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A B S T R A C T   

Geological storage of carbon dioxide is a cornerstone in almost every realistic emissions reduction scenario 
outlined by the Intergovernmental Panel on Climate Change. Our ability to accurately forecast storage efficacy is, 
however, mostly unknown due to the long timescales involved (hundreds to thousands of years). To study 
perceived forecast accuracy, we designed a double-blind forecasting study. As ground truth, we constructed a 
laboratory-scale carbon storage operation, retaining the essential physical processes active on the field scale, 
within a time span of five days. Separately, academic groups with experience in carbon storage research were 
invited to forecast key carbon storage efficacy metrics. The participating groups submitted forecasts in two 
stages: First independently without any cross-group interaction, then finally after workshops designed to share 
and assimilate understanding between the forecast groups. Their confidence in reported forecasts was monitored 
throughout the forecasting study. Our results show that participating groups provided forecasts that appear bias- 
free with respect to carbon storage as a technology, yet the forecast intervals are too narrow to capture the 
ground truth (overconfidence bias). When asked to qualitatively self-assess their forecast uncertainty (and later 
when asked to provide an external assessment of other forecast groups), the assessment of the participants 
indicated an understanding that the forecast intervals (both their own and those of others) were too narrow. 
However, the participants did not display an understanding of how poorly the forecast intervals calibrated to the 
ground truth. The quantitative uncertainty assessments contrast the qualitative comments supplied by the par
ticipants, which indicate an acute awareness of the challenges associated with assessing the uncertainty of 
forecasts for complex systems such as the geological storage of carbon dioxide.   

1. Introduction 

Models of large-scale geophysical systems often share characteristics 
such as a complex interplay of non-linear processes, reliance on 
constitutive laws of varying degrees of sophistication, and spatio- 
temporal domains that prohibit fully resolved computer simulation. 
Arguably, this is the case for both above-surface and sub-surface sys
tems, including seasonal weather models, general circulation models, 
and, as considered in this study, long-term geological carbon storage. 

With the exception of weather, forecasts of such complex, large-scale 
geophysical systems are usually challenged by the lack of robust datasets 
for which the reliability of forecasting tools can be established. 

Uncertainty quantification based on forecasts provided by computer 
simulation may therefore be limited to exploring the propagation of 
parameter uncertainty (e.g., by an ensemble of simulations), often 
without addressing —with the same rigor— other sources of uncer
tainty, including (but not limited to) model deficiencies, approximations 
and user errors (Ferson et al., 2004; Smith, 2013; Qian et al., 2018). 
Crucially, the impact of these frequently ignored uncertainties need not 
be unbiased, and as such, neither the mean nor the span of the simula
tion ensemble may be representative of the actual uncertainty one tries 
to capture in the forecast of the system (Morgan and Henrion, 1990, 
Cooke, 1991). 

The use of probabilistic forecasts is a well-established methodology 
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to communicate uncertainty. As pointed out in Murphy (1998), proba
bilistic statements on how much confidence one should ascribe to a 
weather forecast date back to the 18th century. Since then, forecast 
intervals and probabilistic single-point forecasts have been used in many 
disciplines. In the context of subsurface energy (petroleum or 
geothermal) and groundwater extraction, business decisions related to 
field development are routinely dependent on forecast intervals, and the 
calibration of these intervals in terms of actual field performance can be 
assessed in a matter of years or decades. This previous experience with 
giving probabilistic uncertainty forecasts also means that we now have 
some general knowledge about our ability to provide well-calibrated 
forecast intervals and unbiased single-point forecasts at yearly or 
decadal timescales (see e.g. Floris et al. (2001); Tavassoli (2004); Bickel 
and Bratvold (2008)). In contrast, in the context of nuclear waste 
disposal, the existing field data is insignificant compared to the forecast 
time, and several studies have illustrated the challenges of providing 
well-calibrated forecasts (see e.g. results from the long-running DECO
VALEX project reported in Jing et al. (1995), Birkholzer (2019)). 

Forecast intervals in general tend to be too narrow to reflect the 
stated confidence level, i.e., there is an overconfidence bias. For 
example, well-calibrated 80 %-confidence forecasting intervals should, 
in the long run, give an 80 % hit rate (inclusion rate) of observed out
comes, but most reported studies on forecast intervals find that the 
actual hit rate is much lower, see for example Soll et al. (2004) and 
Glaser et al. (2013). The root cause has been debated extensively and 
includes both psychological explanations, such as the desire to be 
informative and not expose uncertainty (Cesarini, 2006), and 
model-based explanations, such as shortcomings in including all types of 
uncertainties in the model simulations (Klas, 2011). Most previous 
research also points at a tendency for overoptimistic single-point fore
casts of, for example, the mean outcome, although this tendency seems 
to be less robust and more context-dependent (Halkjelsvik og Jørgensen, 
2012). 

Industrial-scale geological carbon storage (GCS), which is a key 
carbon mitigation technology (IPCC, 2005, 2022), is an important 
example of a complex geophysical system where long-term datasets are 
lacking. Only a handful of industrial-scale storage sites are in operation 
(Zhang et al., 2022) (these include the Sleipner project in the North Sea 
(Furre et al., 2017), the Weyburn project in Canada (White, 2009), and 
the Gorgon project in Western Australia, (Trupp, 2021)), and the 
geological environment varies greatly from site to site. Hence, there is a 
danger of overemphasizing learning from existing sites when assessing 
and planning new sites. Furthermore, commercial-scale carbon storage 
sites have only been operated for a few decades, and none are in the 
post-injection phase of operation. As such, there exist no datasets 
relating to the long-term (centuries) fate of industrial carbon storage for 
which our forecasting ability can be assessed. 

Here, we examine the forecasting ability of a set of modeling groups 
active in the field of carbon dioxide storage. We focus on their ability to 
capture the uncertainty of the forecasts, and to give unbiased forecasts, 
based on the ground truth provided by a room-scale experiment of 
carbon dioxide injection and trapping in geologically realistic media 
constructed explicitly for this study (Fernø et al., 2024). The forecast 
accuracy and model comparisons are discussed elsewhere (Flemisch 
et al., 2024). Throughout this study, forecasts are given as forecast in
tervals, i.e., minimum-maximum intervals associated with respectively 
10 % and 90 % probability of not exceeding the actual experimental 
outcome, and as forecasts of the median outcome, i.e., the outcome with 
a 50 % probability to be exceeded (see Nomenclature for a summary of 
definitions). 

To our knowledge, there have not been any prior studies on over
confidence or overoptimism when forecasting carbon storage opera
tions. Here we address this gap and establish a baseline understanding of 
our forecasting abilities in the context of carbon storage, together with a 
rigorous examination of how uncertainty assessment improved with 
group discussions and requests for alternative framing of uncertainty. 

