
Computational Geosciences
https://doi.org/10.1007/s10596-024-10289-8

ORIG INAL PAPER

Multiscale model diagnostics

Trond Mannseth1

Received: 18 August 2023 / Accepted: 11 April 2024
© The Author(s) 2024

Abstract
I consider the problem of model diagnostics, that is, the problem of criticizing a model prior to history matching by comparing
data to an ensemble of simulated data based on the prior model (prior predictions). If the data are not deemed as a credible
prior prediction by the model diagnostics, some settings of the model should be changed before history matching is attempted.
I particularly target methodologies that are computationally feasible for large models with large amounts of data. A multiscale
methodology, that can be applied to analyze differences between data and prior predictions in a scale-by-scale fashion,
is proposed for this purpose. The methodology is computationally inexpensive, straightforward to apply, and can handle
correlated observation errors without making approximations. The multiscale methodology is tested on a set of toy models,
on two simplistic reservoir models with synthetic data, and on real data and prior predictions from the Norne field. The
tests include comparisons with a previously published method (termed the Mahalanobis methodology in this paper). For the
Norne case, both methodologies led to the same decisions regarding whether to accept or discard the data as a credible prior
prediction. The multiscale methodology led to correct decisions for the toy models and the simplistic reservoir models. For
these models, the Mahalanobis methodology either led to incorrect decisions, and/or was unstable with respect to selection
of the ensemble of prior predictions.

Keywords Prior predictive distribution · Model criticism · Multiscale test vectors · Synthetic data · Norne field data

1 Introduction

Reliable reservoir simulation forecasts, with quantification
of the uncertainty in the forecasts, are instrumental for sound
reservoir management. The Bayesian framework allows for
all types of information to be incorporated and facilitates
uncertainty quantification as part of the history matching
(HM) procedure. Ensemble-based data assimilation (DA)
(see, e.g., [2, 9]) is an increasingly popular family of
approximate solutions to the Bayes problem, which is com-
putationally feasible for reservoir HM.

Even if ensemble-based DA is computationally feasible,
the computational work is still very large for field-scale
cases. This comes in addition to the substantial manual work
required for computer assisted HM of a real field case. Part
of the manual work is to prepare the reservoir model for DA
so that the DA has the possibility of being successful. That is,
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the reservoir model should pass a check (model diagnostics)
where samples of simulated output with measurement errors
added (prior predictions) are compared to observed data to
assess if the observed data could be a credible realization
from the distribution of prior predictions. If so, the model
is ready for DA to be performed. If not, obstacles that are
expected to prevent successful DA should be removed and
model settings that are not compatible with observed data
should be adjusted before DA is conducted.

Several geological scenarios are usually viable for a reser-
voir, and the scenario uncertainty should be taken into
account in the reservoir description. This can be doneby com-
bining several scenarios in the uncertainty quantification, for
example through Bayesian model averaging (see, e.g., [15])
or Bayesian stacking (see, e.g., [1, 27]). Working with more
than a single scenario will, however, add significantly to the
total work load. Model diagnostics can then be useful in a
screening process to decide if some scenarios can be dis-
carded before the remaining scenarios are combined [14, 21,
24].

It is standard in ensemble-based data assimilation to
visually compare the ensemble of prior predictions to the
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observed data. If there are observations that are not contained
within the spread of the prior predictions, the model setup is
deemed inadequate [5, 8]. The converse is, however, not nec-
essarily true: coverage of observed data from the Norne field
by the prior predictions was not sufficient to facilitate a good
match after DA [6].

More advanced methodologies for model diagnostics can
be found, for example, in [3, 10, 13, 14, 21, 24, 26, 28]. Sup-
port vector machine and tree-based regression are utilized,
for example, in [10] and described also in [26, Chapter 2].
The methodologies in [14, 21, 24] utilize a type of Bayesian
model averaging to compute model probabilities. Hence, it
is implicitly assumed that one of the model setups is ade-
quate. In [3], the authors propose amethodology that directly
compares prior predictions to observed data without such an
assumption. A toy example in [3] (see, their Fig. 1) illustrates
that coverage of individual observations by the prior pre-
dictions is insufficient as a tool for model diagnostics since
it does not take into account trends and shapes of the data
and prior predictions. To account for trends and shapes, they
propose a technique utilizing a certain (approximate) Maha-
lanobis distance as discrepancy measure. They illustrate use
of the methodology on some toy examples, before they apply
it to the Norne data and show that certain settings in the
Norne simulation model should be changed in order to facil-
itate a good data match with DA. A Mahalanobis distance
was also applied in [13] on problems that did not require
the Mahalanobis distance to be approximated. In [28], the
authors utlize robust Mahalanobis distances, that is, robust
estimates of mean and covariance matrix [16], when evaluat-
ing Mahalanobis distances. When using robust Mahalanobis
distances, it is required that E ≥ 2N and recommended that
E > 5N [16], where E denotes the ensemble size and N
denotes the data dimension.

The aim of this paper is to present a methodology for
model diagnostics applicable to large reservoir models with
large amounts of data. In this situation, N (often of the order
of 103–105) will bemuch larger than E (typically of the order
of 102), so that utilization of robust Mahalanobis distances
is not a viable alternative. Hence, I address the same type of
problem as in [3], but with a differentmethodology formodel
diagnostics. A key difference is that I will apply a multiscale
discrepancy measure that analyzes trends and shapes in a
scale-by-scale fashion, as opposed to previously proposed
methodologies that lumps all scales into a singlemeasure. An
advantage of the multiscale methodology with respect to the
methodology in [3], is that the multiscale methodology can
handle problems with correlated measurement errors where
the number of data is larger than the ensemble size without
making approximations.

