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A B S T R A C T

With the long-standing efforts of green transition in our society, underground hydrogen storage (UHS) has
emerged as a viable solution to buffering seasonal fluctuations of renewable energy supplies and demands.
Like operations in hydrocarbon production and geological CO2 storage, a successful UHS project requires
a good understanding of subsurface formations, while having different operational objectives and practical
challenges. Similar to the situations in hydrocarbon production and geological CO2 storage, in UHS problems,
the information of subsurface formations at the field level cannot be obtained through direct measurements
due to the resulting high costs. As such, there is a need for subsurface characterization and monitoring at
the field scale, which uses a certain history matching algorithm to calibrate a numerical subsurface model
based on available field data. Whereas subsurface characterization and monitoring have been widely used
in hydrocarbon production activities for a better understanding of hydrocarbon reservoirs, to the best of our
knowledge, at present it appears to be a relatively less touched area in UHS problems. This work aims to narrow
this noticed gap, and investigates the use of an ensemble-based workflow for subsurface characterization and
monitoring in a 3D UHS case study. Numerical results in this case study indicate that the ensemble-based
workflow works reasonably well, while also identifying some particular challenges that would be relevant to
real-world problems.
1. Introduction

The intergovernmental ambition of taming climate change, in com-
bination with energy crises, has significantly accelerated the develop-
ment of clean and renewable energies in the past decades. Some types
of these renewable energies, such as wind and solar, are abundant
in nature, yet a noticeable shortcoming is that their availability may
vary seasonally in many geographic locations. For this reason, there
is a need for developing energy storage systems to buffer the seasonal
fluctuations of renewable energy supplies and demands, apart from the
considerations of energy security and strategic reserves [1,2]. In this
regard, a well-received notion is to store renewable energy through an
electricity-to-hydrogen (H2) conversion process. For instance, one may
use the excess electricity generated from solar energy in the summer
to produce H2, which is then stored somewhere for a period, and
converted back to electricity when there is a higher energy demand
in the winter [3].

Potential H2 storage options include underground H2 storage (UHS),
surface H2 storage and material-based H2 storage [4]. Surface H2 stor-
age (e.g., in gas tanks) typically targets end-uses and aims to meet
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hourly to daily demands. Material-based H2 storage deposits H2 through
a physical or chemical sorption mechanism, and can conduct a long
term storage of H2 in a safe way. However, the unit storage cost could
be high due to the demanding operation conditions to achieve the
physical or chemical sorption of H2, yet the potential storage capacity
is not clear so far [4]. In contrast, currently UHS appears to be the
only viable option that has the potential to provide long-term storage
of H2 at large scales to balance seasonable supplies and demands [2,4],
while experiences in similar underground natural gas or CO2 storage
projects can be extended to facilitate the developments and operations
of UHS projects for improved safety and reduced costs.

UHS can be conducted in both engineered and naturally existing
storage sites [1,2,4–7]. Engineered sites include salt caverns, hard rock
caverns and abandoned mines, and naturally existing sites consist of
depleted hydrocarbon (gas or oil) fields and aquifers, among others.
Table 1 provides a relative comparison of several characteristic aspects
of some UHS options, from which one can see that among these
different options, salt cavern possesses the highest technology readiness
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Table 1
Relative comparison of some characteristic aspects of UHS options, following [2,5].

Salt caverns Hard rock caverns or
abandoned mines

Depleted hydrocarbon
fields

Aquifers

Suitability for UHS High High Site-specific Site-specific
Technology readiness
level (TRL)

High Low Low Low

Geographic availability Somewhat limited Somewhat limited Somewhat limited Wide
Capital expenditures (CapEx)
for project development