The research questions guiding our study were the following:  

1. To what extent does the stated confidence in the forecast intervals 
correspond to the actual hit rate of the outcome (level of 
calibration)?  

2. To what extent is there a tendency towards optimism, with respect to 
the safety of carbon storage as a technology, in the forecasts of the 
median outcomes?  

3. What is the impact of community interactions (communication with 
other teams targeting the same forecasts) on calibration and opti
mism bias?  

4. How accurate are assessments of the hit rate of their own (meta- 
assessment) and the other groups’ forecast intervals? 

We address these research questions through a forecasting study 
defined around a laboratory-scale carbon storage operation. A carbon 
storage site is constructed and operated in the laboratory, which is our 
representation of ground truth, i.e., the reference values for the evalua
tion of the forecasts, and multiple academic groups from around the 
world participated in model building and forecasts. The laboratory 
storage site is realized as an intermediate-scale visual quasi-2D exper
iment—an approach that has proven extraordinarily insightful in un
derstanding subsurface fluid flow and transport (Illangasekare et al., 
1995; Trevisan et al., 2017). It was constructed to be as realistic as 
possible with respect to physical processes, geologic complexity, and 
information availability, and it can be considered comparable to a 
multi-decadal commercial injection at field conditions, with a 
multi-century post-injection period (Kovscek et al., 2024). The forecast 
groups were monitored throughout the study to address their skill in 
representing the accuracy of their forecasts, both as individuals and as a 
collective, and quantitative and qualitative information was collected 
and analyzed. The study was strictly double-blind, in the sense that the 
experimental group was fully isolated from the forecasting groups. 
Furthermore, during the first part of the study, the forecasting groups 
were also blind to each other, while in the second part of the study, the 
forecasting groups were interacting with each other. 

In the remaining part of this paper, we describe the study design in 
Section 2 and the results in Section 3, before we discuss the results and 
conclude in Section 4. 

2. Study design 

To address the research questions, we designed a study consisting of 
two experiments, running concurrently. One experiment, denoted the 
“ground truth” experiment, defines the results to be forecasted, and has 
been reported on elsewhere (see references below). The second experi
ment, which we report herein, is denoted the “forecast experiment”, and 
targets the forecasts themselves. The steps and the timeline of the two 
experiments are depicted in Fig. 1 and explained below. 

2.1. The physical ground truth experiment 

For the purpose of creating a realistic yet well-defined environment 
for forecasts, we constructed a long-term carbon storage site at labora
tory scale (Fernø et al., 2024). By long-term, we mean that we allow for a 
full injection phase, and a post-injection phase that is on the order of ten 
times the length of the injection. Our carbon storage experiment, the 
FluidFlower experiment, was built to the maximal size allowable within 
laboratory limitations, and measures almost two meters high by three 
meters wide. The experiment is quasi two-dimensional, having a depth 
of approximately two centimeters, and the front panel is transparent for 
accurate optical-based monitoring of the carbon storage processes. 
While an exact scaling from field to lab is impossible, the choice of di
mensions and sands provides a reasonable consistency of dimensionless 
groups when compared to ongoing carbon storage operations (Kovscek 
et al., 2024). 
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Experimentally measurable input parameters were documented and 
released to the participating forecasting groups, as well as a tracer in
jection run for model calibration. The data made available was chosen to 
be realistic as compared to the pre-injection assessment phase of a real 
storage operation. In the preparation phase, comments and clarifications 
were allowed by all participants, and the final system description was 
made static early in the blind phase (Nordbotten et al. 2022). The 
experimental group, led by one of the authors (Fernø), based at the 
University of Bergen, Norway, conducted five repetitions of the exper
iment (Fernø et al., 2024), without sharing results or any other material 
information with the forecasting groups or the co-authors outside of 
Bergen. The idealized laboratory carbon storage site was constructed 
using unconsolidated sands (six separate size distributions ranging from 
an average grain size of 0.2 to 2.5 mm) with absolute permeability 
ranging from 5 to 10 000 Darcy. A typical carbon storage experiment is 
shown in Fig. 2 (Panel I). One injection well was located in the lower and 
homogenous reservoir (to the left of Box A and C), whereas the second 
injection well was located in the fining upwards sequence above the 
lower reservoir seal. Gaseous CO2 was injected at constant rate through 
the two injection wells over the initial 5 h of the experiment, with the 
upper injection active only during the last 2.5 h. Difference in capillary 
entry pressures dictated the observed flow and trapping patterns, and 
CO2-saturated water was distinguished from formation water by a color 
shift of the aqueous pH sensitive solution. The gaseous CO2 phase was 
observed by lack of water in the sand. All data were analyzed and 
quantified using open-source image analysis software (Nordbotten et al., 
2024a). Repeated CO2 injections with identical operational conditions 
allow physical variability to be addressed using the same geological 
geometry. 

2.2. The forecast experiment 

Leading academic and industry groups with active carbon storage 
research were invited to participate in the forecasting study, of which a 
total of 10 groups (all academic) participated in the forecast study, of 
which seven groups provided sufficient data to be included in the results 
reported herein. Of these seven, four groups provided the forecast 
quantities requested in this study, while the remaining three groups 
submitted forecast quantities only at the final workshop. The three 
groups who did not provide data for this study, were nevertheless part of 
the knowledge exchange at the initial and final workshops. Typical 
numerical simulations of the carbon storage experiment used to inform 
the forecasts are shown in Fig. 2 (Panel II). To ensure that the study was 
double-blind, the forecasting groups were coordinated by one of the 
authors (Flemisch), based at the University of Stuttgart, Germany, with 
moderated and archived communication between forecasting and 

experimental groups by means of a dedicated online platform.1 

2.3. The forecasted quantities 

The forecasting groups were asked to provide forecasts of six proxy 
questions associated with storage capacity and security (see Fig. 2, Panel 
I, and (Nordbotten et al., 2022) for the precise definition of Boxes A-C 
and injection/pressure port positions). Three of the proxies comprise 
several numbers, referred to as quantities:  

1. As a proxy for assessing risk of mechanical disturbance of the overburden: 
Maximum pressure at sensor number 1 and 2 (referred to as quantity 
1a and 1b). Unit: Newtons per square meter.  

2. As a proxy for when leakage risk starts declining: Time of maximum 
mobile free phase in Box A. Unit: Seconds. 

3. As a proxy for the ability to accurately forecast near well phase parti
tioning: Phase composition in Box A at 72 h after CO2 injection starts 
(3a through 3d). Unit: Kilograms. The four quantities are specified 
as:  
a. Mobile CO2 in gas phase  
b. Immobile CO2 in gas phase  
c. Dissolved CO2.  
d. CO2 in seal facies.  