The novel multiscale methodology, and a brief summary
of the methodology in [3], will be presented in Section 2,

while results illustrating their performances will be shown in
Section 3. The numerical examples will include toy models
(Section 3.1), reservoir models with synthetic data (Sec-
tion 3.2), and the Norne G-segment model with real data
(Section 3.3).

2 Methodologies

It is not straightforward to directly compare data to prior
predictions, particularly in high-dimensional spaces. In this
paper, I will utilize selected test functionals on the data space
for the comparison.

Let F denote a test functional, W := {we}Ee=1 the set of
prior predictions, and d the observed data. With real data,
F(d) will be compared to statistics based on F(W ) :=
{F(we)}Ee=1. To test the robustness of themethodologies con-
sidered with respect to potential dependency of their results
on a particular data vector, it would be desirable to have a
set of data vectors available. With synthetic data, one may
utilize the data-error distribution to generate the data set,
D := {de}Ee=1. For such data, I will therefore compare statis-
tics based on F(D) := {F(de)}Ee=1 to statistics based on
F(W ).

Before proceeding with the methodology descriptions, it
will be convenient to label the methodologies. I will denote
themethodology proposed in [3] theMahalanobis methodol-
ogy, and the novel methodology themultiscale methodology.

2.1 Summary of theMahalanobis methodology

In the numerical examples in Section 3, I will compare the
performance of the multiscale methodology to that of the
Mahalanobis methodology. In Sections 2.1.1 and 2.1.2, I
therefore briefly summarize the Mahalanobis methodology
for the convenience of the reader.

2.1.1 Mahalanobis distance

Letμ ∈ R
N denote the mean and� ∈ R

N×N the covariance
matrix of a sample with size E . The squared Mahalanobis
distance,M(y), from an arbitrarily selected vector, y ∈ R

N ,
to the probability distribution underlying the sample is then

M (y) = (y − μ)T �−1 (y − μ) . (1)

For the problems considered here,� will be singular since
typically E � N , and hence, the Mahalanobis distance will
not exist. An approximation, M̃(y) to M(y) can, however,
be computed utilizing a regularized covariance matrix, �̃.
In [3, 4] � was regularized using a shrinkage covariance
estimate [17], using Target B of [23] to shrink the sample

123



Computational Geosciences

covariance towards a diagonal matrix with a constant value
equal to the average variance,

�̃ = δν I + (1 − δ) �, (2)

where δ denotes the shrinkage parameter, ν the sample vari-
ance, and I the identity matrix. Following [3], � will be
computed from the sample using the maximum likelihood
estimate, while the shrinkage parameter will be set equal to
2/(E + 2) (an estimate of its optimal value [18]). A compu-
tationally more efficient form of M̃(y), requiring Cholesky
decomposition of an E×E (as opposed to N×N )matrix, can
then be derived utilizing the Sherman-Morrison-Woodbury
formula to reformulate the expression for �̃−1 [3].

2.1.2 Leave-one-out strategy

To build statistics for the Mahalanobis distance, [3] utilized
a leave-one-out strategy. Looping over the prior predic-
tions, the prediction for which they compute the approximate
Mahalanobis distance, we, is left out when calculating the
mean, μ−e, and covariance, �̃−e,

M̃−e (we) = (we − μ−e)
T �̃−1−e (we − μ−e) . (3)

With real data, the empirical cumulative distribution func-
tion (CDF) for M̃(d) := {M̃−e(d)}Ee=1 is compared to the
empirical CDF for M̃(W ) := {M̃−e(we)}Ee=1.

With synthetic data, the empirical CDF for ρ(M̃(D)) :=
{ρ(M̃(de))}Ee=1, where ρ denotes the median, is compared
to the empirical CDF for M̃(W ).

A π% credible interval is defined based on the empirical
CDF for M̃(W ). I will follow [3] and let π = 96 (which
corresponds approximately to ±2 standard deviations from
the mean for a Gaussian probability distribution). With real
data,d is deemed as a credible prior prediction if a sufficiently
large percentage,λmd, of theMahalanobis distances inM̃(d)

is contained within the credible interval. With synthetic data,
one can assess the robustness (towards effects caused by a
particular data vector) of the Mahalanobis methodology by
calculating λmd for the members of D in cases where it is
known a priori that themembers of D should be rejected. The
authors of [3] do not propose an upper bound for λmd in order
for the Mahalanobis methodology to be deemed successful
in this respect, so this is left to the judgment of the user.

2.2 Multiscale methodology

The multiscale methodology utilizes projections onto a set
of multiscale test vectors, H := {hl}Ll=0, where hl ∈ R

N×M .

The set H is ordered so that the characteristic length of vari-
ation of hl decreases monotonically when l increases. Define
a set of multiscale projections of the set of prior predictions
by

H (W ) := {Hl (W )}Ll=0, (4)

Hl (W ) := {Hl (we)}Ee=1, (5)

Hl (we) := 1

NM
hTl we. (6)

With a set of data vectors, which will be the case for syn-
thetic data, themultiscale projections can be applied to the set
of data vectors by replacingW by D andwe by de in (4)–(6).

With a single data vector, which will be the case for real
data, (4)–(6) reduces to

H (d) := {Hl (d)}Ll=0, (7)

Hl (d) := 1

NM
hTl d. (8)

Let ξl(V ) and ζl(V ) denote the mean and standard devi-
ation of Hl(V ) := {Hl(ve)}Ee=1, respectively, where v is
wildcard notation for w and d. Algorithm 1 summarizes
the multiscale methodology. In addition, anyone using the
multiscale methodology needs to decide when d should be
discarded as a credible prior prediction (for synthetic data;
when D should be discarded as credible prior predictions)
based on it’s results. In this paper, I will discard d as a credi-
ble prior prediction if at least oneHl (d) falls clearly outside
the interval Bl := [ξl(W ) − 2ζl(W ), ξl(W ) + 2ζl(W )], or
if several of the Hl (d)’s falls at least slightly outside their
corresponding Bl ’s. With synthetic data, I will discard D as
credible prior predictions if at least one ξl(D) falls clearly
outside Bl , or if several of the ξl(D)’s falls at least slightly
outside their corresponding Bl ’s. In addition, I will illustrate
the robustness of the multiscale methodology by presenting
the percentage, λml(l), of Hl (de) in Bl for the members of
D. The vector [λml(0), . . . , λml(L)] will be denoted by λml.

