROS events during March and April across the archipelago,
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which also coincides with the months during which sea ice
concentration around Svalbard reaches a maximum. These results
lend support to the earlier study of Rinke et al. (2017) who
found an increase in extreme winter warming events at Ny
Ålesund especially during November and December, which was
also attributed to the lower-than-average concentration of sea ice
during these months. Links between low sea ice concentration
and increased warming and precipitation on adjacent land areas
has also been reported (Forbes et al., 2016). The implications
of ROS events taking place at the beginning of the winter are
largely negative for animals on Svalbard such as reindeer, since
ice crusts formed at the base of the snowpack following a ROS
event create a physical barrier to forage, which effectively means
that food sources are locked away for the rest of the winter.
On the other hand, during late autumn/early winter when snow
cover is thin, ROS events, or above-zero temperatures alone may
result in complete ablation of snow cover, which would increase
accessibility to forage. Snow cover also acts as an insulator for
the ground and permafrost; complete loss of snow cover due to
a ROS event would re-expose the ground to cold temperatures
following an event, which could also lead to negative impacts for
vegetation but may offset the increased soil temperatures brought
about by the ROS event. As ongoing changes in climate lead to
a later onset of snow cover and a thinner snowpack in early
winter, the consequences of ROS events on both the physical
environment and ecosystems will depend on the resulting impact on
the snow cover.

For a reliable assessment of ROS trends, long time series
are needed. Of the datasets analysed in this study, the EBFM
and CARRA datasets provide long enough time series for this
purpose, without the temporal uncertainty associated with data gaps
associated with the SAR data. Comparing trends in ROS events
only for the period overlapping the earlier published SAR dataset
(2004–2020), EBFM and CARRA indicate an overall increasing and
significant trend in ROS along the eastern coast of Spitsbergen and
in mountainous parts of the north (Figure A2). In these areas there
are trends of up to 2 events per decade. Increasing trends of ROS
in the same areas were earlier found in the SAR dataset but were
not statistically significant. Here, significant and increasing trends in
ROS were largely confined only to the western side of Spitsbergen. It
is therefore unclear which areas are currently experiencing greatest
increases in ROSdue to differences in themethods bywhichROS are
defined.This highlights and re-emphasizes the need for analyses and
comparisons between all types of datasets such as those presented in
this study.

5 Conclusion

This study has utilized remote sensing, model, and reanalysis
datasets to identify and compare rain-on-snow events across
Svalbard between 2004 and 2020. There is a general agreement in
the geographical distribution of ROS across Spitsbergen, with the
southern and western coastal areas most frequently experiencing
ROS during the wintertime. Moreover, there is consistency in
the timing of ROS across all datasets, with the early winter
(November–December) experiencing overall most events compared
to the spring (March–April). Ground observations were utilized

to test the temperature sensitivity to temperature thresholds and
corresponding accuracy of ROS detections in the model and
reanalysis datasets. For two of the datasets (CARRA, seNorge) the
dailymean temperature threshold for rain producing best agreement
with the ground data was below zero. A lower temperature threshold
is consistent with a coastal climate where rain can fall during
a day even with daily mean temperatures below freezing, as
well as the vertical profiles of temperature and humidity playing
a role in determining the rain-snow threshold. For the EBFM
dataset on the other hand, which is calibrated to match glacier
mass balance observations, the 0.5°C temperature threshold for
partitioning rain and snow, intrinsic to the snow model was
found to produce best agreement with observations. In all cases,
the obtained optimum temperature threshold produced a ROS
climatology that also agreed better with the SAR data. Overall, a
quantitative evaluation of all datasets using ground observations
made at Hornsund, Longyearbyen and Ny Ålesund indicated
that the CARRA dataset was superior to all the other datasets
in terms of accuracy (F1 score) even though CARRA had the
lowest spatial resolution of all the datasets, also highlighting
the importance of assimilating ground data into the dataset. It
should be emphasized that the relative performance of CARRA
compared to the other data sets away from from assimilated
observations is uncertain. The SAR dataset consistently scored
lowest in terms of its F1 score due to many more false positive
ROS days, an issue which is most likely explained by the persistence
of moisture in the snowpack following the end of a ROS event
since stored water in the snowpack does not refreeze immediately.
While this moisture is correctly detected as wet snow by SAR,
it is incorrectly detected as a ROS day. On the other hand,
seNorge often exhibited a too late onset of snow, on occasions
leading to several missed events during early winter, while the
EBFM dataset often exhibited too early onset of snow and much
higher SWE, which on occasions led to false detections of ROS
during early winter. Our study highlights the sensitivity of ROS
climatology to temperature thresholds as well as differences in
the geographical distribution of ROS between different datasets.
Moreover, this study demonstrates how comparisons between
different datasets can reveal or confirm knowledge about the
climatic variations across Svalbard where in-situ observations
are sparse.
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Appendix A

FIGURE A1
The F1 score, true positive rate (TP) and false positive rate (FP) calculated at five temperature thresholds for detecting rain, averaged over seven winters
(2013–2019) and three meteorological sites for the (A) seNorge (B) CARRA and (C) EBFM datasets. This threshold sensitivity testing allowed for the
optimum temperature threshold for detecting rain-on-snow to be determined.
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FIGURE A2
Significant trend in ROS over the SAR period (2004–2020) obtained using the (A) CARRA dataset (with temperature thresholded at −0.5°C to detect
ROS) and (B) EBFM dataset.
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