4. As a proxy for the ability to handle uncertain geological features: Phase 
composition in Box B at 72 h after injection starts (4a through 4d, 
according to the same convention as in Proxy 3). Unit: Kilograms.  

5. As a proxy for the ability to capture onset of convective mixing: Time for 
which the quantity 
∫

C

⃒
⃒
⃒
⃒
⃒
∇

(
χw

c (t)
χw

c,max

)⃒
⃒
⃒
⃒
⃒

dx  

first exceeds 110 % of the width of Box C, where χw
c is the mass 

fraction of CO2 in the water phase. Unit: Seconds.  
6. As a proxy for the ability to capture migration into low-permeable seals: 

Total mass of CO2 in the top seal facies (areas of the finest sand 
layers) at final time within Box A. Unit: Kilograms. 

Noting that the answers to Proxies 1, 3 and 4 include multiple 
numbers, the total response to the six proxies involves providing fore
casts of 13 numerical quantities. See Fig. 2, Panel III, for an example of 
the forecasts of the four quantities comprising Proxy 3. These quantities 
will in turn not be completely independent, as they survey different 

Fig. 1. Overview of the steps and timeline of the study, including both the physical ground truth experiment and the components of the forecast experiment. The 
overall timescale of the figure spans from Spring 2021 to April 2022. 

1 https://discord.gg/8Q5fZS3T47 
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aspects of the forecasts of the same physical system. We emphasize that 
the quantitative results of this study (in terms of numerical values given 
in Table 1 and Fig. 4, see Section 3) depend on the choice of proxy 
questions. However, we believe it is reasonable to expect that the 
qualitative results (summarized at the beginning of Section 4) should be 
true also for other proxies. 

For each of the quantities, the mean value of the five measurements 
from the physical ground truth experiments was forecasted by the 
research groups. The inherent measurement and analysis uncertainty in 
the outcome of the experiment implies that the mean value of the five 

measurements is represented by an interval. We term the mean, mini
mum and maximum of the five empirical measurements, respectively, 
EIMean, EIMin, and EImax. The interval [EIMin, EIMax] of the five empirical 
measurements is denoted EI. We use the intervals of empirically 
measured values as a reference when evaluating forecast interval cali
bration, and EIMean when evaluating forecast optimism bias and forecast 
accuracy. More on the quantities, size of this uncertainty interval of the 
measured mean values, and how measurements were made, can be 
found in (Fernø et al. 2024). 

Fig. 2. Panel I: Photo of the third repetition of the ground truth experiment, with analysis boxes A-C referred to in the text overlain. Grayish-beige colors correspond 
to water-filled sand layers with no CO2, reddish darker colors suggest a single fluid phase consisting of liquid water with dissolved CO2, while reddish light colors 
indicate the additional appearance of free-phase gaseous CO2. Automatic segmentation indicated by yellow and green curves. White dots mark the position of the 
injection points. Panel II: Numerical simulations as submitted by six of the forecasting groups. Here, the coloration indicates concentration of CO2 in the water phase, 
with gaseous CO2 appearing where the dissolution limit is exceeded. The seventh group did not trust their simulations, and therefore submitted forecasts based on 
expert knowledge. Panel III: Submitted P10-P90 forecasts for the four quantities in Proxy 3 from the seven groups (each group has unique color), compared with 
range of five repeated experiments (gray). 
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2.4. The forecasts 

Forecasts are classically understood in the context of probability 
distributions. However, in practice, it is typically considered unrealistic 
to provide the precise shape of the probability distribution, and the 
distribution is replaced by a finite number of characteristics. The most 
common choices are either mean and variance or, as considered in this 
study, exceedance values (percentiles) of the cumulative probability 
distribution. In the forecast experiment, we requested forecasts of the 
following three percentiles of the outcome probability distribution of a 
quantity: 

P10: The value forecasted to be 10 % likely not to be exceeded by the 
empirically measured value. 
P50: The value forecasted to be 50 % likely not to be exceeded by the 
empirically measured value. 
P90: The value forecasted to be 90 % likely not to be exceeded by the 
empirically measured value. 

The interval from P10 to P90, denoted PI80, is then the (central) 80 
% forecast interval, i.e., the interval with an 80 % probability of 
including the empirically measured value. Furthermore, we consider the 
P50 exceedance value as the “most representative” (the median) 
forecast. 

Thus, forecasting groups provided P10, P50, and P90, as exemplified 
for Proxy 3 in Fig. 2, Panel III.2 The methods for achieving the answers 
could be chosen freely by each group, allowing for a broad spectrum 
ranging from pure intuition and expert knowledge to sophisticated sta
tistical uncertainty quantification approaches. 

2.5. Evaluation measures of the forecasts 

For this study, ground truth values are defined as the experimental 

results. However, the ubiquitous presence of measurement error and 
data analysis uncertainty must be acknowledged. We choose the 
following approach to score the forecasts in light of the uncertainty 
associated with the ground truth data: Based on our best estimate of 
experimental uncertainty (detailed in Fernø et al., 2024), we take a 
probabilistic perspective where the ground truth is represented by a 
uniform distribution within EI, i.e., the interval between the lowest 
(EIMin) and the highest (EIMax) value of the relevant quantity as 
measured in the five ground truth experiments. 

We score an 80 % forecast interval (PI80) according to its overlap 
with the experimental uncertainty (EI). This approach provides a 
probabilistically consistent interpretation when aggregating over all 
participating groups. The hit rates of the PI80 intervals (HitRateP) can 
then, according to the above argumentation, be expressed as follows 
(See Fig. 3 for an illustration)3: 

HitRateP =
HitFrac80

EIMax − EIMin 

Here, HitFrac80 is the overlap between the forecast and the mea
surement, which formally can be expressed as: 

HitFrac80 = min(EIMax, P90) − max(EIMin,P10)

A special case arises for two quantities within Proxy 3 and 4, where 
the reference value (empirically measured values) is zero with high 
confidence, and thus EImin = EImax = 0. In this case, we define the for
mula as the traditional measure of hit rate for single point empirical 
values, i.e. we score a HitRateP = 1 if the participants submitted P10 = 0. 