In Section 3.3.3, I will apply a particular set of test vec-
tors that will be described there. Otherwise, I will let M = 1,
and apply the set of test vectors described in Section 2.2.1.
These vectors are derived from theHaarwavelet basis [7, 12].
There are, however, numerous other options for test vectors.
It is the multiscale feature of H , that is, the ability to facili-
tate discrimination between shapes at multiple scales, that is
important. One may, for example, utilize other wavelet bases
(see, e.g., [7, Chapter 5]) than the Haar basis to construct
alternative test vectors.
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Algorithm 1 Multiscale methododology.
1: procedure Multiscale Synthetic Data(H ,W , D, M) �

H : Haar vectors, W : Prior predictions, D: Data vectors, M : Spatial
dimension

2: Ew ← W .shape[1] � Python style
3: Ed ← D.shape[1]
4: for e ← 0, Ew do
5: H (we) ← Projections(H ,W [:, e], M)

6: end for
7: for e ← 0, Ed do
8: H (de) ← Projections(H , D[:, e], M)

9: end for
10: for l ← 0, L do
11: ξl(W ) ← mean (Hl (W )) � Mean for each scale
12: ζl(W ) ← std (Hl (W )) � Standard deviation for each scale
13: ξl(D) ← mean (Hl (D))

14: ζl(D) ← std (Hl (D))

15: end for
16: return ξ(W ), ζ(W ), ξ(D), ζ(D)

17: end procedure

18: procedure Multiscale Real Data(H ,W , d, M) � H : Haar
vectors, W : Prior predictions, d: Data vector, M : Spatial dimension

19: Ew ← W .shape[1]
20: for e ← 0, Ew do
21: H (we) ← Projections(H ,W [:, e], M)

22: end for
23: H (d) ← Projections(H , d, M)

24: for l ← 0, L do
25: ξl(W ) ← mean (Hl (W ))

26: ζl(W ) ← std (Hl (W ))

27: end for
28: return ξ(W ), ζ(W ),H (d)

29: end procedure

30: procedure Projections(H , v, M) � H : Haar vectors, v: Vector,
M : Spatial dimension

31: L ← H .shape[1] − 1
32: N ← v.shape[0]
33: for l ← 0, L do
34: ql ← 1

NM vT H [:, l]
35: end for
36: return q
37: end procedure

2.2.1 Haar vectors

I will utilize multiscale test vectors constructed from the
normalized Haar basis [7, 12], and refer to these as Haar
vectors. The Haar basis has elements φ(x) andψ l

k(x), where
l = 0, 1, 2, . . . and k = 1, 2, . . . , 2l . Without loss of gen-
erality, the presentation of the Haar vectors will assume that
x ∈ [0, 1], and while the applications will utilize discrete
Haar vectors defined on {xn}Nn=1, the presentation of the Haar
vectors will assume that x is continuous. The normalized
Haar basis may then be written as

φ (x) := 1, (9)

ψ (x) :=
{

1, x ∈ [
0, 1

2

]
,

−1, x ∈ ( 1
2 , 1

]
,

(10)

ψ l
k (x) := 2l/2ψ

(
2l x − (k − 1)

)
. (11)

I now define the multiscale test vectors in H by

hl (x) :=
{

φ (x) , l = 0,∑2(l−1)

k=1 ψ
(l−1)
k (x) , l ∈ [1, L] .

(12)

The Haar vectors {hl}3l=0 are shown in Fig. 1.

3 Applications

The multiscale methodology will now be demonstrated, and
compared to the Mahalanobis methodology, on some toy
examples, on two reservoir models with synthetic data, and
on real data from the G-segment of the Norne field.

Denote the empirical CDF for M̃(W ) by CDFW , and the
empirical CDFs for ρ(M̃(D)) and M̃(d) by CDFD and
CDFd , respectively. For theMahalanobismethodology, Iwill
show plots of CDFW and CDFD (synthetic data), and CDFW
and CDFd (real data).

With synthetic data, I could show plots of CDFs for the
multiscale methodology as well, but then I would have to
show twoCDFs for each l. That would lead to toomany plots,
and collecting the CDFs for all scales in a single plot would
not give good readability. I will therefore present the results
obtained with the multiscale methodology in an alternative
manner. For the multiscale methodology with synthetic data,
Iwill show ξl(W ), ξl(D), ξl(W )±2ζl(W ) and ξl(D)±2ζl(D)

for all scales in a single plot.With real data, Iwill show ξl(W ),
ξl(d) and ξl(W ) ± 2ζl(W ) for all scales in a single plot. In
Section 3.1.2, I will show ζl(W ) and ζl(D) for all scales in a
single plot.

3.1 Toy examples

For all examples in Section 3.1, N = 1024, whileW is drawn
fromN (o, �w), whereN denotes the multivariate Gaussian
distribution, o := (0, . . . , 0)T ∈ R

N , and �w is based on a
cubical variogram with sill 1 and range 25. It is assumed that
there is a set of data vectors, D := {de}Ee=1, available, and
that E = 100 for bothW and D. D is drawn fromN (μ,�d),
where �d is based on a variogram with sill s and range r .
In the different subsections, I will show results for selected
D’s, where μ, s, r , and variogram type, may differ from case
to case.
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Fig. 1 The four coarsest Haar
vectors on [0, 1] with a ruler
above. The vertical scaling is
different for the different hl ’s
because they are constructed
from the normalized Haar basis

3.1.1 Identical distributions

I start by presenting plot types and color coding that will
occur repeatedly throughout Section 3. For this, I will show
results obtained when D is drawn from the same distribution
as W .