Low High Low Low

Operating expenses (OpEx) Medium Medium Low Low
Cyclic frequency High High Low Low
Storage capacity Medium Medium High High
o
s

level (TRL) right now, with a few commercial UHS projects running
worldwide [2]. Apart from the typically lower storage capacities than
those of natural storage sites, an important issue related to the use
of salt caverns is that salt-bearing formations may not be available in
many geographic locations [1], which makes the use of salt caverns
alone inadequate to meet the enormous energy demands of our society.
For this reason, other UHS alternatives, namely, hard rock caverns,
abandoned mines, depleted hydrocarbon fields and aquifers, should be
adopted to complement the use of salt caverns. Engineered hard rock
caverns and abandoned mines share similar problems (e.g., capacity
and geographical availability) to salt caverns, but are with lower TRLs
and practically less used than salt caverns at present [2]. Regarding nat-
ural storage sites, the current TRLs of both depleted hydrocarbon fields
and aquifers are also lower than those of salt caverns, although there
are a few pilot studies reported in the literature (cf. 2 and the references
therein). Despite this TRL gap, depleted hydrocarbon fields and aquifers
tend to have substantially higher storage capacities than salt caverns,
hard rock caverns and abandoned mines [1], and can achieve relatively
low unit storage costs due to the economies of scale. With this said,
both engineered and natural UHS options have their own benefits and
disadvantages. Natural storage sites enjoy the advantages of having, for
instance, (1) wider geographic availability; (2) higher storage capacity;
and (3) lower project capital expenditures and operating expenses, in
comparison to engineered UHS sites. Meanwhile, within the category
of natural UHS sites, aquifers share similar characteristics to those of
depleted hydrocarbon fields. The technical advantages of aquifers over
depleted hydrocarbon fields include, for instance, the exemption from
treating legacy wells to avoid H2 leakage, and the flexibility for storage
site selections that allows more economic connections to H2 production
sites, transportation infrastructures and/or end-use facilities; whereas
the benefits of depleted hydrocarbon fields relative to aquifers consist
of, for instance, better subsurface understanding and existing infrastruc-
ture (e.g., pipelines and storage facilities) due to previous exploration,
monitoring, and production activities. For more detailed elaboration of
the pros and cons of different UHS options, readers are referred to, for
instance, [1,2,4,5,7].

The focus of the current work is on UHS in natural storage sites.
For this purpose, an important requirement is to obtain a good under-
standing of the subsurface formations, which is vital for understanding
the trapping mechanism of H2 in the subsurface, imaging potential
migration of H2, detecting potential H2 leakage in long-term operations,
managing the deliverability of H2 during injection and withdrawal
cycles, and so on. To meet this requirement, a common practice is to
conduct subsurface characterization and monitoring, in which one first
builds a numerical model of the subsurface, and then calibrates the
numerical model based on available field data (e.g., production and/or
geophysical survey data). Typically, the numerical model is represented
by a set of parameters (e.g., permeability and porosity), which are
referred to as model variables hereafter. Within this context, subsurface
characterization and monitoring correspond to a parameter estimation
2

problem.
In connection to the aforementioned focus, in the current work,
we investigate the use of an ensemble-based workflow for subsur-
face characterization and monitoring, within the context of UHS in
a subsurface model from [8]. Practically speaking, ensemble-based
workflows [9–12] enjoy certain attractive benefits, such as the nature
of being derivative-free (i.e., no need to compute the derivatives of an
objective function with respect to model variables), the ability to deal
with a large number of parameters, and the capacity to provide a means
of uncertainty quantification. As such, they can be adopted to address
one of the important issues, namely, heterogeneities and uncertainties
at the field scale, in UHS problems [2]. In addition, although not
investigated in the current work, it is expected that ensemble-based
workflows themselves are independent of storage options, and can be
applied to UHS problems in different natural storage sites, although
site-specific challenges could be encountered therein.

