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Abstract
Ensemble-based optimization (EnOpt), commonly used in reservoir management, can
be seen as a special case of a natural evolution algorithm. Stein’s lemma gives a new
interpretation of EnOpt. This interpretation enables us to study EnOpt in the con-
text of general mutation distributions. In this paper, a non-Gaussian generalization of
EnOpt (GenOpt) is proposed, where the control gradient is estimated using Stein’s
lemma, and the mutation distribution is updated separately via natural evolution. For
the multivariate case, a Gaussian copula is used to represent dependencies between
the marginals. The correlation matrix is also iteratively optimized. It is shown that
using beta distributions as marginals in the GenOpt algorithm addresses the trunca-
tion problem that sometimes arises when applying EnOpt on bounded optimization
problems. The performance of the proposed optimization algorithm is evaluated on
several test cases. The experiments indicate that GenOpt is less dependent on the cho-
sen hyperparameters, and it is able to converge more quickly than EnOpt on a reservoir
management test case.

Keywords Black-box optimization · Natural evolution · Ensemble optimization ·
Gaussian copula · Reservoir management

1 Introduction

Ensemble optimization (EnOpt) is a widely studied topic in the reservoir management
community since its introduction by Lorentzen et al. (2006) and Chen et al. (2009).
EnOpt is a gradient estimation method that uses random draws from a Gaussian dis-
tribution to approximate the gradient based on the function values of the sample. The
performance of EnOpt depends strongly on the choice of covariance matrix used to
sample the control vector. Several methods for iteratively adapting the covariance
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matrix have been developed and tested. Fonseca et al. (2013) employed the covariance
matrix adaptation evolution strategy (CMA-ES) developed by Hansen and Ostermeier
(2001), where a subset of sampled controls is used to update the covariance matrix at
each iteration during the optimization. Another approach was developed by Stordal
et al. (2016), where they showed that EnOpt is a special case of the natural evolution
strategy (NES) algorithm presented by Wierstra et al. (2008), and that the gradi-
ent approximation used in EnOpt converges to the natural gradient (Amari 1998) of
the expected objective function. Based on that, a natural gradient expression for the
covariance was derived and used to update the matrix.

The EnOpt gradient may be interpreted as the derivative of the expected objective
function with respect to the mean of the Gaussian distribution from which the random
sample is drawn (Stordal et al. 2016). Additionally, Stein’s lemma (Stein 1981) pro-
vides a second interpretation, showing that the EnOpt gradient is the expected gradient
of the objective function (as opposed to the gradient of the expected objective func-
tion). The two interpretations coincide because the gradient of the expected function
is taken with respect to a location parameter.

This paper proposes a newmethod where the gradient estimate from Stein’s lemma
is used to update the control vector, while the mutation gradient (gradient of NES)
is used to update the sampling distribution. Furthermore, by introducing a Gaussian
copula, it is shown that it is possible to decouple the update of themarginal distributions
and the joint distribution while still imposing a dependence structure between the
variables in the control vector. The correlation matrix in the copula is adapted either
by the CMA strategy or the mutation gradient. In this manner, a novel simultaneous
update for the multivariate distribution and the control vector is presented. It is also
shown that using bounded distributions (such as the beta distribution) can be beneficial
for optimization problems where the control vector is constrained within upper and
lower limits.

Non-Gaussian sampling strategies of the control vector are not a new conceptwithin
EnOpt-relatedmethods.Wierstra et al. (2014) suggest that using aCauchy distribution,
which exhibits heavy tails, might be beneficial in the case of multi-modal objectives.
Also, Fonseca et al. (2017) points out that it is not necessary that the ensemble be drawn
from a Gaussian distribution, while Sarma and Chen (2014) utilized a Sobol sequence
to approximate the gradient rather than standard Monte Carlo sampling. Ramaswamy
et al. (2020) proposed sampling based on optimal supersaturated designs, and they also
compared several different sampling strategies. Lastly, Zhou andHu (2014) formulated
an evolution strategy based on the exponential family of distributions. However, their
experimental results were restricted to Gaussian sampling. None of the references
above suggest changing how the samples are used to estimate the average gradient,
which is the approach taken here.

The outline of this paper is as follows. In Sect. 2, the connection between EnOpt and
Stein’s lemma is presented without assuming Gaussianity. In Sect. 3 the new frame-
work is applied to the exponential family of mutation distributions, where the update
equations of both the control vector and the distribution parameters are derived. In
Sect. 4, explicit equations are derived for the Gaussian and the beta distribution. It is
also shown how the beta distribution will be used to address the sample truncation
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problem for bounded optimization. In Sect. 5 a multivariate extension using Gaus-
sian copulas is introduced. This eventually leads to the GenOpt (Generalized EnOpt)
algorithm. In Sect. 6 the new algorithm is applied to several test cases, using beta dis-
tributions as marginals in combination with a Gaussian copula. The paper ends with
a summary and discussion in Sect. 7.

2 Interpretation of EnOpt Using Stein’s Lemma

Consider the objective function J (x) : R
d → R and a Gaussian random variable

X ∼ N (μ,�). In Stordal et al. (2016) it was shown that the EnOpt gradient, given
by

1

N

N∑

n=1

J (Xn)(Xn − μ), Xn ∼ N (μ,�), (1)

is a special case of NES (Wierstra et al. 2008; Sun et al. 2009) and that the gradient
approximation in Eq.1 converges almost surely, as N → ∞, to the natural gradient
(Amari 1998) of the expected objective function with respect to location parameter μ.
That is,

1

N

N∑

n=1

J (Xn)(Xn − μ) −−−−→
N→∞ Cov(J (X), X) = �∇μE[J (X)]. (2)

It is possible to reduce the variance of the gradient estimate of EnOpt by subtracting
a constant b from J (Xn). In particular, the choice b = J̄ = N−1∑N

n=1 J (Xn) often
reduces the variance of the estimate (Stordal et al. 2016). However, this introduces a
bias that can be corrected by replacing N with N − 1 in Eq.1.