Figure 2(a) shows the prior predictions and an arbitrar-
ily selected data realization. Figure 2(b) shows the same
data realization as in Fig. 2(a) and an arbitrarily selected
prior prediction. Figure 2(c) shows results obtained with
the Mahalanobis methodology. The black horizontal lines
mark the limits of the 96% credible interval based on

Fig. 2 (a): Prior predictions
(colored) and arbitrarily selected
data realization (black). (b):
Arbitrarily selected prior
prediction (red) and the data
realization depicted in (a)
(cyan). (c): CDFW (red) and
CDFD (cyan). (d): ξl (W ) (red
solid), ξl (D) (cyan solid),
ξl (W ) ± 2ζl(W ) (red dashed),
and ξl (D) ± 2ζl (D) (cyan
dashed).
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CDFW , so that data realizations with Mahalanobis dis-
tances in the pink shaded regions will not be deemed as
credible prior predictions. For this example, λmd = 96.
Figure 2(d) shows results obtained with the multiscale
methodology. Note that even though I (to secure good read-
ability) select to plot (solid and dashed) curves, results are
obtained for integer values of l only, as indicated by the
vertical light gray dotted lines. For this example, λml =
[96, 98, 99, 100, 96, 86, 95, 98, 98, 96].

Since D and W are drawn from the same distribution, the
minor differences seen between results obtained for data and
prior predictions would of course disappear if E had been
increased sufficiently.

3.1.2 Different correlation lengths

D is drawn from N (o, �d) with a cubical variogram with
s = 1.

Figure 3(a) shows the prior predictions and an arbitrar-
ily selected data realization when r = 50. Figure 3(c)
shows corresponding results obtained with the Mahalanobis
methodology. It is seen that the Mahalanobis methodology
would accept more than half (λmd = 58) of the data real-
izations as credible prior predictions even though the range
of the underlying variogram is twice that of the variogram
for the prior predictions. Figure 3(e) shows corresponding
results obtained with the multiscale methodology. It is seen

Fig. 3 Left column: r = 50.
Right column: r = 37.5. (a, b):
Prior predictions (colored) and
arbitrarily selected data
realization (black). (c, d):
CDFW (red) and CDFD (cyan).
(e, f): ζl (W ) (red) and ζl (D)

(cyan)
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Fig. 4 (a): Prior predictions
(colored) and arbitrarily selected
data realization (black). (b): W
(red) and D = u (cyan). (c):
CDFW (red) and CDFD (cyan).
(d): ξl (W ) (red solid), ξl (D)

(cyan solid), ξl (W ) ± 2ζl(W )

(red dashed), and
ξl (D) ± 2ζl (D) (cyan dashed)

that while both ζl(W ) and ζl(D) approaches zero for the
finest scales, ζl(D) attains its maximum value at a coarser
scale than what ζl(W ) does. It is a general feature of ζl(·) that
it attains its maximum value at the scale where the character-
istic length of variation of hl is closest to the characteristic
length of variation of the argument of ζl(·). The results seen
on Fig. 3(e) are therefore caused by the correlation length of
D being longer than that of W .

Figure 3(b) shows the prior predictions and an arbitrar-
ily selected data realization when r = 37.5. Figure 3(d)
shows corresponding results obtained with the Mahalanobis
methodology. In this case, the Mahalanobis methodology
would accept about three quarters (λmd = 73) of the data
realizations as credible prior predictions even though the
range of the underlying variogram is significantly larger than
that of the variogram for the prior predictions. Figure 3(f)
shows corresponding results obtained with the multiscale
methodology. It is seen that also in this case, the multiscale
methodology is able to discriminate between the data real-
izations and the prior predictions.

3.1.3 Different stationary means

D is drawn from N (u, �d) with a cubical variogram with
s = 1 and r = 25, where u := (1, . . . , 1)T ∈ R

N .
Figure 4(a) shows the prior predictions and an arbitrar-

ily selected data realization. Figure 4(b) shows u and W .

Figure 4(c) shows results obtained with the Mahalanobis
methodology. It is seen that the Mahalanobis methodol-
ogy would accept most (λmd = 85) of the data real-
izations as credible prior predictions. Figure 4(d) shows
results obtained with the multiscale methodology. It is
seen that while ξl(D) and ξl(W ) attain very similar val-
ues for l ≥ 1, ξ0(D) is clearly outside B0 (λml =
[0, 98, 99, 100, 96, 86, 95, 98, 98, 96]), so that the multi-
scale methodology is able to successfully discard the data
realizations as credible prior predictions.

3.1.4 Stationary versus non-stationary means

D is drawn from N (μ(i),�d) with a cubical variogram
with r = 25. The non-stationary mean is given by μ(i) :=
A

N−1 (2i − (N − 1)), where i is an integer in [0, N − 1].
Let s = 0.01. Figure 5(a) shows the prior predictions

and an arbitrarily selected data realization when A = 1.5.
Figure 5(c) shows corresponding results obtained with the
Mahalanobis methodology, while Fig. 5(e) shows corre-
sponding results obtained with the multiscale methodol-
ogy. It is seems reasonable to state that both method-
ologies would correctly discard the data realizations as
credible prior predictions. With the Mahalanobis method-
ology, λmd = 12, while ξ1(D) is clearly outside, and
ξ2(D) is slightly outside, the corresponding Bl ’s (λml =
[100, 0, 0, 100, 100, 100, 100, 100, 100, 100]).
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Fig. 5 Left column: A = 1.5.
Right column: A = 2. (a, b):
Prior predictions (colored) and
arbitrarily selected data
realization (black). (c, d):
CDFW (red) and CDFD (cyan).
(e, f): ξl (W ) (red solid), ξl (D)