We use a variant of the measure HitRateP for the hit rate of the 
proxies, denoted HitRateProxy. This is defined as the product of the hit 
rates of the quantities within a proxy, which have up to four quantities. 
To get a hit rate of 1 for a proxy, one consequently needs to have a hit 
rate of 1 for all sub-quantities within that proxy.4 

For the purpose of defining a measure of optimism bias of the P50 
forecast we first identified whether the positive direction for each 
quantity, i.e., better outcome regarding CO2 storage, was towards higher 
values (“Higher”) or lower values (“Lower”). We encode the optimism 
direction by ξ, taking the value ξ = 0 if optimism direction is positive 
and ξ = 1 if optimism direction is negative. The direction of optimism is 
described and justified for each of the quantities below:  

• Pressure values (Quantities 1a and 1b): Higher induces the risk of 
damage to overburden, lower is positive: ξ = 1.  

• Both time measures (Quantities 2 and 5): Values describe transitions 
of the system to safer states, lower is therefore positive: ξ = 1.  

• CO2 in mobile free phase (Quantities 3a and 4a): Mobile CO2 can 
leak, thus lower is positive: ξ = 1.  

• CO2 in immobile free phase (Quantities 3b and 4b): Immobile CO2 
cannot move, thus higher is positive: ξ = 0.  

• CO2 dissolved in water (Quantities 3c and 4c): Water with elevated 
CO2 levels tends to sink, and this prohibits leakage. Higher is posi
tive: ξ = 0. 

Table 1 
Hit rates of P10-P90 intervals and tendency towards optimism bias per question. 
“Initial” refers to forecasts without interaction with other groups (four groups 
submitted intervals), “Final” refers to forecasts with the benefit of group in
teractions and additional time (seven groups submitted intervals). Well- 
calibrated P10-P90 intervals would give an 80% hit rate. Unbiased P50 fore
casts would give a 50% optimism proportion, while values higher than 50% 
would suggest a tendency towards over-optimistic forecasts.  

Quantity Initial hit 
rate 
HitRateP 

Initial optimism 
proportion 
P50OptP 

Final hit 
rate P10- 
P90 
HitRateP 

Final optimism 
proportion 
P50OptP 

1a 25% 25% 0% 29% 
1b 25% 25% 14% 29% 
2 25% 25% 14% 14% 
3a 25% 50% 49% 0% 
3b 75% 63% 57% 86% 
3c 34% 25% 60% 41% 
3d 25% 25% 31% 34% 
4a 25% 13% 100% 29% 
4b 25% 100% 100% 57% 
4c 0% 100% 24% 14% 
4d 0% 0% 43% 14% 
5 25% 50% 32% 63% 
6 29% 63% 24% 70% 
Overall 

mean 
26% 43% 42% 37%  

2 We asked for the P10, P50 and P90 for both the mean and the standard 
deviation of the experimental results, which in total gives six predictions for 
each quantity. As only two of the groups gave meaningful P10, P50 and P90 for 
the standard deviation of the experiments, the analysis in this paper is only 
based on the P10, P50 and P90 forecasts of the mean of the empirically 
measured value. 

3 The presence of measurement uncertainty and the use of an interval forecast 
evaluation measure does not substantially influence the results reported herein. 
On the level of quantities, the measurement uncertainty was relatively small, in 
the sense that 86% of the forecast intervals either fully overlap or do not 
overlap at all with the interval of experimental values. Thus, the precise method 
chosen for calculating fractional hit-rates for the remaining 14% of the forecasts 
has only a minor effect in aggregate.  

4 The interpretation of HitRateProxy is not straightforward. While a perfectly 
calibrated 80% confidence forecast interval should give an 80% hit rate, the 
normatively correct hit rate on the proxy level is more complicated. A calcu
lation of the normatively correct hit rate would require knowledge about both 
the confidence levels and the dependencies between the quantities that form 
one proxy. 
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• CO2 in seals (Quantities 3d, 4d, and 6): CO2 in seals indicates some 
migration out of the primary storage formation, thus lower is 
considered positive: ξ = 1. 

With the same motivation as for HitRateP, i.e., that we do not have a 
single reference value but instead the empirical interval EI of reference 
values, we define our measure of optimism bias of P50 forecasts, 
denoted P50OptP, as follows (see again Fig. 3 for an illustration): 

P50OptP = ξ + (− 1)ξ HitFrac50
EIMax − EIMin 

Here, HitFrac50 is the overlap of values below P50 and the mea
surement, which formally can be expressed as: 

HitFrac50 = max(0,min(EIMax,P50) − EIMin)

A set of forecasts with a mean P50OptP higher than 0.5 indicates a 
tendency toward over-optimistic forecasts. For the special case where EI 
is zero, we give the value 0.5 if the P50 forecast also equals zero, and 
otherwise 0 or 1 depending on the direction of optimism. 

The presence of a large spread in the results on scales that are not 
naturally considered either linear nor logarithmic, render the use of 
mean values (arithmetic or otherwise) somewhat questionable. We 
therefore consider the median value as representative of the data, and as 
a measure of the error of the forecasts, we use the median absolute error 
(AE), where the absolute error is defined as: 

AE = |P50 − EIMean|

The median absolute error is a proper evaluation measure of P50 and 
gives an expectation of zero error for perfect estimates of P50. 

2.6. The protocol of the forecasting experiment 

The general structure of the forecasting experiment is illustrated in 
Fig. 1. More precisely, after a common preparation phase for finalizing 
the benchmark description (Nordbotten et al. 2022), a fully blind phase 
of three months started, with no direct communication between the 
various forecasting groups nor the experimental group allowed. All 
interaction between the forecasting and experimental groups (relating 
to technical issues, e.g. clarifications, missing data, or measurements) 
was arbitrated by one of the authors (Flemisch). Information deemed of 
general interest was broadcasted to all forecasting teams, otherwise 
bilaterally. The fully blind phase ended when forecasting teams sub
mitted their initial forecasts to the arbitrator. At this point, four groups 
submitted responses to the quantities forming the basis of this study. An 
online initial workshop was organized for all forecasting groups, where 
confidence in the forecasts was measured using questionnaires at three 

times: First, before any cross-group interaction was allowed, then 
following pair-wise interaction, and finally after full disclosure of results 
between all four groups. Thereafter a three-month double-blind syn
chronization phase followed, where knowledge was shared between the 
forecasting groups, while the experimental group and their results were 
still kept double-blind. Community interaction in the synchronization 
phase allowed the forecasting groups to assimilate the experiences, and 
also model the results of other groups into their own forecast. In 
particular, the synchronization phase included two additional, 
self-assembled workshops, culminating in the submission of final fore
casts before an in-person, collective workshop where forecasts and ex
periments were finally compared. During the synchronization phase the 
participants identified key differences in their modeling approaches, 
including the treatment of capillary entry pressure effects and choice of 
simulation grids. Ultimately, seven groups submitted responses to the 
quantities forming the basis of this study ahead of the final workshop. 
Before and during this final workshop, the confidence levels of the 
participants were again measured using questionnaires. Anonymized 
responses, both quantitative forecasts and questionnaire responses, are 
archived as supplementary information. 