In terms of novelty, within the context of UHS in natural storage
sites, much attention has been paid to understanding – at the pore or
core scale – PVT properties of H2 in the subsurface, geochemical and
microbial interactions of H2 to the subsurface environment, and hydro-
dynamics of H2 flow in porous media [2,7,13], among others. In the
meantime, at the field scale, the focus appears to be more on numerical
modeling and simulation, multiphase flow behavior (e.g., wettability,
contact angle, relative permeability, capillary pressure and hysteresis)
studying, storage site screening and ranking, economics analysis, and so
on [2,8,14–19]. To the best of our knowledge, however, in the literature
there are few efforts dedicated to subsurface characterization and mon-
itoring, which would be crucial to the developments and operations
of UHS projects in natural storage sites, based on similar experience
from underground natural gas and CO2 storage problems [20–22]. The
current work can be viewed as one of the first attempts that aim to
narrow this noticed gap.

As a side remark, here we also briefly mention certain similarities
and differences among hydrocarbon production, geological CO2 storage
and UHS. In terms of similarities, all three subjects involve subsur-
face operations, for which subsurface characterization and monitoring
would play a critical role. On the other hand, they bear different
objectives: Hydrocarbon production focuses on non-sustainable natural
resource recovery; geological CO2 storage aims to achieve long-term
safe storage of CO2 in the subsurface for greenhouse gas reduction;
and UHS targets H2 storage and retrieval as a means of renewable
energy management. Accordingly, these different objectives lead to
distinct procedures and constraints in subsurface operations. For in-
stance, using cushion gas is usually not a prerequisite for hydrocarbon
production, but appears to be a standard requirement for both geolog-
ical CO2 storage and UHS (since using cushion gas has the benefits
f providing pressure supports, helping reduce fluid migration, and
o on) [2]. Meanwhile, although both CO2 storage and UHS involve

gas deposits in subsurface conditions, the expected storage time scales
may be substantially different (e.g., centurial for CO2 storage versus
annual for UHS). Moreover, while it may be considered beneficial that
CO2 reduction takes place in the subsurface through various trapping

mechanisms, it is typically undesirable that H2 is trapped in similar



Fuel 364 (2024) 131038X. Luo et al.
Fig. 1. Subsurface characterization and monitoring workflow based on the iterative ensemble smoother (IES) in [12].
ways. As a result, having a good understanding of the impacts of
various trapping mechanisms on UHS is an economically important
topic within this context. With this said, it is evident that despite the
recognized similarities, these three subjects (hydrocarbon production,
geological CO2 storage and UHS) have their own operational objectives
and particular practical challenges.

The rest of the paper is organized as follows: We start with an
introduction to an ensemble-based history matching workflow for sub-
surface characterization and monitoring, and then proceed to apply
the presented workflow to a 3D case study of UHS in the subsurface
model from [8]. We illustrate how the ensemble-based workflow takes
into account heterogeneities and uncertainties at the field scale in
this case study. In addition, we investigate the performance of the
presented workflow in this case study, which initially takes place in a
scenario that only uses production data from a single well in history
matching, and is extended to another scenario that assimilates both
production and 4D seismic data for improved performance. We discuss
the implications of the numerical results in the case study, identify
some open challenges, and conclude the whole work with potential
future research directions.

2. Ensemble-based history matching workflow for subsurface char-
acterization and monitoring

Fig. 1 provides a sketch of the ensemble-based workflow used
in the current work. Within this context, subsurface characterization
and monitoring consist of a forward modeling process and an in-
verse modeling process, respectively. The forward modeling process
aims to generate simulated field data based on an ensemble of sub-
surface models and an associated numerical simulator, whereas the
inverse modeling process examines the differences between the sim-
ulated and observed field data, and adopts a certain algorithm (an
iterative ensemble smoother in this case) to adjust the ensemble of
subsurface models in such a way that the aforementioned data discrep-
ancies can be reduced to a satisfactory level. Typically, each subsurface
model in the ensemble is parameterized by a set of parameters (such
as petro-physical parameters like permeability and porosity). In this
case, subsurface characterization and monitoring boil down to a pa-
rameter estimation problem, which is often referred to as a history
matching or data assimilation problem in the community of reservoir
engineering [9,23].