(cyan solid), ξl (W ) ± 2ζl(W )

(red dashed), and
ξl (D) ± 2ζl (D) (cyan dashed)

Figure 5(b) shows the prior predictions and an arbitrar-
ily selected data realization when s = 0.01 and A = 2.
Figure 5(d) shows corresponding results obtained with the
Mahalanobis methodology, while Fig. 5(f) shows results
obtained with the multiscale methodology. While the mul-
tiscale methodology, as expected, shows even bigger differ-
ences between the ξl(D)’s and the corresponding ξl(W )’s
(λml = [100, 0, 0, 100, 100, 100, 100, 100, 100, 0]), the
Mahalanobis methodology now surprisingly accepts all data
realizations as credible prior predictions. Changing the
initialization of the random number generator applied to gen-
erate the realizations had no significant effect on the results
of the multiscale methodology, while it made λmd change
from 100 to 0. This behavior of the Mahalanobis method-

ology could be due to its reliance of use of a regularized
covariance based on a particular set of prior predictions.

Different variances
I will now consider two different values for s than

s = 0.01. Figure 6(a) shows the prior predictions and
an arbitrarily selected data realization when s = 0.1 and
A = 2. Figure 6(c) shows corresponding results obtained
with the Mahalanobis methodology, while Fig. 6(e) shows
results obtained with the multiscale methodology. Both the
Mahalanobis methodology and the multiscale methodology
show similar behavior as when s = 0.01 (Fig. 5(d, f))
with respect to discarding the data realizations as credible
prior predictions. The Mahalanobis methodology accepts
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Fig. 6 Left column: s = 0.1.
Right column: s = 1. (a, b):
Prior predictions (colored) and
arbitrarily selected data
realization (black). (c, d):
CDFW (red) and CDFD (cyan).
(e, f): ξl (W ) (red solid), ξl (D)

(cyan solid), ξl (W ) ± 2ζl(W )

(red dashed), and
ξl (D) ± 2ζl (D) (cyan dashed)

all data realizations as credible prior predictions (λmd =
100), while ξl(D) is clearly outside Bl for l ∈ [1, 2]
(λml = [100, 0, 0, 79, 100, 100, 100, 100, 84, 19]), which
would correctly make us discard the data realizations as
credible prior predictions when applying the multiscale
methodology.

Figure 6(b) shows the prior predictions and an arbitrar-
ily selected data realization when s = 1 and A = 2.
Figure 6(d) shows corresponding results obtained with the
Mahalanobis methodology, while Fig. 6(f) shows results
obtained with the multiscale methodology. Now, the Maha-
lanobis methodology would probably make us discard the
data realizations as credible prior predictions (λmd = 28).
As when s = 0.01 (Fig. 5(f) and when s = 0.1 Fig. 6(e)),
the multiscale methodology would correctly make us dis-

card the data realizations as credible prior predictions (λml =
[96, 0, 9, 60, 88, 82, 92, 86, 69, 40]).

At the outset, prior predictions and data realizations may
vary on several length scales. The multiscale methodology
provides scale-by-scale discrepancy measures. The Maha-
lanobis methodology, on the other hand, lumps all scales
into a single discrepancy measure, but certain scales may
dominate this measure. The results in this section indi-
cate that small-scale variations dominated the Mahalanobis
methodology measure. The Mahalanobis methodology was
not able to consistently discriminate well between prior pre-
dictions with a stationary zero mean and data realizations
with a slowly varying non-stationary mean, while small-
scale changes influenced the measure significantly (confer
the results for s = 0.01 and s = 0.1 versus those for s = 1).
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3.1.5 Different variogram types

D is drawn fromN (o, �d) with s = 1 and r = 25, but with
other data-variogram types than cubic.

Figure 7(a, b) show the prior predictions and an arbitrar-
ily selected data realization when the data-variogram type
is spherical and exponential, respectively. Figure 7(c, d)
show corresponding results obtained with the Mahalanobis
methodology. For the spherical variogram, it is seen that the
Mahalanobis methodology would accept most (λmd = 84)
of the data realizations as credible prior predictions. For the
exponential variogram, however, theMahalanobismethodol-
ogy would not accept any (λmd = 0) of the data realizations
as credible prior predictions. The fact that there are virtually
no coarse-scale differences between prior predictions and

data realizations is not reflected in the results of the Maha-
lanobis methodology. These results supports earlier result
in Section 3 in that the Mahalanobis methodology is very
sensitive to differences in small-scale variations in the prior
predictions and the data realizations. This becomes even
more apparent when comparing with the results for a cubic
data variogram (Fig. 2(c)) (confer also the last paragraph in
Section 3.1.4).

Figure 7(e, f) show corresponding results obtained with
the multiscale methodology. There are someminor differences
in the behavior of ζl(D) for the finer scales (l ∈ [7, 9])
between the twovariogram types (λml=[96, 98, 99, 100, 95,
89, 98, 71, 55, 44] (spherical) and λml=[98, 99, 99,100,97,
95, 100, 60, 43, 26] (exponential)). For the coarser scales
there are no differences that would not disappear if E had

Fig. 7 Left column: spherical
variogram. Right column:
exponential variogram. (a, b):
Prior predictions (colored) and
arbitrarily selected data
realization (black). (c, d):
CDFW (red) and CDFD (cyan).
(e, f): ξl (W ) (red solid), ξl (D)

(cyan solid), ξl (W ) ± 2ζl(W )

(red dashed), and
ξl (D) ± 2ζl (D) (cyan dashed)
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been increased sufficiently. This holds also when comparing
with the results obtained for a cubic data variogram (Fig-
ure 2d).