Equation2 shows that the EnOpt gradient can be interpreted as a gradient of an
expected, or smoothed, objective function, where the gradient is taken with respect to
the mean of the Gaussian distribution. Stein’s lemma offers a second interpretation of
the EnOpt gradient. It states that if X is a Gaussian random variable with mean μ and
covariance matrix � and both E[J (X)(X − μ)] and E[∇x J (X)] exist, then

Cov(J (X), X) = �E[∇x J (X)]. (3)

The comparison of Eqs. 2 and 3 shows that the EnOpt gradient also converges to the
expected gradient E[∇x J (X)], pre-multiplied with �. The matrix � plays the role of
the inverse of the Fisher information matrix for the natural gradient (see e.g. Stordal
et al. 2016), whereas, in the EnOpt community, it is viewed as a preconditioning
matrix that may be removed by multiplying the left-hand side of Eq.2 with �−1 (or a
sampling counterpart).

The identity

∇μE[J (X)] = E[∇x J (X)], (4)
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is due to the Gaussian assumption on X , because μ is a location parameter. For a
general random variable X ∈ � with density f (x |θ), where θ are parameters of the
pdf, Stein’s lemma can be expressed as

E[∇x J (X)] = −E[J (X)∇x log f (X |θ)], (5)

assuming E[|∇x J (x)|] < ∞ and f (x |θ)J (x) → 0 as x → S, where S is
the boundary of �. The validity of Eq.5 can be shown by utilizing the identity
∇ f (x |θ) = f (x |θ)∇ log f (x |θ) and integration by parts

E[∇ J(X)] =
∫

�

∇ J (x) · f (x |θ)d�,

=
∫

�

∇(J(x) f (x |θ))d� −
∫

�

J (x)∇ f (x |θ)d�,

=
∫

S
J (x) f (x |θ)︸ ︷︷ ︸

= 0 at S

·n̂dS −
∫

�

J (x)∇ log f (x |θ) · f (x |θ)d�,

= −E[J(X)∇ log f (X|θ)],

(6)

where n̂ is a unit normal vector to S. In addition, the gradient of E[J (X)]1 with regard
to θ , referred to as the mutation gradient, is given by

∇θE[J (X)] = E[J (X)∇θ log f (X |θ)], (7)

and the natural gradient is given by

∇̄θE[J (X)] = I (θ)−1∇θE[J (X)], (8)

where I (θ) = E[∇θ log f (X |θ)∇�
θ log f (X |θ)] is the Fisher informationmatrix. Nat-

ural gradients have been shown to improve optimization compared to vanilla gradients
(Amari 1998). The reason for this is that the θ -space is not Euclidean, but Rieman-
nian. In that manner, I (θ) is the metric tensor, making the natural gradient invariant of
the parameterization (see Amari and Douglas 1998 for an illustrative example). The
equivalence given in Eq.4 arises from the identity

∇x log f (x |μ) = −�−1(x − μ) = −∇μ log f (x |μ); (9)

hence, the expected gradient coincides with the mutation gradient if ∇x log f (x |μ) =
−∇μ log f (x |μ) in general.

To summarize, it is possible to formulate two generalizations of EnOpt for a given
density f (x |θ), one using Stein’s lemma and one using mutation. In the Gaussian
case, they both coincide with the original EnOpt. However, if f (x |θ) does not have a
location parameter, the control, x , must be connected to the distribution parameters for

1 The term “mutation gradient” is used to refer to the gradient of E[J (X)] with respect to the parameters
θ of the mutation distribution f (x |θ).
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mutation. A good choice could be the mean or the mode of the distribution. However,
this paper suggests a different approach where the two interpretations of EnOpt are
combined into a single optimization algorithm. The expected gradient from Stein’s
lemma is used to update the current control xk (where k is the iteration index), while
themutation gradient is used to update the parameters of the sampling distribution (θk ).
The next section focuses on the exponential family of distributions, which includes
the Gaussian distribution as a special case. The algorithms are presented in univariate
form, with a trivial extension to the multivariate case if the variables are independent.

3 Exponential Family of Mutation Distributions

Consider the univariate exponential family of probability densities of the form

f (x |θ) = h(x) exp
(
η(θ)�T (x) − A(θ)

)
, (10)

where θ ∈ R
m is a vector of parameters. In general, T : R → R

m and η : Rm → R
m

are both vector functions, while A(θ) and h(x) are scalar functions. The density is
defined on the interval (a, b), where a and b could be±∞. The objective is tominimize
the function J (x), using samples from the density in Eq.10 to approximate the gradient
via Stein’s lemma. Inserting Eq.10 into Eq.5 yields

E[∂x J (X)] = −E
[
J (X)

(
∂xh(X)

h(X)
+ η(θ)�∂x T (X)

)]
, (11)

where h(x) exp
(
η(θ)�T (x)

)
J (x) → 0 as x → a or b and E[|∂x J (x)|] < ∞ or

h(x) exp
(
η(θ)�T (x)

) → 0 if a and b are finite (Landsman and Nešlehová 2008). A
Monte Carlo approximation of the expectation in Eq.11 yields a generalized version
of EnOpt for exponential distributions. The update equation for x is given by

xk+1 = xk + αx
1

N − 1

N∑

n=1

(
J (Xn) − J̄

) (∂xh(Xn
k )

h(Xn
k )

+ η(θ)�∂x T (Xn
k )

)
, (12)

where αx is the step size. Note that J is centered with J̄ in Eq.12, which is possible
without changing the expectation in Eq.11, since it only requires that f (x |θ) evaluated
at x = a and b is the same. However, then N must be replaced with N − 1 as before.

It is also possible to minimize L(θ) ≡ E[J (X)] = ∫
J (x) f (x |θ)dx with respect

to θ using mutation. The mutation gradient is

∇θ L(θ) = E
[
J(x)

(
∇θη(θ)�T (X) − ∇θ A(θ)

)]
, (13)

with corresponding natural gradient

∇̄θ L(θ) = I (θ)−1E
[
J(x)

(
∇θη(θ)�T (X) − ∇θ A(θ)

)]
, (14)
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where

I (θ) = E
[(

∇θη(θ)�T (X) − ∇θ A(θ)
) (

∇θη(θ)�T (X) − ∇θ A(θ)
)�]

. (15)

At iteration k, a sample {Xn
k }Nn=1 is drawn from f (x |θk) and used in a Monte Carlo

approximation of Eq.14 to update θ . The update equation for θ then reads

θk+1 = θk − αθ

1

N − 1
I (θ)−1

N∑

n=1

(
J(Xn

k ) − J̄
) (∇θη(θk)

�T (Xn
k ) − ∇θ A(θk)

)
.