In the sequel, the focus of this section will be on introducing one of
the iterative ensemble smoothers (IES) [10–12] as the history matching
algorithm. For a better comprehension of how this IES algorithm should
be applied to large-scale problems, in addition to presenting its basic
form, we also include a practical implementation of this IES algorithm
for enhanced numerical stability, and discuss the use of two auxiliary
techniques, namely, localization and dimensionality reduction, to fur-
ther improve the performance of this IES algorithm, when it is applied
to handle big subsurface models and big field data sets with a relatively
small ensemble size.
3

2.1. The basic iterative ensemble smoother algorithm

As indicated in Fig. 1, the IES algorithm proposed in [12] is adopted
as the inversion algorithm. Like other ensemble-based data assimilation
algorithms, this IES updates an ensemble of subsurface models based on
the differences between the observed and the simulated field data. The
main benefits of using an IES algorithm include: (1) the IES algorithm
is non-intrusive and derivative-free, meaning that for model updates,
there is no need to explicitly evaluate the gradients (nor Hessians) of
the objective function with respect to model variables, as can be seen
in Eqs (3) – (5) below; (2) the IES algorithm implicitly utilizes the
information of both gradients and Hessians for model updates, and con-
verges faster than alternative algorithms that only use the information
of gradients [24,25]; (3) the IES algorithm is able to simultaneously
update a large number of model variables, as is demonstrated in real
field case studies [26]; (4) by generating an ensemble of calibrated
subsurface models, instead of a single one, the IES provides a means of
uncertainty quantification, which could be further exploited in subse-
quent procedures like risk analysis and robust production optimization.
Putting together these noticed benefits, the IES algorithms become an
attractive choice in practice, as they are relatively easy to implement
and have the capacity to handle large-scale subsurface characterization
and monitoring problems.

In the sequel, we start with an introduction to the basic form of the
IES algorithm, and then proceed to present certain modifications of the
basic form in order to enhance the performance of the IES in practical
applications.

Let 𝐦 ∈ R𝑚 represent a generic subsurface model, which is an
𝑚-dimensional vector containing 𝑚 parameters (e.g., permeability and
porosity) to be updated by the IES algorithm. Also, let 𝐠 ∶ R𝑚 → R𝑝

be the forward simulator that generates a 𝑝-dimensional vector of sim-
ulated field data 𝐝sim ≡ 𝐠 (𝐦) ∈ R𝑝, for a given subsurface model 𝐦. In
correspondence to 𝐝sim, there exists a 𝑝-dimensional vector of observed
field data 𝐝𝑜𝑏𝑠 ∈ R𝑝 (called observations hereafter). It is assumed that
the observations 𝐝𝑜𝑏𝑠 are contaminated by certain observation errors
that follow a multivariate Gaussian distribution with zero mean and
covariance 𝐂𝑑 ∈ R𝑝×𝑝.

The IES algorithm in [12] aims to minimize the average of an
ensemble of cost functions at each iteration step. Specifically, suppose
that 𝐌𝑖 ≡ {𝐦𝑖

𝑗 ∶ 𝐦𝑖
𝑗 ∈ R𝑚}𝑁𝑒

𝑗=1 represents an ensemble of 𝑁𝑒 subsurface
models obtained at the 𝑖th iteration step. The IES algorithm updates
𝐌𝑖 to a new ensemble 𝐌𝑖+1 ≡ {𝐦𝑖+1

𝑗 ∶ 𝐦𝑖+1
𝑗 ∈ R𝑚}𝑁𝑒

𝑗=1 by solving the
following minimum-average-cost (MAC) problem at each iteration step:

min
{𝐦𝑖+1

𝑗 }𝑁𝑒
𝑗=1

1
𝑁𝑒

𝑁𝑒
∑

𝑗=1
𝐿𝑖+1
𝑗 ; (1)