3.2 Reservoir models

The purpose with the reservoir models considered is to pro-
vide test caseswhere the data realizations reflect a large-scale
subsurface feature that is not known to themodelerwhen gen-
erating the prior predictions. A 64 × 64 grid is applied for
both reservoirmodels. A productionwell is located in the cell
with indices (i, j) = (31, 63) and a water injector is located
in the cell with indices (31, 0). A constant porosity of 0.2
is applied. The logarithms of the permeability fields applied
to generate the prior predictions are drawn fromN (4u, �d),
and an isotropic, spherical variogram with sill s and range
r is applied. The permeability fields applied to generate the
data realizations are made by perturbing cell values of the
permeability field underlying the prior predictions.

The reservoir models will produce results that are not
dimensionless. To be able to present results obtained with
the multiscale methodology in a concise manner (i.e., results
for all l in a single plot) with good visibility, these results
will be normalized separately for each l. The normalization
is performed by dividing ξl(W ), ξl(D), ξl(W ) ± 2ζl(W )

and ξl(D) ± 2ζl(D) by the maximum absolute value of

ξl(W ) ± 2ζl(W ) and ξl(D) ± 2ζl(D), so that all results will
be contained in [−1, 1].

3.2.1 Channel

Here, s = 0.2 and r = 10. Figure 8(a) shows the loga-
rithm of the permeability field applied to generate the data
realizations. That field is generated from the field applied
to generate the prior predictions by multiplying the per-
meability values in the cells in the region, �c, defined by
i ∈ [30, 32] × j ∈ [4, 59], by 10, and the permeability val-
ues in the cells outside �c by 1/5 . Hence, the permeability
field applied to generate the data realizations has lower val-
ues than the field applied to generate the prior predictions,
except in the high-permeable channel, �c.

An error, εc ∼ N (o, σ 2
c I ,), where σc := 0.03 · Wc ∪ Dc,

is added to the prior predictions and the data realizations.
Figure 8(b) shows the resulting prior predictions and data
realizations for the oil production, ωo. Admittedly, simpler
methods, like lack of coverage of the data by the prior predic-
tions, would in this case have been sufficient to discard the
data realizations as credible prior predictions, but it is still
of interest to assess the performances of the Mahalanobis
methodology and the multiscale methodology on this exam-
ple.

Fig. 8 (a): Logarithm of
permeability field (permeability
in mDarcy) used to generate the
data realizations with injector
(white dot) and producer (black
dot). (b): Prior predictions (red)
and data realizations (cyan) for
the oil production, ωo (m3/day),
vs. time, t (days). (c): CDFW
(red) and CDFD (cyan). (d):
ξl (W ) (red solid), ξl (D) (cyan
solid), ξl (W ) ± 2ζl(W ) (red
dashed), and ξl (D) ± 2ζl (D)

(cyan dashed). The results
obtained with the multiscale
methodology have been
normalized
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Figure 8(c) shows the results obtained with the Maha-
lanobis methodology. CDFD is very similar to CDFW , and
almost all data realizations are accepted as credible prior pre-
dictions (λmd = 92).

Figure 8(d) shows the results obtained with the multi-
scale methodology. ξ0(D) is clearly outside B0 (and ξ3(D)

is slightly outside B3), so that the multiscale methodology
would correctlymake us discard the data realizations as cred-
ible prior predictions (λml = [0, 79, 77, 29, 88, 84]).

3.2.2 Barrier

Here, r = 10. Figure 8(a) shows the logarithm of the per-
meability field applied to generate the data realizations. That
field is generated from the field applied to generate the prior
predictions bymultiplying the permeability values in the cells
in the region,�b, defined by i ∈ [0, 62]× j = 31 by 1·10−3.
Hence, the permeability field applied to generate the data
realizations has the same values as the field applied to gener-
ate the prior predictions except in the low-permeable barrier,
�b.

An error, εb ∼ N (o, σ 2
b I ,), where σb := 0.05 ·Wb ∪ Db,

is added to the prior predictions and the data realizations.
Figure 9(b) shows the resulting prior predictions and data
realizations for the water production, ωw.

Figure 9(c) shows the results obtained with the Maha-
lanobis methodology. About half of the data realizations are
accepted as credible prior predictions (λmd = 53).

Figure 9(d) shows the results obtained with the multi-
scale methodology. For scales 1 and 2, ξl(D) is clearly
outside Bl , and only ξ5(D) is inside its corresponding inter-
val, so the multiscale methodology would correctly discard
the data realizations as credible prior predictions (λml =
[18, 16, 15, 32, 29, 62]).

3.3 Norne G-segment

In [3], application of theMahalanobis methodology to the G-
segment of the Norne field (Fig. 10) was the major topic, and
the results obtained for the initial reservoirmodel description,
developed in [6], were utilized to improve that description in
several ways through manual adjustments. It was shown that
these adjustments removed apparent inconsistencies between
observed data and prior predictions based on the initial reser-
voir description.

In the current paper, theNorne field does not play the same
dominant role. I will apply the Mahalanobis methodology
and the multiscale methodology to data and prior predic-
tions based on the initial reservoir model description, only,
and I will not attempt to improve that description. The pur-
pose of the investigation is to assess the performance of the

Fig. 9 (a): Logarithm of
permeability field (permeability
in mDarcy) used to generate the
data realizations with injector
(white dot) and producer (black
dot). (b): Prior predictions (red)
and data realizations (cyan) for
the oil production, ωo (m3/day),
vs. time, t (days). (c): CDFW
(red) and CDFD (cyan). (d):
ξl (W ) (red solid), ξl (D) (cyan
solid), ξl (W ) ± 2ζl(W ) (red
dashed), and ξl (D) ± 2ζl (D)

(cyan dashed). The results
obtained with the multiscale
methodology have been
normalized
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Fig. 10 Schematic of horizontal slice of the boundaries for the simu-
lation model for the Norne field (black). Region inside blue rectangle:
G-segment. Region inside orange rectangle: Study region for time-lapse
seismics. Producer E4 (•) and water injector F4 (◦)

multiscale methodology, and to compare it to that of the
Mahalanobis methodology.