(16)
In other words, it is possible to update the control via Eq.12 and update the muta-
tion distribution via Eq.16. In the following section, a few examples of different
distributions are presented.

4 Example of Distributions

4.1 Gaussian Distribution

As a special case, consider the univariate Gaussian density with known σ . The density
can be written on the form of Eq.10 with

η(θ) = μ

σ
, h(x) =

(√
2πσ 2

)−1
exp(−x2/(2σ 2)),

T (x) = x

σ
, A(θ) = μ2

2σ 2 ,

(17)

so that

∂xh(x)h(x)−1 = −x/σ 2, η(θ)∂x T (x) = μ

σ 2 , (18)

and Eq.12 (with centering of J ) becomes

xk+1 = xk − α
1

N − 1
σ−2

N∑

n=1

(
J (Xn

k ) − J̄
) (

Xn
k − xk

)
. (19)

In the same manner, Eq.16 can be used for the parameter μ with ∂θ A(θ) = μ

σ 2 and

∂θη(θ) = σ−1 together with I (θ) = σ 2 to get (with centering of J )

μk+1 = μk − α
1

N − 1
σ−2

N∑

n=1

(
J (Xn

k ) − J̄
) (

Xn
k − μk

)
. (20)

Equations19 and 20 show that the update for x and μ coincide. However, this is not
the case for a general distribution, as shown in the next section. Furthermore, σ 2 may
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also be updated at each iteration using the natural gradient in order to accelerate the
convergence significantly (see e.g. Stordal et al. 2016)

σ 2
k+1 = σ 2

k − α
1

N − 1

N∑

n=1

(
J (Xn

k ) − J̄
)
((Xn

k − μk)
2 − σ 2

k ). (21)

4.2 Beta Distribution

The beta distribution is a well-known distribution defined on a bounded interval with
two parameters θ = [α, β]�. The density is given by

f (x |θ) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1, (22)

where � is the gamma function. The exponential parameterization reads

η(θ) = [α − 1, β − 1]�, h(x) = 1, T (x) = [log(x), log(1 − x)]�,

A(θ) = log�(α) + log�(β) − log�(α + β),

I (θ) =
[
∂αψ(α) − ∂αψ(α + β) −∂βψ(α + β)

−∂βψ(α + β) ∂βψ(β) − ∂βψ(α + β)

]
,

where ψ is the digamma function. The update Eqs. 12 and 16 for the beta distribution
are then

xk+1 = xk + αx
1

N − 1

N∑

n=1

(
J (Xn

k ) − J̄
) (αk − 1

Xn
k

− βk − 1

1 − Xn
k

)
, (23)

θk+1 =
[

αk

βk

]
− αθ

1

N − 1
I (θ)−1

N∑

n=1

(
J (Xn

k ) − J̄
)

([
log(Xn

k )

log(1 − Xn
k )

]
−
[

∂αA(θk)

∂β A(θk)

])
, (24)

where

∂αA(θk) = ψ(αk) − ψ(αk + βk),

∂β A(θk) = ψ(βk) − ψ(αk + βk).

Often it is of interest to compute the gradient in a region around the current control,
[xk − ε, xk + ε]. It is possible to define a beta distribution on an arbitrary interval.
However, this is equivalent to sampling Xk ∼ Beta(αk, βk) ∈ [0, 1] and then applying
the linear transformation Yk = xk + 2ε(Xk − 1

2 ). The domain of the new random
variable Yk is then [xk − ε, xk + ε], and the gradient in Eq.23 is re-scaled by a factor
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Fig. 1 The differences of the transformation defined in Eq.26 (to the left) and Eq.27 (to the right) when
the current control xi (red dot) lies close to the upper border, b. An arbitrary objective function J (x) is
illustrated as the dark-blue curve. The lower and upper control bounds are shown on red

(2ε), giving

E[∂yk J (Yk)] = −(2ε)−1E
[
J
(
xk + 2ε(Xk − 1

2
)

)(
∂θη(θ)�T (Xk) − ∂θ A(θ)

)]
.

(25)

4.3 Bounded Optimization with the Beta Distribution

Optimization problems are often subject to constraints in the form of bounds, such that
x ∈ [a, b]. In the original EnOpt formulation, where the ensemble is drawn from a
Gaussian distribution, some of the ensemble members might lie outside of the allowed
region. The common way to deal with this problem is to truncate those members at the
border, leading to a sampling bias in the gradient estimate. This sampling bias can be
large when x is located close to one of the bounds. However, as the beta distribution is
bounded on an interval [0, 1], this problem can be eliminated. Consider the following
transformation of the random variable X

�k(X) = xk +
(
X − 1

2

)
· min (2ε, b − a) . (26)

�k(X) is the same transformation as in Eq.25, except that if the sampling region 2ε
is larger than the allowed interval b − a, the sampling region is set to be b − a. If the
lower or upper bounds of the transformed ensemble �k(X) are located outside of a
or b, it should be translated to lie within the allowed region. This can be achieved by
adding the following two terms to the transformation in Eq.26

Y k = �k(Xk) + max (0, a − (xk − ε)) − max (0, (xk + ε) − b) . (27)

The differences in the transformations in Eqs. 26 and 27 are illustrated in Fig. 1, where
the current control xk (red dot) lies close to the upper bound.
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5 Multivariate Extension and the GenOpt Algorithm

The algorithms from the previous section were defined for univariate distributions.
Many optimization problems of interest are multivariate, and EnOpt is defined for a
multivariate Gaussian distribution.Multivariate EnOpt is discussed at length in Stordal
et al. (2016), where the mean and covariance matrix are updated as

μk+1 = μk − αx
1

N − 1

N∑

n=1

(
J (Xn

k ) − J̄
)
(Xn

k − μk), (28)

�k+1 = �k + αθ

1

N − 1

N∑

n=1

(
J (Xn

k ) − J̄
)
((Xn

k − μk)(X
n
k − μk)

� − �k). (29)

Alternative multivariate distributions exist, such as the multivariate extension of
the beta distribution, the d-dimensional Dirichlet distribution, with density

f (x |θ) =
�
(∑d

j=1 α j

)

∏d
j=1 �(α j )

d∏

j=1

x
α j−1
j ,

d∑

j=1

x j = 1. (30)

However, the constraint
∑d

j=1 x j = 1makes the distribution complicated to use. Also,
the covariance between xi and x j is given by

Cov(xi , x j ) = − αiα j

(
∑d

k=1 αk)2(
∑d

k=1 αk + 1)
, (31)

which is necessarily negative since each αi > 0. Hence, the Dirichlet distribution
seems unfit as a mutation distribution for optimization. An alternative is the zero-mean
multivariate Laplace distribution of dimension d with density given by

f (x |θ) = 2

(2π)d/2|�|1/2
(
x��−1x

2

)
Kd(

√
2x��−1x), (32)

where Kd is the modified Bessel function of the second kind, which makes
differentiation with regard to x or � intractable.