2.7. Hypotheses 

For each of the four research questions, see Section 1, we formulated 
testable hypotheses. The directions of the hypotheses are based on what 
typically has been observed in other studies when asking for forecasting 
intervals and single-point forecasts (Halkjelsvik og Jørgensen, 2012). 

• Hypothesis 1: The groups’ final PI80s (80 % confidence forecast in
tervals) are, on average, too narrow to reflect an 80 % probability of 
inclusion, i.e., the hit rates tend to be statistically significantly lower 
than 0.8.  

• Hypothesis 2: The P50-forecasts are, on average, over-optimistic, i.e., 
there are more than 50 % of the forecasts on the optimistic (positive 
for CO2 storage) side of the empirical values. 

• Hypothesis 3: The calibration of the PI80s, defined as the correspon
dence between hit rate and confidence level, improves with group 
interaction and improvement-oriented work on the models. 

• Hypothesis 4a: The groups’ forecasts of proxy level hit rates (HitRa
teProxys) are too high to reflect the actual hit rates.  

• Hypothesis 4b: The research groups are more realistic about the other 
groups’ proxy level hit rates (HitRateProxys) than their own. 

3. Results 

To review the results, we first present the baseline hit rates for the 

Fig. 3. Examples of calculations of HitRateP and P50OptP for some quantity (horizontal axes). Simply speaking, the HitRateP is calculated as the overlap interval 
between the forecast and measurement (HitFrac80), divided by the width of the measurement interval (EIMax − EIMin). Similarly, P50OptP is calculated as the fraction 
of the measurement interval that is above (or below, for negative optimism direction), the submitted P50 values. 
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study. These are purely based on the submitted forecasts, as reported in 
depth in Flemisch (2024). From this context, we discuss each of the 
hypotheses posed in the Study Design section. 

3.1. Baseline hit rates 

Table 1 presents the baseline hit rates per quantity. The initial hit rate 
and bias are the hit rate and optimism bias of the initial forecasts in the 
fully blind phase before the interaction with other groups, i.e., before the 
first workshop (see Fig. 1). At this stage, we had forecast intervals from 
four groups only. The final hit rate and bias refer to the hit rate and bias of 
the final forecasts after the interaction between the groups and more 
time spent on improving the forecast models, i.e., just before the final 
workshop. Here, seven groups submitted forecast intervals. As described 
in the previous section, well-calibrated PI80 intervals would give an 80 
% hit rate (HitRateP). Similarly, unbiased P50 forecasts would give a 50 
% optimism proportion (P50OptP), while values higher than 50 % would 
suggest a tendency towards over-optimistic forecasts. 

The achieved hit rates in Table 1 demonstrate that the forecasted 
intervals, the PI80s, were not well-calibrated. Instead, the hit rates were, 
for nearly all quantities, lower than the normatively correct 80 %. The 
tendency to provide too narrow intervals was there initially and pre
vailed in the final forecasts, although an improvement can be observed 
with a mean hit rate increase from 26 % to 42 %. 

When analyzing the bias of the P50 forecasts, considering the 
technology-optimistic direction described earlier, we observe that the 
forecasts were not systematically biased toward optimistic estimates. If 
anything, they were slightly more likely to provide technology- 
pessimistic than technology-optimistic forecasts of the stated quantities. 

We now explore the four hypotheses stated in the conclusion of 
Section 2 in more detail. 

3.2. Overconfidence (Hypothesis 1) 

To test our Hypothesis 1, i.e., that the groups will tend to have too 
narrow forecast intervals, we repeated the analysis of the hit rates, now 
on a group level for the final forecast intervals. The results are shown in 
Fig. 4. As before, of the seven groups (denoted A-G) that gave the final 
forecasts, only four had valid responses in the first submission. 

As can be seen, the actual hit rates are much lower than the 
normatively correct 80 %, with means of the initial and final PI80s of 26 
% and 42 %, respectively. A one-sided t-test5 on observing a mean hit 
rate of 21 %, given that the actual mean hit rate is 80 %, gives a p-value 
< 0.001, i.e., the observed mean value is statistically significantly lower 
than 80 %. We consequently find support for our Hypothesis 1, i.e., 
support for a bias towards too narrow forecast intervals 
(overconfidence). 

The proportions of PI80 partially overlapping with the empirical 
intervals (EIs) were low, with 12 % overlapping intervals in the initial 
and 14 % in the final forecasts, i.e., the majority of empirical intervals 
were either fully inside or fully outside the forecasted intervals. Thus, 
despite the presence of measurement uncertainty in the ground truth, 
this does not significantly impact the results presented in Fig. 4. 

To get an impression of to what degree the groups’ final PI80s were 
too narrow, we added an analysis with the following two steps, where 
we:  

1. Increased the width of the PI80 intervals so that the HitRateP reached 
80 %, for the quantities that did not already have a HitRateP of 80 % 
or higher. The altered HitRateP was achieved by the following pro
cedure: For all the original P10 and P90 forecasts within the same 
quantity, adding a value c to the original P90 forecasts and 

subtracting the value min(c,P10) from the P10, to avoid negative 
adjusted P10 values. The value c was chosen so that the new 
HitRateP for the quantity was approximately 80 %. Each of the PI80 
intervals were consequently transformed into the intervals [min(0, 
P10 – c), P90 + c)].  

2. Calculated the relative increase in the width of the forecast interval 
as ((P90 + c) – min(0,P10 - c))/(P90 – P10). The forecast intervals of 
the (two) quantities where the PI80 intervals already had a HitRateP 
of 80 % were given a relative increase of 0. 

This analysis shows that the median increase in the width of the 
PI80s, across the quantities needed to achieve a HitRateP of 80 %, is 61 
%, i.e., that the intervals needed to be 1.6 times wider to achieve the 
normatively correct hit rate. However, we recognize that there is sig
nificant impact of algorithmic choices associated with “widening” 
forecast intervals, due to both non-linear scales and physical constraints 
(as an example, mass of CO2 for any quantity must both be positive and 
no more than the total injected mass of CO2 in the system). As such, we 
ascribe low confidence to the quantitative assessment (“1.6 times 
wider”), but nevertheless believe it is appropriate to qualitatively state 
that for the forecast interval to be well-calibrated, a substantial increase 
in width of forecast intervals would be needed. 

3.3. Optimism bias (Hypothesis 2) 

For the purpose of testing Hypothesis 2, i.e., that the groups will tend 
to have over-optimistic forecasts, we did a group-wise analysis of fore
cast bias, see Table 2. 