The Norne oil-and-gas field is located in the Norwegian
Sea, approximately 200 km from the coast of Nordland

county, Norway. It consists of the formations (from top to
bottom) Garn, Not (shale), Ile, Tofte and Tilje.

Data from production start in 1997 to 2006 (produc-
tion rates, RFT pressures, time-lapse seismics), a reservoir
simulation model, and geological reports, were released by
Equinor and partners in 2010. The release has since been
used to test various history-matching methods, see, e.g., [6,
11, 14, 19, 20, 22, 25, 29]. We refer to these publications for
a more thorough description of the Norne field than what is
presented here.

Data-error models will be the same as those applied in [3],
that is, εpro ∼ N (0, σ 2

pro I ), where σpro = 50 m3/day,

for production rates, and εrft ∼ N (0, σ 2
rft I ), where σrft =

0.01 bar, for RFT pressures. Time-lapse acoustic impedance
data-errors were estimated using factorial co-Kriging, result-

Fig. 11 (a) Gas production, ωg
(m3/day), in well E4 vs. time, t
(days). Prior predictions (red
solid) and observed data (cyan
dots). (c) Corresponding results
obtained with the Mahalanobis
methodology. CDFW (red) and
CDFd (cyan). (e) Corresponding
results obtained with the
multiscale methodology. ξl (W )

(red solid), ξl (d) (cyan solid),
and ξl (W ) ± 2ζl(W ) (red
dashed). (b) Water production,
ωw (m3/day), in well E4 vs.
time, t (days). Prior predictions
(red solid) and observed data
(cyan dots). (d) Corresponding
results obtained with the
Mahalanobis methodology.
CDFW (red) and CDFd (cyan).
(f) Corresponding results
obtained with the multiscale
methodology. ξl(W ) (red solid),
ξl (d) (cyan solid), and
ξl (W ) ± 2ζl(W ) (red dashed).
The results obtained with the
multiscale methodology have
been normalized
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ing in εimp ∼ N (0, �imp), where �imp is based on a cubic
variogram with nugget amplitude 1.236 (m/s · g/cc)2, sill
27.260 (m/s · g/cc)2, and ranges of 10 and 9 grid cells in the
i and j directions, respectively [3, 4].

The Norne model will produce results that are not dimen-
sionless. To be able to present results obtained with the
multiscale methodology in a concise manner with good vis-
ibility, these results will be normalized separately for each
l. The normalization is performed by dividing ξl(W ), ξl(d)

and ξl(W ) ± 2ζl(W ), by the maximum absolute value of
ξl(W ) ± 2ζl(W ), and ξl(d), so that all results will be con-
tained in [−1, 1].

3.3.1 Production data

Figure 11(a) shows 20 of the prior predictions (100 were
used in the analysis) and the data for the gas production in
well E4. Figure 11(c) shows corresponding results obtained
with the Mahalanobis methodology, while Fig. 11(e) shows
results obtainedwith themultiscalemethodology. TheMaha-
lanobis methodology discards the data as a credible prior
prediction. ξ1(d) and ξ2(d) are clearly outside the intervals
B1 and B2, respectively, while ξ4(d) and ξ5(d) aremarginally
outside the intervals B4 and B5, respectively. Therefore, also
the multiscale methodology discards the data as a credible
prior prediction.

Fig. 12 (a) Pressure, p (bar),
vs. depth (m) in well F4. Prior
predictions (red dots) and data
(cyan dots). (c) Corresponding
results obtained with the
Mahalanobis methodology.
CDFW (red) and CDFd (cyan).
(e) Corresponding results
obtained with the multiscale
methodology. ξl(W ) (red solid),
ξl (d) (cyan solid), and
ξl (W ) ± 2ζl(W ) (red dashed).
(b) Prior predictions (red dots)
and data (cyan dots) in the Garn
formation. (d) Corresponding
results obtained with the
Mahalanobis methodology.
CDFW (red) and CDFd (cyan).
(f) Corresponding results
obtained with the multiscale
methodology. ξl(W ) (red solid),
ξl (d) (cyan solid), and
ξl (W ) ± 2ζl(W ) (red dashed).
The results obtained with the
multiscale methodology have
been normalized
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With real data there is, of course, only a single data vector.
This means that the elements of λml will take values either
0 or 100, while CDFd will be extremely narrow, so that λmd

becomes either very close to 0 or very close to 100. There
is therefore no extra information conveyed by reporting the
values of λmd and λml, and I will refrain from doing so in
Section 3.3.

Figure 11(b) shows 20 of the prior predictions and the
data for the water production in well E4. Figure 11(d)
shows corresponding results obtained with the Mahalanobis
methodology, while Fig. 11(f) shows results obtained with
the multiscale methodology. The Mahalanobis methodology
accepts the data as a credible prior prediction. The results
obtained with the multiscale methodology does not lead to
an obvious conclusion, but one would perhaps tend to accept
the data as a credible prior prediction, although ξ4(d) is
marginally outside the interval B4 and ξ5(d) is at the upper
boundary of B5.