Here, a more general approach is taken where one uses univariate distributions for
each component of the control vector and a Gaussian copula with correlation matrix
R to define the dependence structure implicitly. The next subsection will cover the
basics of Gaussian copulas and how to sample from them.

5.1 The Gaussian Copula

Given a random vector, X = (X1, . . . , Xd), with continuous marginal cdf’s Fi (xi |θi ),
the copula of X is defined as the joint distribution of the uniform variables

123



Mathematical Geosciences

Fig. 2 The sampling process of one single draw, xi (red dot), of the multivariate distribution (blue contour
map) in Eq.34 with two beta distributions as marginals. Left panel: Shows the sample drawn fromN (0,R).
Middle panel: Shows the distribution with uniformmarginals after applying the standard normal cdf on each
component of z, (u1, u2) = (�(z1) , �(z2)). Right panel: Shows the final multivariate distribution after
applying the inverse cdf of the beta distributions, xi = F−1

i (ui , θi ). This illustration is strongly motivated
by an example shown by Hazarika et al. (2019)

(U1, . . . ,Ud) = (F1(X1|θ1), . . . , Fd(xd |θd)). The copula contains all the informa-
tion of the dependence between the components in X . The Gaussian copula is defined
over the hypercube [0, 1]d as

CR(u) = �R

(
�−1(u1), . . . , �

−1(ud)
)

,

where � is the cdf of the standard normal distribution and �R is the joint cdf of a zero
mean d-variate Gaussian distribution with covariance matrix equal to the correlation
matrix R. The pdf of the Gaussian copula is given by

cR(u) = 1√|R| exp

⎛

⎜⎜⎝−1

2

⎛

⎜⎝
�−1(u1)
...

�−1(ud)

⎞

⎟⎠

T

(R−1 − I)

⎛

⎜⎝
�−1(u1)
...

�−1(ud)

⎞

⎟⎠

⎞

⎟⎟⎠ , (33)

where |R| is the determinant of R, and ui = Fi (xi |θi ). The multivariate density of X
is given by

f (x |θ) = cR(u)

d∏

i=1

fi (xi |θi ), (34)

where fi (xi |θi ) is the marginal pdf of component xi .
The density in Eq.34 cannot be evaluated analytically. However, it is possible to

sample from it. To draw one realization X from the distribution in Eq.34, first draw
one realization from amultivariate normal distribution, Z ∼ N (0,R). Then transform
each component Zi (where i = 1, . . . , d) of Z by applying the cdf of a standard normal
distribution to obtain Ui = �(Zi ). Finally, for each Ui apply the inverse cdf of the
marginal distribution, Xi = F−1(Ui |θi ). Figure2 visualizes this process with a two-
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dimensional Gaussian copula with correlation ρ = 0.65, and beta(3, 2) as marginal
distributions.

5.2 Stein’s Lemma and the Copula

Toobtain the expected gradient in themultivariate case, Stein’s lemma, Eq.5, is applied
to the density in Eq.34. Consider component i of the expected gradient

E[∂xi J (X)] = −E[J (X)∂xi log f (X |θ)], (35)

where

log f (x |θ) = log cR(u) +
d∑

i=1

log fi (xi |θi ). (36)

Hence,

∂xi log f (x |θ) = ∂xi log cR(u) + ∂xi log fi (xi |θi ). (37)

The term ∂xi log fi (xi |θi ) was studied in great detail in the previous sections. How-
ever, there is also an extra term contributing to the gradient arising from the
copula: ∂xi log cR(u). Recall that u = [u1(x1), · · · , ud(xd)]�. Now, defining
z ≡ [

�−1(u1), · · · , �−1(ud)
]�

and H ≡ (
R−1 − I

)
,

∂xi log cR(u) = ∂xi

(
−1

2
zTHz

)
= −

∑

j

Hi j z j · ∂ui �
−1(ui ) · ∂xi Fi (xi |θi ). (38)

By definition ∂xi Fi (xi |θi ) = fi (xi |θi ), and the inverse function theorem gives

∂ui �
−1(ui ) = 1

φ (zi )
= 1

φ
(
�−1 (Fi (xi |θi ))

) , (39)

where φ is the pdf of a standard normal distribution so that

∂xi log cR(u) = − fi (xi |θi )
φ(zi )

d∑

j=1

Hi j z j = − fi (xi |θi )
φ(zi )

d∑

j=1

(
R−1 − I

)

i j
z j , (40)

where z j is the j th component of the random variable Z ∼ N (0,R). In general, the
i th component of the gradient gets contributions from all the other components due to
the correlation matrix R. In the case of no correlation, R = I, the term in Eq.40 will
vanish, and each gradient component will only have a contribution from the respective
marginal distribution. The Monte Carlo estimate of the expectation in Eq.35 is then

123



Mathematical Geosciences

given by

E[∂xi J (X)] ≈ −1

N − 1

N∑

n=1

(
J (Xn) − J̄

)

⎛

⎝∂xi log fi (X
n
i |θi ) − fi (Xn

i |θi )
φ(Zn

i )

d∑

j=1

(
R−1 − I

)

i j
Zn
j

⎞

⎠ . (41)

5.3 TheMutation Gradient and the Natural Gradient

The expected gradient of the multivariate distribution in Eq.34 was derived via
Stein’s lemma. In this subsection, the mutation gradient is derived and discussed.
The parameters of the distribution in Eq.34 are

θT = [
θT1 , · · · , θTd

]
, (42)

and R, where each θi ∈ R
mi . The mutation gradient of θ can be split into d individual

gradients

∇θE[J (X)] =
⎛

⎜⎝
∇θ1E[J (X)]
...