A one-tailed t-test of data in Table 2, assuming that the mean final 
P50OptP is 50 % or higher, gives a p-value of 0.99, i.e., no support for an 
optimism bias on the final forecasts. Indeed, of the 13 forecasted 
quantities, only four had forecasts that tended to be on the optimistic 
side. On the contrary, the data suggests that there was a tendency to
wards pessimism (p-value of 0.01) for the final P50 forecasts, and this 
might be an interesting hypothesis to consider in future studies. 

3.4. Effect of group interaction and model improvement (Hypothesis 3) 

To test Hypothesis 3, i.e., that the group interaction and model 
improvement-oriented work between the two workshops will improve 
the hit rates of the forecast intervals, we did an analysis per quantity, 
where we compared the initial and the final forecast intervals (PI80). 
The results are displayed in Fig. 5, both for comparable groups (the same 
four groups providing both the initial and the final PI80s) and for all 
groups with final PI80s. 

As can be seen, the calibration improved, as evaluated by that the hit 
rates are closer to the normatively correct 80 % for the final forecasts. 
This improvement is close to being statistically significant. A paired t- 
test of the difference gives a p-value of 0.06. 

An improvement in calibration from the first to the last submission 
can be caused either by wider PI80s (better awareness of the forecasting 
uncertainty) and/or by PI80s that are better centered around the ground 
truth values, i.e., improvement of the model to give less forecast error of 
the P50 forecasts. 

We found that the improvement in the calibration of the forecast 
intervals over time was a consequence of the improved accuracy of the 
models, with a median absolute error of the P50 forecasts reduced by 72 
% from the initial to the final submission. The forecast intervals were, on 
the other hand, not becoming more realistic. Instead, there was a ten
dency towards decreasing the intervals’ width, with the median PI80 
width reduced by 61 % from the initial to the final forecasts. The analyses 
of the change in forecast error and forecast interval width are provided 
in Appendix A. 

These results give support to Hypothesis 3, but does not support that 
improvement with group interaction is caused by group interaction 
leading to awareness of the tendency towards too narrow forecast 

5 Due to only four groups with valid interval forecasts in the initial stage, we 
do the statistical analysis only on the final forecasts. 
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intervals. It is instead likely to be a result of the improved accuracy of 
the models in response to feedback from the group interaction. 

3.5. The assessment of own and others’ forecasting ability (Hypotheses 4a 
and 4b) 

To test Hypothesis 4a, i.e., overconfidence in the hit rates of own 
forecasting intervals, and Hypothesis 4b, i.e., more realism in the 

assessment of the forecast intervals of other research groups than their 
own, we used the responses from the proxy-level self- and other- 
assessment questionnaires. The self-assessments were, as described 
earlier, recorded at various stages of the first group workshop and at the 
final workshop. Group members were also asked to individually assess 
the forecasts of other groups during the final workshop, which we refer 
to as external assessment. 

The results are shown in Fig. 6, in terms of the mean of the groups’ 
assessments of hit rate (on the proxy level) relative to their own and the 
other groups’ PI80s. The pairwise disclosing was a process where the 
groups discussed their results in pairs, while the disclosing of all fore
casts, which happened after the pairwise interactions, was a presenta
tion of all groups’ forecasts. 

3.6. The self-assessment 

The initial self-assessed (forecasted) hit rate (55 %) is statistically 
significantly higher than the mean actual hit rate at that stage (17 %). A 
one-sample t-test comparing the forecasted with the actual hit rate gives 
a p-value of 0.02. Although the mean forecasted hit rate is too high for 

Fig. 4. Hit rates of the first and the final P80 forecast intervals.  

Table 2 
Evaluation of the bias of the P50-values, per group.  

Groups Initial P50OptP Final P50OptP 

A 22% 31% 
B 46% 26% 
C – 54% 
D 39% 35% 
E 65% 46% 
F – 32% 
G – 32% 
Mean 43% 37%  

Fig. 5. Change in hit rates from first to final forecasts. The mean initial hit rate across all quantities was 26%, while the mean final hit rate was 42%. Limiting the 
analysis to only the groups that submitted both initial and final forecasts, the mean final hit rate was 43%. 
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the second and third assessments, these were not statistically signifi
cantly different from 17 % (p = 0.52 and p = 0.16).6 This may partly be 
due to fewer responses regarding these two assessments compared to the 
initial self-assessment, as the difference (effect size) is substantial even 
after the pairwise and full disclosure of the other groups’ forecasts. The 
final assessments of hit rates were also statistically significantly too 
high, with a p-value of 0.002, to reflect the actual hit rate of 23 %. 

As reported earlier, the groups improved the forecast accuracy of 
their models between the first and the final workshop. A corresponding 
belief in improved forecasting accuracy may have contributed to the 
strong increase in the mean self-assessed hit rate of the proxies from 33 
%, provided as the last self-assessment at the initail workshop, to 65 %, 
provided as the final self-assessment before the final workshop. The 
mean actual hit rate on the proxy level, in spite of improved models, 
was, however, just 23 %. 

In total, the self-assessed (forecasted) proxy level hit rates show a 
substantial overconfidence in own ability to give forecast intervals. The 
results give support for our Hypothesis 4a, that their assessed hit rates, 
on the proxy level, are too high to reflect the actual hit rates. 

We remark that for the data collected in this study, no groups ever 
scored a partial hit rate (values other than 0 or 1) at the proxy level, thus 
the presence of measurement uncertainty does not impact the results of 
the calculated actual hit rates on the proxy level. 

As can be seen in Fig. 6, the repeated self-assessments, following the 
pairwise and total disclosure of the groups’ results, during the initial 
workshop reduced the confidence in one’s own forecasts. This may be 
attributed to the realization by some groups that their own forecasts 
contained critical flaws, an assertion supported by free-text responses in 
the questionnaires, or just by seeing that their own forecasts diverged 
from other groups’ forecasts. 

The final self-assessment shows that the groups, on average, would 
have a hit rate of 65 %. This value is not far from the initial self- 
assessment of 55 %. As argued above, it is likely that the groups’ 
improvement of the models and their corresponding belief in improved 
accuracy of the forecasts led to the observed decrease in forecast interval 
widths. This decrease in interval width, combined with an expectation of 
increased forecasting accuracy seems to, on a self-assessment level, 
balance such that the participants had an essentially similar expectation 
of how well their proxy level forecast intervals would match the ground 
truth. 