𝐿𝑖+1
𝑗 ≡

(

𝐝𝑜𝑏𝑠𝑗 − 𝐠
(

𝐦𝑖+1
𝑗

))𝑇
𝐂−1
𝑑

(

𝐝𝑜𝑏𝑠𝑗 − 𝐠
(

𝐦𝑖+1
𝑗

))

+𝛾 𝑖
(

𝐦𝑖+1 −𝐦𝑖
)𝑇

(

𝐂𝑖 )−1
(

𝐦𝑖+1 −𝐦𝑖
)

, (2)
𝑗 𝑗 𝑚 𝑗 𝑗
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where 𝐝𝑜𝑏𝑠𝑗 (𝑗 = 1, 2,⋯ , 𝑁𝑒) are random samples drawn from the
ultivariate Gaussian distribution 𝑁(𝐝𝑜𝑏𝑠,𝐂𝑑 ); 𝐂𝑖

𝑚 ≡ 𝐒𝑖𝑚
(

𝐒𝑖𝑚
)𝑇 is the

sample covariance matrix with respect to the ensemble 𝐌𝑖, with the
square root matrix 𝐒𝑖𝑚 being defined in Eq. (4) below. In Eq. (2), the cost
function 𝐿𝑖+1

𝑗 consists of two terms: the first one (data mismatch term)
describes the discrepancies between the observed and the simulated
observations, whereas the second one (regularization term) is addition-
ally introduced to mitigate the ill-posedness of history matching as an
inverse problem and avoid the issue of overfitting [27]. The relative
weights between the data mismatch and the regularization terms de-
pend on the regularization parameter 𝛾 𝑖, whose value varies over the
teration step and is determined using the following rule [12]: 𝛾 𝑖 ≡
𝛼𝑖 × trace

(

𝐒𝑖𝑔(𝐒
𝑖
𝑔)

𝑇
)

∕trace
(

𝐂𝑑
)

, with the operator ‘‘trace’’ computing
he trace of a matrix, and 𝐒𝑖𝑔 being a square root matrix defined in
q. (5). The initial value 𝛼0 = 1, and 𝛼𝑖+1 = 0.9 × 𝛼𝑖 if the average data
ismatch (see the definition in Eq. (13) later) is reduced, otherwise
𝑖+1 = 2 × 𝛼𝑖.

As shown in [12], the MAC problem (Eqs. (1) – (2)) is approximately
olved by the following model update formula:

𝑖+1
𝑗 = 𝐦𝑖

𝑗 + 𝐒𝑖𝑚(𝐒
𝑖
𝑔)

𝑇
(

𝐒𝑖𝑔(𝐒
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐂𝑑

)−1 (
𝐝𝑜𝑏𝑠𝑗 − 𝐠

(

𝐦𝑖
𝑗

))

,

for 𝑗 = 1, 2,⋯ , 𝑁𝑒 ; (3)

𝑖
𝑚 = 1

√

𝑁𝑒 − 1

[

𝐦𝑖
1 −𝐦𝑖,⋯ ,𝐦𝑖

𝑁𝑒
−𝐦𝑖

]

; 𝐦𝑖 = 1
𝑁𝑒

𝑁𝑒
∑

𝑗=1
𝐦𝑖

𝑗 ; (4)

𝑖
𝑔 = 1

√

𝑁𝑒 − 1

[

𝐠(𝐦𝑖
1) − 𝐠(𝐦𝑖),⋯ , 𝐠(𝐦𝑖

𝑁𝑒
) − 𝐠(𝐦𝑖)

]

. (5)

From Eqs. (3)–(5), it is clear that the model update formula does
not explicitly involve any quantities of derivatives, although it can be
shown that the information of gradient and Hessian of the cost function
with respect to the model variables is implicitly utilized in the course
of deriving the model update formulate [24,25], which is a practically
desirable feature, and makes the IES algorithm often reach a relatively
good solution after only several (e.g., four to six) iteration steps.