∇θdE[J (X)]

⎞

⎟⎠ , (43)

where each ∇θiE[J (X)] = E[J (X)∇θi log f (x |θ)] ∈ R
mi will only have a

contribution from the i th marginal since

∇θi (log f (x |θ)) = ∇θi

⎛

⎝log cR +
∑

j

log f j (x j |θ j )

⎞

⎠ = ∇θi log fi (xi |θi ). (44)

Recall that the natural gradient is used to optimize the mutation distribution, Eq.8.
Therefore the Fisher information matrix is needed. However, it can be shown that
multiplication of the inverse Fisher matrix with the mutation gradient in Eq. 43 can be
done marginally. More specifically, the Fisher matrix is block-diagonal

I (θ) =
⎛

⎜⎝
I1(θ1)

. . .

I d(θ d)

⎞

⎟⎠ , (45)

such that each subgradient ∇̄θi of the Natural gradient ∇̄θ is given by

∇̄θi = I−1
i (θi )∇θi . (46)
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To show this, consider the element Ikl = E
[
∂θk log f (X |θ) ∂θl log f (X |θ)

]
of the

Fisher information matrix, where θk and θl are components of the parameter vector to
different marginal distributions

Ikl = E
[
∂θk log f (X |θ) ∂θl log f (X |θ)

]

=
∫

∂θk log fk(xk |θk) ∂θl log fl(xl |θl) cR(u(x))
d∏

j=1

f j (x j |θ j ) d�

=
∫ (

∂θk log fk(xk |θk) fk(xk |θk)
)

(
∂θl log fl(xl |θl) fl(xl |θl)

)
cR(u(x))

∏

j �=k,l

f j (x j |θ j ) d�.

(47)

Using the definition f (x)∂x log f (x) = ∂x f (x), gives

Ikl =
∫ (

∂θk fk(xk |θk)
) (

∂θl fl(xl |θl)
)
cR(u(x))

∏

j �=k,l

f j (x j |θ j ) d�

= ∂θk∂θl

∫
fk(xk |θk) fl(xl |θl) cR(u(x))

∏

j �=k,l

f j (x j |θ j ) d�

= ∂θk∂θl

∫
cR(u(x))

d∏

j=1

f j (x j |θ j ) d� = ∂θk∂θl

∫
f (x |θ) d�

︸ ︷︷ ︸
=1

= 0.

(48)

This means that all elements of the off-diagonal blocks of the Fisher matrix are zero,
and each marginal mutation gradient, ∇θi , can be multiplied by its respective inverse
Fisher matrix I−1

i (θi ). Finally, the Monte-Carlo estimate of the natural gradient of
each marginal mutation gradient can be approximated by

∇̄θiE[J (X)] ≈ 1

N − 1
I−1(θi )

N∑

n=1

(
J (Xn) − J̄

) (∇θi log fi (X
n
i |θi )

)
. (49)

In summary, each component of the control vector x and each marginal density
fi (xi |θi ) can be updated individually while their dependency (correlation) is repre-
sented byR in the Gaussian copula. The final piecemissing before the full Generalized
EnOpt (GenOpt) can be presented, is an adaption scheme for the correlation matrix.
The following subsections focus on two different approaches. The first is the muta-
tion approach, and the second is the covariance matrix adaption (CMA) approach
developed by Hansen and Ostermeier (2001).

5.3.1 The Mutation Approach for the Correlation Matrix

The mutation approach for the adaption of the correlation matrix is very similar to
the mutation approach for the covariance matrix in standard EnOpt (Stordal et al.
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2016), shown in Eq.29. As the density cR(u(x)) in Eq.33 has a Gaussian structure,
the natural gradient ∇̄RE[J (X)] is the same as ∇̄�E[J (X)] in Stordal et al. (2016)
with Xn − μ → Zn and � → R. The only difference is that the diagonal elements of
∇̄RE[J (X)] should be set to 0, such that the diagonal elements of the correlationmatrix
is always 1. The mutation gradient of the correlation matrix is therefore approximated
by

∇̄RL(θ) = ∇̄RE[J (X)] ≈ 1

N − 1

N∑

n=1

(
J (Xn) − J̄

) (
Zn ZnT − R

)
, (50)

where the diagonal elements of the gradient are set to 0. This can then be used to
update the correlation iteratively,

Rk+1 = Rk − αR∇̄RL(θk), (51)

where αR is a learning rate. A check to ensure that Rk+1 satisfies the conditions of a
correlation matrix is employed after the update.

5.3.2 The CMA Approach for the Correlation Matrix

Fonseca et al. (2013) introduced the covariance matrix adaption evolution strategy
(CMA-ES) developed by Hansen and Ostermeier (2001) to EnOpt as a way of iter-
atively adapting the covariance used to perturb the control vector. The goal of this
subsection is to briefly describe the CMA update and how it is applied to R.

The CMA update consists of a rank-λ and a rank-1 update, given by

�k+1 = (1 − α1 − αλ)�k + α1 pk+1 p
�
k+1︸ ︷︷ ︸

rank-1 update

+ αλ

λ∑

n=1

wn(xnk − xk)(xnk − xk)�

︸ ︷︷ ︸
rank-λupdate

, (52)

where α1 and αλ are learning rates. The rank-λ update selects the λ best ensemble
members and uses them to estimate the covariance. The ensemble members are sorted
such that J (x1) < J (x2) < · · · < J (xλ). Each member n is given a weight wn , such
that

∑λ
n=1 wn = 1. In Fonseca et al. (2013) they were chosen as wn = 1/λ, meaning

all λ samples were given equal weighting, while Hansen (2006) suggests

wn = log (λ + 1) − log n
∑λ

i log (λ + 1) − log λ
. (53)
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The quantity pk+1 ∈ R
d in the rank-1 update is the so-called evolution path. It is

the cumulation of earlier steps, and it is given by

pk+1 = (1 − αc) pk +√
αc(2 − αc)μeff

xk+1 − xk
αx

, (54)

where αc is yet another learning rate, and the parameter λeff = (
∑λ

n=1 w2
i )

−1. For
further details, the reader is referred to Hansen (2006).