3.7. The assessment of the other groups 

The group members assessed, on average, that the other groups 
would perform worse than themselves, i.e., they forecasted a hit rate of 

65 % of their own and a hit rate of 47 % for the other groups. Both are 
higher than the actual mean hit rate of 23 %, and all groups had higher 
self-assessed hit rates than actual hit rates. The difference between the 
self-assessment and the other assessment is close to being statistically 
significant, with a p-value of 0.06. The data consequently provides some 
support for our Hypothesis 4b, i.e., the research groups were more 
realistic about the calibration of the forecasts of other research groups 
than their own. 

4. Discussion 

Our results present answers to our research questions stated in the 
introduction, and can be summarized as follows:  

1) The actual hit rate of the PI80s (80 % confidence forecast intervals) 
of the participating groups was substantially lower than the stated 
confidence level of 80 %, i.e., the forecast intervals were too narrow, 
suggesting overconfidence in own forecasts. 

2) We found no evidence of systematic bias toward technology opti
mism in the P50 forecasts, but rather towards technology pessimistic 
forecasts.  

3) When given a chance to provide updated final forecasts after initial 
forecasts and a period of community interaction, the forecasts 
became more accurate, but the width of the forecast intervals did not 
increase as would be needed for the PI80s to correctly capture the 
physical ground truth. Instead, the median width of the forecasting 
intervals decreased. Overall, the overconfidence in their forecasts 
was not significantly mitigated by group interaction.  

4) When holistically assessing their own forecast intervals, in terms of 
expected hit rate on the proxies, the participants provided less 
confident (and probably more realistic) assessments but still had too 
high confidence in the forecast intervals. A similar, but weaker, 
tendency toward too high confidence in the forecast intervals was 
found when the groups assessed the other groups’ forecast intervals 
after all groups had submitted their final forecasts. 

Seen as a whole, the results show a clear tendency of overconfidence 
among the participants, both with respect to their own ability to provide 
realistic forecasts, as well as on behalf of the community. While we limit 
our discussion to the CO2 storage community as represented in this 
study, we emphasize that these trends are consistent with expert fore
casts in a broad range of disciplines (see Savage et al., 2021, for a recent 
discussion). 

Our survey questions did not ask directly for a justification of how 
the various groups arrived at their forecast intervals. In an attempt to 
better understand why the forecast intervals were too narrow, we 
therefore conceptualize the most common approach to developing a 
forecast for a complex system in terms of the following four steps (Smith, 
2013): First, expert judgment is used to define the scope of the study, 
primarily in terms of physical processes to consider, computer code to 
apply, and what physical and numerical parameters to emphasize in a 
sensitivity study. Second, an uncertainty quantification (UQ) study is 
conducted using an ensemble of computer simulations following the 

Fig. 6. The mean of the groups’ assessments of proxy level hit rate of their own and the other groups’ P10-P90 prediction interval (HitRateProxy).  

6 The analysis of the forecasted and the actual hit rates are based on the four 
submitting groups for the first workshop and all seven groups for the final 
workshop. The results do, however, not change much if we only include the 
initial four groups in the final workshop. This gives a final self-assessment of a 
mean forecasted hit rate of 63% instead of 65% and a final mean actual hit rate 
of 25% instead of 23%. 
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scope identified in the first step. Third, the results of the computer 
simulations are assessed statistically to provide a set of forecasts. In this 
final step, expert knowledge can again be applied to compensate for 
known deficiencies introduced in the first three steps. Common exam
ples of such deficiencies are: a too limited scope of study; poorly defined 
prior UQ distributions; limited accuracy of computer simulation tools; 
and/or the possibility of user errors. 

Based on the responses from the participating groups, only a single 
group deemed their computer simulations completely inadequate, and 
systematically augmented the UQ with expert knowledge in the third 
step above (identified as Group F in Fig. 2, see Section 2). The remaining 
groups followed for most proxies7 an approach where expert knowledge 
was applied only in the first step, and the UQ results in the second step 
were reported using elementary statistics (P10, P50 and P90 values of 
the simulation ensemble). We will refer to this approach, where no 
expert knowledge is used in the third step, as an “algorithmic uncer
tainty quantification” (AUQ). The groups persisted in using an AUQ, 
even when confronted with substantially deviating forecasts from the 
other groups during the workshops. Indeed, despite the participants 
having full access to initial forecasts from all other groups during the 
second half of the study, groups did not indicate that they had integrated 
deviating forecasts into their own final forecast. We therefore observe 
that, within the CO2 storage community, there is a tendency to provide 
too much confidence in AUQ based on an ensemble of computer simu
lations. As a corollary to this, there is hesitation to use external infor
mation to modify the forecasts provided by an AUQ. 

Interestingly, several of the participations were aware that their AUQ 
approach was too limited to provide an accurate P10-P90 forecast in
terval. This is evidenced by free-text responses to the questionnaire used 
to collect the holistic self-evaluation, where one participant states that 
“There are large deviations in the numerical results for most quantities, 
suggesting that they are very sensitive to details in both geometry and how the 
physics are represented. I assume that the experimental results may therefore 
be highly influenced by small heterogeneities/leakage paths that we do not 
capture in the simulations. So, I stay rather unconfident except for the 
pressure results maybe.” Indeed, one participant questions whether such 
systems may be almost impossible to forecast: “It is quite eye-opening how 
different the results are from different groups. Just slightly different model 
parameters and how interfaces are handled lead to very different results. This 
brings into question when this can really be modeled at the field scale. The 
sparse data and uncertainty quantification become very important since these 
predictions are very uncertain even with this well-characterized experiment.” 

Our interpretation is that in this context of a complex geophysical 
system, coupling between multiple nonlinear processes may lead to 
large variations in model output within only small variations in model 
input – indeed the hallmark of ill-posed problems. This interpretation is 
being probed in a separate ongoing comparison project (Nordbotten 
et al., 2024b). Our study has shown that while the carbon storage 
community is acutely aware of this challenge, there nevertheless re
mains a strong tendency to understate the uncertainty of storage fore
casts. To address this issue, we make the following observations and 
recommendations:  

1) Most groups were averse to augmenting the AUQ with human expert 
knowledge. In view of the free-text questionnaire responses, we 
expect that explicitly requesting a post-AUQ human assessment, in 
addition to the AUQ, may provide broader forecast intervals.  

2) While this work contains community interaction, which clearly 
improved the accuracy of the provided P50 forecasts, the partici
pants did not assimilate the model results of other groups into their 

own P10-P90 forecast intervals. An additional group stage to develop 
a “consensus community forecast”, including that of forecasting in
tervals, may be a mechanism to increase cross-team engagement and 
learning.  

3) The substantial time and effort required to construct an efficient 
computational model may create a bias toward overconfidence in the 
model outcomes which, in turn, may undermine a full appreciation 
of the limitations and weaknesses of computer simulations as rep
resentations of complex physical systems. A discussion of this risk at 
the start of the forecasting study may be beneficial. 