2.2. Practical implementation of the IES algorithm

In a practical implementation, some modifications of the update for-
mulae, Eqs. (3)–(5), are introduced to improve the numerical stability
of the algorithm. First of all, to mitigate the potential issue of distinct
orders of magnitudes resulting from different types of field data, it
is necessary to re-scale relevant quantities in the observation space,
leading to the following normalized terms:

�̃�𝑖𝑔 ≡ 𝐂−1∕2
𝑑 𝐒𝑖𝑔 ; 𝐝𝑜𝑏𝑠𝑗 ≡ 𝐂−1∕2

𝑑 𝐝𝑜𝑏𝑠𝑗 ; �̃�
(

𝐦𝑖
𝑗

)

≡ 𝐂−1∕2
𝑑 𝐠

(

𝐦𝑖
𝑗

)

, (6)

where 𝐂−1∕2
𝑑 is a square root matrix of the matrix 𝐂−1

𝑑 (the inverse of
the covariance matrix 𝐂𝑑). Accordingly, Eq. (3) can be re-written as

𝐦𝑖+1
𝑗 = 𝐦𝑖

𝑗 + 𝐒𝑖𝑚(�̃�
𝑖
𝑔)

𝑇
(

�̃�𝑖𝑔(�̃�
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐈𝑝
)−1 (

𝐝𝑜𝑏𝑠𝑗 − �̃�
(

𝐦𝑖
𝑗

))

, (7)

where 𝐈𝑝 is the 𝑝-dimensional identity matrix.
The second modification is mainly about further improving the

numerical efficiency and stability of the update formula in Eq. (7),
where the inverse of the matrix �̃�𝑖𝑔(�̃�

𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐈𝑝 needs to be computed.
Instead of a straightforward computation of this inverse matrix, one can
exploit the fact that in practice, the ensemble size 𝑁𝑒 (typically around
100) is much smaller than the data size 𝑝. Under this setting, �̃�𝑖𝑔(�̃�𝑖𝑔)𝑇
is a singular matrix with a rank no more than 𝑁𝑒 − 1. As a result, one
can first apply a singular value decomposition (SVD) to the square root
matrix �̃�𝑖𝑔 , such that

�̃�𝑖𝑔 = 𝐔𝑖𝜮𝑖 (𝐕𝑖)𝑇 , (8)

where 𝐔𝑖 (𝑝×𝑝) and 𝐕𝑖 (𝑁𝑒×𝑁𝑒) are unitary matrices containing the left-
𝑖
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and right-singular vectors, respectively, and 𝜮 (𝑝×𝑁𝑒) is a rectangular t
diagonal matrix with its non-zero singular values denoted by 𝜎1, 𝜎2,⋯
(in a descending order). One then proceeds to approximate �̃�𝑖𝑔 by
truncating insignificant singular values and their associated singular
vectors, so that

�̃�𝑖𝑔 ≈ 𝐔𝑖
𝑟𝜮

𝑖
𝑟
(

𝐕𝑖
𝑟
)𝑇 , (9)

where now 𝜮𝑖
𝑟 (𝑟×𝑟) is a diagonal matrix whose diagonal elements cor-

respond to 𝜎1, 𝜎2,⋯ , 𝜎𝑟 (after discarding singular values 𝜎𝑟+1, 𝜎𝑟+2,⋯),
𝐔𝑖
𝑟 (𝑝 × 𝑟) and 𝐕𝑖

𝑟 (𝑁𝑒 × 𝑟) are matrices resulting from the removals of
the left- and right-singular vectors associated with the singular values
𝜎𝑟+1, 𝜎𝑟+2,⋯ from the original unitary matrices 𝐔𝑖 and 𝐕𝑖, respectively.
In the current work, the rank 𝑟 (𝑟 ≤ 𝑁𝑒 − 1 ≪ 𝑝) is determined
using the following criterion:

(

∑𝑟
𝓁=1 𝜎

2
𝓁

)