Since CMA updates a covariance matrix, some changes must be made for the
algorithm to be used on the correlation matrix in GenOpt. In the rank-λ update, the
sample correlation is used instead of sample covariance,

�λ
k ≡

λ∑

n=1

wn(z
n
k − z̄k)(z

n
k − z̄k)

�, (55)

Rλ
k ≡ diag

(
�λ

k

)− 1
2 �λ

k diag
(
�λ

k

)− 1
2 . (56)

One should use the Gaussian ensemble Z from the copula sampling to estimate the
sample correlation. A similar transformation is applied to the rank-1 term,

�one
k+1 ≡ pk+1( pk+1)

�, (57)

Rone
k+1 ≡ diag

(
�one

k+1

)− 1
2 �one

k+1 diag
(
�one

k+1

)− 1
2 . (58)

The CMA-GenOpt update is then given by

Rk+1 = (1 − α1 − αλ)Rk + α1Rone
k+1 + αλRλ

k+1. (59)

5.4 The GenOpt Algorithm

Everything that has been developed so far in the multivariate case can be merged in
a single algorithm denoted Generalized EnOpt (GenOpt). In summary, GenOpt uses
Stein’s lemma to update the control vector x using Eq.41, the natural gradient in Eq.49
to update the parameters θ , and CMA ormutation to adapt the correlationR. However,
there is one final detail that has to be addressed. Recall that the EnOpt gradient in Eq.2
is pre-multiplied with the covariance matrix �. This is not the case for the GenOpt
gradient. In most cases, where EnOpt is typically applied, the preconditioning of the
covariance is desired to obtain a smooth solution of the controls (Chen et al. 2009).
Therefore, the GenOpt gradient is pre-multiplied with the covariance matrix in the
following algorithm and examples. The covariance matrix can easily be constructed
from the correlation matrix and the individual variances of the marginal distributions.

The GenOpt algorithm is presented in Algorithm 1, where the function name “Cor-
rAdapt” indicates the process of adapting the correlationR either byCMAormutation.
In principle, GenOpt can be applied with any marginal distribution (assuming that
analytical expressions exist). However, from this point on, beta distributions will be
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used as marginals. The transformation in Eq.27 is applied to the ensemble X in the
construction of the J vector in Algorithm 1.

Algorithm 1 GenOpt
Require: Initial control vector, x , and objective function J  x ∈ R

d

Require: Initial marginals distribution and parameters {Fi , θi }Ni=1  θi ∈ R
mi

Require: Initial correlation matrix R ∈ R
d×d

while not Converged do
1. Sample Gaussian copula and multivariate distribution
{zn}Nn=1 ∼ N (0,R)  zn ∈ R

d

{un}Nn=1 , where each component uni = �(zni )  un ∈ R
d

{xn}Nn=1 , where each component xni = F−1
i (uni |θi )  xn ∈ R

d

2. Estimate gradients
for i = 1 to d do

gi = − 1

N − 1

N∑

n=1

(
J (xn) − J

)
⎛

⎝∂xi log fi (x
n
i |θi ) − fi (x

n
i |θi )

φ(zni )

d∑

j=1

(
R−1 − I

)

i j
znj

⎞

⎠

pi = 1

N − 1

N∑

n=1

(
J (xn) − J

) (
I−1(θi )∇θi log fi (x

n
i |θi )

)

end for
�i j = Ri j

σiσ j
for i, j = 1, . . . , d  Construct covariance matrix

3. Update
x ← x − αx�g  g = [g1, · · · , gd ]T ∈ R

d

θi ← θi − αθ pi for i = 1, . . . , d  Update each marginal distribution, pi ∈ R
mi

R ← CorrAdapt()  Update correlation matrix
end while

6 Numerical Test Cases

In this section, three applications of GenOpt are presented. First, a proof of con-
cept illustrating how non-Gaussian distributions are modified using GenOpt is shown.
Next, GenOpt and EnOpt are compared on two test cases. The first is the well-known
Rosenbrock function,wheremany optimization runs are included for comparison since
the objective function is cheap to evaluate. Then, a synthetic reservoir management
(Jansen et al. 2014) test case is presented. In both the following examples, beta dis-
tributions are used as marginals for the Gaussian copula. This is of particular interest
for the reservoir case where the controls are bounded such that the transformation
proposed in Eq.27 is tested. In addition, the initial correlation is set to be the identity
matrix R = I, and the CMA scheme is used to update R.

6.1 Visualization

Adaptivemutation of a distribution improves the relevance of samples used to estimate
the expected gradient. This is illustrated in Fig. 3, where fivemutation steps are shown.
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Fig. 3 A one-dimensional example of how five mutation steps changes the beta distribution (black curve
with shaded gray area). The blue curve is the objective function J (x) = exp(−x), and the red dot is the
current control (fixed in this example). The initial distribution with α = β = 2.0 is shown in the upper left
panel, while the final distribution is shown in the lower right panel, where now α = 3.8 and β = 1.5

Fig. 4 The effect of 12 mutation steps on the mutation distribution. The mutation distribution comprises a
Gaussian copula and two beta distributions as marginals. CMA is used on each step to adapt the correlation
matrix in the copula. Theheatmap represents the objective function J (x) = exp[−(x+y)]. The contour lines
represent the mutation distribution f (x |θ), and the blue dots show an ensemble drawn from the distribution.
The black dot is the current control x (fixed during mutation), and the arrow shows the negative GenOpt
gradient calculated from the ensemble. The left panel is the initial state, and the right panel is the final state

After five iterations, the probability mass is shifted to the right of x, a region of smaller
objective function values.

Figure4 shows an example that includes adaptation of the correlation matrix in a
copula, where 12 mutation steps are presented for the objective function J (x, y) =
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Fig. 5 Seven iterations of GenOpt on the Rosenbrock function (shown as a heat-map). The contours in each
panel indicates the mutation distribution at the respective iteration

exp(−(x + y)). Again, beta distributions are used as marginals with initial parameters
α = β = 2.0, and the initial correlation between x and y is set to zero. The bi-variate
distribution f (x |θ) is represented by the black contour lines. An ensemble is drawn
(shown as blue dots) and used to estimate a gradient (shown as an arrow). The left plot
shows the initial distribution, and the right plot shows the updated distribution. The
CMA strategy is utilized in this example as well. As for the one-dimensional case, the
probability mass moves to regions of lower objective function values.