While our study has focused exclusively on forecasts of geologic 
carbon storage, the lessons learned are likely applicable to other sub
surface technologies such as nuclear waste disposal (Jing et al., 1995; 
Birkholzer et al., 2019; Cvetkovic et al., 2004), underground gas storage 
(Conley et al., 2016) and geothermal energy extraction (Deichmann and 
Giardini, 2009). Like carbon storage, these technologies are faced with 
risks associated with fluid migration via geologic features like caprocks, 
faults and fractures or man-made features like existing wells (Kang et al., 
2014). Also, like carbon storage, they incur a risk of triggering earth
quakes—a risk that has received increased societal scrutiny (National 
Research Council, 2013; Grigoli et al., 2017). We suggest that increasing 
the reliability of UQ across subsurface technologies likely will require 
the participation of multiple groups, cross-examination of the forecast 
intervals from disparate models, and formally incorporating expert 
knowledge into the algebraic, model-based UQ outcomes. 

Nomenclature 

Some words used in this text have different connotations in different 
research fields. We therefore clarify our use of key terms below: 

• Forecast (as opposed to prediction) emphasizes the reliance on nu
merical simulation tools.  

• Forecast Accuracy: Measurement of the deviation between the P50 
forecast and the ground truth.  

• Forecast bias: Indicates any systematic bias in P50 forecast relative to 
the ground truth.  

• Forecast interval: The numerical values bounded below by P10 
(forecasted 10 % probability of not being exceeded) and above by 
P90 (forecasted 90 % probability of not being exceeded).  

• Confidence level: The stated or implied expectation (probability) 
that the forecast interval includes the ground truth value.  

• Hit rate: The actual rate of inclusion of the ground truth within the 
forecast interval.  

• Calibration: The extent to which the hit rate matches the stated 
confidence level of the forecast interval. Forecast intervals as used in 
this study (P10 to P90) are well-calibrated if the hit rate is 80 %.  

• Overconfidence: The situation where the hit rate is lower than the 
confidence level (too narrow forecast intervals).  

• Proxies: Aspects of the ground truth experiment that are expected to 
correlate to measures of success for a carbon storage operation (six in 
total)  

• Quantities: Actual numerical quantities involved in forecasting the 
proxies (thirteen in total) 
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Appendix A. Analysis of the reason for improved calibration over time 

The calibration of the forecasts improved (hit rates closer to the normatively correct 80 %) from the first to the final forecasts. This analysis 
examines whether this improvement is likely to have been caused by a wider PI80s (better awareness of the forecasting uncertainty) or PI80s better 
centered around the empirical values, i.e., models with less forecast error. The latter would be indicated by less error of the P50 values. 

Table A1 shows the interval width of the PI80 per quantity, with percentage change. A positive (negative) value suggests an interval increase 
(decrease) from the first to the final forecast. As reported in the main part of this article, the initial interval forecasts were much too narrow to reflect 
the true uncertainty. To give support for the first explanation, i.e., better awareness of the forecasting uncertainty from the initial to the final forecasts, 
there should be a substantial increase in interval widths. 

Table A1 shows that seven of the thirteen interval widths decreased over time, and the middle observation (median) is negative (61 % decrease in 
interval width). This means that the increase in hit rate can consequently hardly be explained by wider forecast intervals, as most of the forecast 
intervals width decreased substantially. The relative change is not statistically significantly different from zero with a p-value 0.31. 

The alternative explanation is that the error of the P50 forecast decreased over time and, for this reason, improved the hit rates. The P50 forecast 
error, measured as the median absolute error, is displayed in Table A2. 

With the exception of 3a and 3b, all P50-values improved, some of them very much, with respect to forecast error from the initial to the final 
submission. A paired t-test of the relative change of MdAE gives that the values are statistically significantly lower than 0 (p-value < 0.001 and t-value 
of − 4.56). 

This suggests that the improvement in the calibration of the forecasting intervals over time was a result of improved forecast accuracy rather than 
awareness of what would be a well-calibrated 80 % forecast interval and the need to increase the interval width to reflect an 80 % inclusion rate. 

In total, the data gives support to an improvement in the calibration of the forecast intervals over time, but only as a consequence of improved 
accuracy.  

Table A1 
Mean forecast interval width of PI80 per quantity.  

Quantity Median interval width of initial forecast Median interval width of final forecast Relative change of median interval width* from first to final forecast 

1a 2.32E+03 1.26E+02 − 95% 
1b 2.13E+03 1.03E+02 − 95% 
2 1.16E+04 5.00E+02 − 96% 
3a 3.57E-04 1.19E-03 233% 
3b 3.72E-06 8.52E-05 2187% 
3c 1.29E-03 1.65E-03 28% 
3d 2.61E-04 3.88E-04 48% 
4a 7.81E-04 0.00E+00 − 100% 
4b 3.11E-04 0.00E+00 − 100% 
4c 8.26E-04 3.25E-04 − 61% 
4d 7.86E-04 3.37E-06 − 100% 
5 4.32E+03 6.75E+03 56% 
6 3.33E-05 1.90E-04 470% 
Median   ¡61%  
* The relative interval width change is calculated as (Median interval width of final submission – Median interval width of first submission)/Median interval width of 

first submission.  

Table A2 
Median absolute forecast error (MdAE) over time per quantity.  

Quantity MdAE of first Submission MdAE of final submission Relative change of MdAE* from first to final submission 

1a 5.96E+03 4.54E+02 − 92% 
1b 3.07E+03 5.04E+02 − 84% 
2 3.13E+04 3.50E+03 − 89% 
3a 6.07E-04 9.19E-04 52% 
3b 0.00E+00 9.15E-05 – 
3c 2.35E-03 9.41E-04 − 60% 
3d 2.96E-04 1.53E-04 − 48% 

(continued on next page) 
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Table A2 (continued ) 

Quantity MdAE of first Submission MdAE of final submission Relative change of MdAE* from first to final submission 

4a 6.04E-04 0.00E+00 − 100% 
4b 2.65E-04 0.00E+00 − 100% 
4c 1.76E-03 7.06E-04 − 60% 
4d 5.67E-04 1.80E-07 − 100% 
5 1.38E+04 8.75E+03 − 36% 
6 2.47E-04 2.28E-04 − 8% 
Median   ¡72%  
* The relative change of MdAE is calculated as (MdAE of final submission – MdAE of first submission)/MdAE of first submission. Quantity 3b had MdAE of zero and 

the relative change could not be calculated. 
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Gunning, J., Hajibeygi, H., Jackson, S.J., Jammoul, M., Karra, S., Li, J., Matthäi, S.K., 
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