3.3.2 RFT data

Figure 12(a) shows 30 of the prior predictions (100were used
in the analysis) and the data for the RFT pressures in well F4.
Note the jump in pressure values from the Garn formation
above the Not shale (above approximately 2650 m) to the
formations below the Not shale (below approximately 2670
m). Note also the smaller jump in pressure values within the
Garn formation (at approximately 2640 m) seen only in the
data. This feature was central in [3] when seeking to improve
the initial reservoir description.

Figure 12(c) shows corresponding results obtained with
theMahalanobismethodology,while Fig. 12(e) shows results
obtained with the multiscale methodology. Both the Maha-
lanobis methodology and the multiscale methodology accept
the data as a credible prior prediction

Figure 12(b) shows 30 of the prior predictions and the data
for the RFT pressures in well F4 within the Garn formation.
Figure 12(d) shows corresponding results obtained with the

Mahalanobis methodology, while Fig. 12(f) shows results
obtained with the multiscale methodology. TheMahalanobis
methodology discards the data as a credible prior prediction,
while ξl(d) is clearly outside Bl for l ∈ [1, 2], which would
make us discard the data as a credible prior prediction also
when applying the multiscale methodology.

3.3.3 Time-lapse impedance data

The Norne simulation model represents the Garn formation
with three grid-cell layers in the vertical direction. I will con-
sider prior predictions and data for the acoustic impedance
change in Layer 2 from year 2001 to year 2006.

The maximum number of grid cells in Layer 2 in the i
and j directions are 36 and 12, respectively, and most of the
36 j-columns contain 12 cells. I therefore let H consist of
two-dimensional test vectors of size 36 × 12. Since Layer 2
is not rectangular, I extend it to a rectangle with dummy cells
to facilitate multiplication with the rectangular test vectors in
H . The acoustic impedance change in each dummy cell is set
to zero to ensure that these cells will not influence the results
obtained with the multiscale methodology. Four of the five
vectors in H are illustrated in Fig. 13. The fifth vector, h0,
takes the value 1 in each grid cell.

Figure 14(a) shows a scatter plot of the time-lapse acoustic
impedance change in 25 of the prior predictions, ZW (100
were used in the analysis), versus that of the data, Zd , for all
grid cells in the study region. In all grid cells, the majority of
the values of the prior predictions are significantly lower than
the corresponding data values, but in most of the cells, there
are also several prior predictions with higher values than the
corresponding data value. Figure 14(b) shows the data in the
study region.

Figure 14(c) shows corresponding results obtained with
the Mahalanobis methodology, which accepts the data as
a credible prior prediction. Figure 14(d) shows results
obtained with the multiscale methodology. Also the mul-

Fig. 13 Test vectors {hl }4l=1
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Fig. 14 (a) Time-lapse acoustic
impedance change in the prior
predictions, ZW (m/s · g/cc), vs.
that of the data, Zd (m/s · g/cc).
Orange line indicates equal
values for Zw and Zd . (b) Zd in
study area. (c) CDFW (red) and
CDFd (cyan). (d) ξl (W ) (red
solid), ξl (d) (cyan solid), and
ξl (W ) ± 2ζl(W ) (red dashed).
The results obtained with the
multiscale methodology have
been normalized

tiscale methodology accepts the data as a credible prior
prediction.

3.4 Discussion

The definition of {Bl}Ll=0 is important for the outcome of the
multiscale methodology. The current definition is convenient
for the comparison with the Mahalanobis methodology (see,
last paragraph in Section 2.1.2). It is, of course, possible to
apply the multiscale methodology with an alternative defini-
tion of {Bl}Ll=0 if one believes that would be more suitable
for the problem at hand.

Furthermore, the criteria (see, second paragraph in Sec-
tion 2.2) for when to accept and when to discard d as a
credible prior prediction (or similarly, when to accept and
when to discard D as credible prior predictions), given the
definition of {Bl}Ll=0, are not completely precise. The situa-
tion regarding lack of precision is similar for theMahalanobis
methodology (see, the last paragraph in Section 2.1.2). It
would, of course, be possible to be more precise, but I think
it is better to leave this issue to the judgment of potential
users of the methodology on their particular problems.

Finally, there are numerous options for the multiscale test
vectors in H , and I do not claim that my choice is optimal. On
the contrary, it is themultiscale feature of H that is important,
rather than the particular definition of its members.

4 Summary

The problem of criticizing a model prior to history matching
by comparing data to prior predictions from the model was
considered. A multiscale methodology, that can be applied
to analyze differences between data and prior predictions in
a scale-by-scale fashion, was proposed. The methodology is
computationally inexpensive, straightforward to apply, and
can handle correlated observation errors without making any
approximations.

The multiscale methodology was tested on a set of toy
models, on two simplistic reservoir models with synthetic
data, and on (production, RFT, and time-lapse acoustic
impedance) data and prior predictions from the G-segment
of the Norne field. The tests included comparisons with a
previously published method [3], denoted the Mahalanobis
methodology in this paper. For the toy models and the reser-
voir models, it was also possible to test the robustness of the
methodologies towards effects caused by a particular data
vector.

Themultiscalemethodology and theMahalanobismethod-
ology behaved similarly for the Norne case. Both method-
ologies led to the same decisions regarding whether to accept
or discard the data as a credible prior prediction for the
different data types. This is a desirable feature of the mul-
tiscale methodology, since the Mahalanobis methodology
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induced changes in the Norne reservoir model that led to
a better data match [3]. The multiscale methodology led to
correct decisions for the toy models and the reservoir mod-
els. For these models, the Mahalanobis methodology either
led to incorrect decisions, and/or was unstable with respect to
ensemble selection. These problems seem to be related to the
need for regularization of the covariance matrix entering the
Mahalanobis distance, and to a too large sensitivity towards
small-scale differences between data and prior predictions,
while important coarse-scale differences were not disclosed.
There is no need for a covariancematrix or any regularization
with the multiscale methodology, and this may be the reason
for it’s superiority.
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