6.2 The Rosenbrock Function

The examples in the previous section only illustrated the adaptive mutation. Here, a
demonstration of optimization on both x and f (x |θ) is shown. The objective function
under consideration is the Rosenbrock function given by

J (x) =
d−1∑

i=1

100(xi+1 − x2i )
2 + (1 − x2i )

2, (60)

defined on R
d . The global minimum of the Rosenbrock function is located at x =

(1, . . . , 1), inside a long and almost flat parabolic valley. For d ≥ 4, there is also a
local minimum (Shang and Qiu 2006). Figure5 shows seven optimization steps using
GenOpt with d = 2. Each panel of Fig. 5 shows one iteration. The starting point of
the optimization is set to (−1,−1). The Rosenbrock function is plotted as a heat map,
and the minimum of the function is shown as a black dot. Similar to the previous
section, the mutation distribution is represented by contour lines, and the gradient at
the current control is shown as an arrow (scaled by (2|∇ J (x)|)−1). The optimization
path is sketched with a gray line. Figure5 shows that after seven iterations, the current
control is within the valley, and the mutation distribution has been adapted such that
the mode is shifted towards smaller J (x) values. It is also worth noticing that the CMA
algorithm has introduced a correlation between components of x at this point. In this
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example, a backtracking scheme is implemented where the step size is cut in half if
the objective function is not decreased.

Next, 100 starting points are randomly selected over the domain [−2, 2]d for d =
10, 20, 50, 100. Both GenOpt and EnOpt run until backtracking is unable to find an
improvement (with a tolerance of zero), with 10 allowed step size cuts at each iteration.
The maximum number of iterations is set to 3,000. The random seed is fixed for each
pair of runs, and the step-size αx is set to 1 for both methods. The mutation step-size
is varied for the different runs with αθ = 1.0, 0.5, 0.1, 0.01 and 0.001. To make
the comparison as fair as possible, the mutation in Eq.51 is used for the correlation
adaption. The initial α and β were fixed at 20 for GenOpt (chosen by some trial and
error). The initial variance is also varied with values σ 2 = 1.0, 0.1, 0.01 and 0.001.
For GenOpt, this means that ε is selected from the equality

σ 2 = 4ε2
αβ

(α + β)2(α + β + 1)
, (61)

where the term involving α and β comes from the variance of the beta distribution
itself.

For all runs, the ensemble size is fixed at Ne = 10, and the gradients are normalized
with the L2 norm. The results are summarized in Fig. 6 where the average for the
objective function and number of iterations (over 100 runs) are reported. The solid
lines show the result for GenOpt, while the EnOpt results are dashed.

The experiment indicates that the GenOpt algorithm is less dependent on the choice
of αθ and initial variances. The two methods seem to be fairly equivalent for large
initial variance or small mutation step sizes. However, for smaller variances and larger
mutation step sizes, GenOpt is able to reach lower values of the objective function,
while EnOpt seems to be converging prematurely. This explains why the number of
iterations is on average higher for GenOpt in these cases. For smaller αθ and initial
variance, GenOpt reaches a slightly lower objective value with fewer iterations than
EnOpt on average. The code used for these experiments is available at GitHub.

6.3 The EggModel

The last example is a reservoir management test case that employs the Egg model
introduced by Jansen et al. (2014). The Egg model is a synthetic reservoir consisting
of 60 × 60 × 7 = 25, 200 grid cells with high-permeability channels embedded
within a low-permeability background. The reservoir contains 8 injection wells and
4 production wells, which are distributed throughout the domain. The permeability
field and wells are shown in Fig. 7. Optimization on the rates for the injectors and the
bottom hole pressures (BHP) for the producers is performed over a discretized time
period of 3,600 days, where the controls can change every 360 days, giving a total of
10 control steps. As a result, the control vector has dimension (8+ 4) · 10 = 120. The
objective is to maximize the Net Present Value (NPV) defined as
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Fig. 6 The average objective value obtained (left panels) and the average iteration count (right panels) until
termination of 100 optimization runs. Each panel displays the outcomes corresponding to a specificmutation
step-size αθ , and the x-axis represents four distinct initial variances. Solid lines show the results achieved
by GenOpt, whereas dashed lines correspond to EnOpt. The colors of each line signify the dimensionality
of the Rosenbrock function. The ensemble size was set to 10 throughout all experiments
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Fig. 7 Shows the permeability
field of the Egg model and the
position of the injectors (blue)
and producers (red). Figure
taken from Jansen et al. (2014)

Table 1 Economic data Values Unit

Initial BHP 300 bar

Initial injection rate 80 Sm3/day

Price of oil, ωo 300 USD/Sm3

Cost of water disposal, ωwp 40 USD/Sm3

Cost of water injection, ωwi 10 USD/Sm3

Table 2 GenOpt parameters Values

Initial α0 20.0

Initial β0 20.0

Step-size, αx 0.05/|∇ J |∞
Step-size, αθ 0.01, 0.1, 0.5

Sampling region, ε 0.01, 0.05, 0.1, 0.5

JNPV(x) =
10∑

i=1

ωoQi
op − ωwpQi

wp − ωwiQi
wi

(1 + τ)�ti
, (62)

where ωo denotes the price of oil, ωwp the cost of water disposal, and ωwi the cost of
water injection. The quantities Qi

op and Qi
wp represent the amounts of oil and water

produced, during the i th time window, while Qi
wi denotes the amount of water injected

during the same time interval. Here τ represents a discount rate. The values for ωo,
ωwp and ωwi, as well as the initial controls are shown in Table 1. The injection rates
and BHP have upper and lower bounds chosen as [150 Sm3/day, 380 Sm3/day] and
[0 bar, 150 bar], respectively, and the discount rate is set to τ = 0.1. For practicality,
the domain is transformed to [0, 1] for the optimization.

The selected parameters for GenOpt are presented in Table 2, and every possible
combination in the table is tested three times (with a different random seed each time).
For every random seed, EnOpt is also tested with four different initial variances,
computed using the relation given in Eq.61. The initial parameters α0 and β0 are
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Fig. 8 Optimization results from all the Egg model runs. Each row corresponds to a different random seed.
The first three panels of each row show four GenOpt optimization runs (each with a different ε) with the
same mutation step size. The last panel of each row shows the respective EnOpt runs, with initial variance
∝ ε2. The y-axis shows the NPV increase as a function of the iteration (shown on the x-axis)

both set to 20.0 (for each marginal distribution) since these values renders the beta
distribution symmetric and gives it a Gaussian-like shape that closely aligns with
that of EnOpt’s starting point. The ensemble size is set to Ne = 50, and the CMA
parameters are αλ = α1 = 0.05, λ = 20, and αc = 0.4. An initial time correlation for
the controls in each well is also imposed. This ensures smooth temporal variations for
the controls

Corr(t, t + n) = ρn, (63)

where ρ = 0.5 and n is the number of time steps (in terms of control changes) between
the two times. Correlation between controls in different wells is disregarded during
the optimization. The optimization is done using PET (developed by NORCE Energy
Tehnology 2023), and the simulation uses the OPM simulator (Rasmussen et al. 2021).
Figure8 shows the increase of the NPV per iteration, where each row shows the results
for a different random seed. The three first columns show results using GenOpt with
different αθ , and the right column shows EnOpt results. Each panel shows results using
four different values for ε. For EnOpt, the initial variances are given by Eq.61. The
step-size for the covariance mutation in EnOpt is set to 0.2, this choice is based in
previous experience with EnOpt on the Egg model. The final NPV and the number of
iterations used to achieve that NPV for each line are shown in the legend at the bottom
right corner of each panel. The maximum number of iterations is 30.
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The results indicate that ε = 0.05 (green line) is a good choice for GenOpt in this
particular case. Recall that the optimization space is transformed to [0, 1]d . For EnOpt,
however, the variance with ε = 0.1 (blue line) seems to be more stable. As expected,
ε = 0.5 (yellow line) performs the worst for GenOpt as it allows for sampling of the
entire region at each iteration.

The highest NPV reached by any of the optimization runs is achieved by
GenOpt with αθ = 0.01 and ε = 0.05. For this case the NPV was 1.201
billion USD after 26 iterations. The highest NPV reached by EnOpt was 1.150
billion USD in 30 iterations. It is possible that further improvements in the
NPV could be achieved by increasing the maximum number of allowed itera-
tions. The experiments indicate that GenOpt can reach a higher NPV quicker than
EnOpt.

7 Summary

In this paper, non-Gaussian Ensemble Optimization is studied. The main motivation
for this is the possible adaptive ability of a non-Gaussian distribution via mutation
optimization, in addition to eliminating the problem of sample truncation in the case
of bounded optimization. Stein’s lemma offers an interpretation of EnOptwhichmakes
the introduction of a general mutation distribution natural. An extension of EnOpt,
denoted GenOpt, is proposed and tested, where Stein’s lemma is used to estimate the
gradient of the control vector and mutation optimization is applied to the sampling
distribution. The multivariate extension is introduced using Gaussian copulas. The
parameters of each marginal distribution are updated independently, and the corre-
lation matrix in the copula is also adapted. Beta distributions are used as marginal
distributions as they are bounded on a domain, and a transformation is proposed to
ensure that all ensemble members lie within the allowed control bounds. This trans-
formation introduces one extra parameter which relates to the initial variance of the
distribution.

GenOpt is tested and compared to EnOpt on several test cases. First on the Rosen-
brock function with increasing dimensionality, and later on a benchmark reservoir
optimization test case. The experiments show that GenOpt is less sensitive to the
choice of mutation step and suffers less from premature convergence. On the well
control test case with the Egg model reservoir, GenOpt converges quicker than EnOpt.

Because GenOpt is a black-box optimization method, its potential applications are
not restricted to reservoirmanagement. In the future, it would be interesting to compare
GenOpt and EnOpt in other areas. A potential example could be optimizing offshore
wind farm layout, where EnOpt has already been used (Eikrem et al. 2023). In addition,
testing GenOpt with a different marginal distribution can also be interesting. A short
illustration of this is shown in “Appendix A” using a logistic marginal distribution.
Another future test of great interest is to employ GenOpt on a robust optimization
problem (as described in Chen et al. 2009), where the objective function is stochastic.
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However, similar results are expected for a robust optimization problem since this
would only affect the J (X) − J̄ term in the gradient computation. Investigation into
an adaptive scheme for ε could improve the efficiency of the algorithm.

Appendix A: Illustration with the Logistic Distribution

Although the numerical examples in this paper use beta marginals, the theory of
GenOpt is formulated such that any distribution (bounded or not) can be used. Here,
we present a short illustration of how one can easily use other marginal distributions
withGenOpt, as shownwith the logistic distribution. The pdf of the logistic distribution
is given as

f (x |μ, s) = e−(x−μ)/s

s
(
1 + e−(x−μ)/s

)2 , (64)

whereμ is themean of the distribution, and s is a scale parameter related to the variance
by Var[X ] = s2π2/3. All that is needed to calculate the marginal contribution of the
control gradient of GenOpt is to calculate ∂x log f (x |μ, s), which is

∂x log f (x |μ, s) = − tanh

(
x − μ

2s

)
/s. (65)

This results in the following update equation for the i th component

xik+1 = xik − αx

N∑

n=1

(
J (Xn) − J̄

)
(
tanh

(
Xn
i − xik
2sik

)
/sik − ∂xi log cR

)
, (66)

where ∂xi log cR is the contribution form the copula. Similarly, a mutation gradient
for the scale parameter can be derived. However, this is quite lengthy and is therefore
omitted.

Figure9 shows the negative gradient (normalized by L2 norm) of GenOpt with
the logistic marginal distribution (from Eq.66), the EnOpt gradient and the analytical
gradient of the Rosenbrock function for points randomly chosen in the domain. For
GenOpt and EnOpt, the ensemble size is set to 20, and the variance is set to 0.1. No
correlation was used in the sampling, so that the copula term in Eq.66 vanishes.
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Fig. 9 The gradient of GenOpt (with logistic marginals) and EnOpt (red), together with the analytical
gradient (black) of the Rosenbrock function for 32 randomly chosen points
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