∕
(

∑𝑁𝑒−1
𝓁=1 𝜎2𝓁

)

≤ 0.95 and
(

∑𝑟+1
𝓁=1 𝜎

2
𝓁

)

∕
(

∑𝑁𝑒−1
𝓁=1 𝜎2𝓁

)

> 0.95.
Inserting Eq. (9) into Eq. (7), one obtains

𝐦𝑖+1
𝑗 ≈ 𝐦𝑖

𝑗 + 𝐒𝑖𝑚𝐕
𝑖
𝑟𝜮

𝑖
𝑟
(

(𝜮𝑖
𝑟)
2 + 𝛾 𝑖 𝐈𝑟

)−1 (𝐔𝑖
𝑟
)𝑇

(

𝐝𝑜𝑏𝑠𝑗 − �̃�
(

𝐦𝑖
𝑗

))

, (10)

where (𝜮𝑖
𝑟)
2 ≡ 𝜮𝑖

𝑟(𝜮
𝑖
𝑟)
𝑇 and 𝐈𝑟 is the 𝑟-dimensional identity matrix. Fol-

lowing this modification, the scalar coefficient 𝛾 𝑖 is determined using
the following rule: 𝛾 𝑖 ≡ 𝛼𝑖 × trace

(

(𝜮𝑖
𝑟)
2) ∕trace

(

𝐈𝑟
)

= 𝛼𝑖
∑𝑟

𝓁=1 𝜎
2
𝓁∕𝑟,

with the values of 𝛼𝑖 being determined in the same way as described
in the text below Eq. (2).

In comparison to the update formula in Eq. (7), the modified one,
Eq. (10), only requires to compute the inverse of the low-dimensional
diagonal matrix (𝜮𝑖

𝑟)
2 + 𝛾 𝑖 𝐈𝑟, which is more efficient than calculating

the inverse of the (much higher dimensional) matrix �̃�𝑖𝑔(�̃�
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐈𝑝. On
the other hand, through the truncated singular value decomposition
(TSVD), it can be shown that for a given value 𝛾 𝑖, the condition
number1 of the matrix

(

(𝜮𝑖
𝑟)
2 + 𝛾 𝑖 𝐈𝑟

)−1 is smaller than that of the matrix
(

�̃�𝑖𝑔(�̃�
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐈𝑝
)−1

. An implication of this reduced condition number is
that the influence of the observation noise in 𝐝𝑜𝑏𝑠𝑗 is less amplified, and
that the ill-posedness of the inverse problem is further mitigated [27].
Practically speaking, the update formula in Eq. (10) thus tends to be
numerically more stable than that in Eq. (7), as was typically observed
in the applications of the IES algorithm.

2.3. Correlation-based adaptive localization in the IES

In practice, running the forward simulator 𝐠 is often computa-
tionally expensive in large scale problems, which limits the ensemble
size 𝑁𝑒 that one can afford. For this reason, the typical ensemble
size used in the IES algorithm is in the order of (102), which is
often much smaller than the model size 𝑚 and the data size 𝑝. One
consequence of using a relatively small ensemble size is that when the
ensemble is used to compute certain matrices (e.g., 𝐒𝑖𝑚(�̃�𝑖𝑔)𝑇 and �̃�𝑖𝑔(�̃�

𝑖
𝑔)

𝑇

in Eq. (7)), issues like sampling errors and rank-deficiencies would
arise [28], often leading to deteriorated performance of subsurface
characterization and monitoring. To address these noticed issues, an
auxiliary technique, called localization [29–33], is often introduced to
improve the performance of the IES algorithm.

There are two major schools of localization techniques used together
with IES algorithms. One school of these methods mainly conducts
localization based on the distances between the physical locations of
model variables and observations (see, for example, 29,30), whereas
the other instead utilizes for localization the sample correlations be-
tween an ensemble of model variables and the corresponding ensem-
ble of simulated field data (see, for example, 31–33). In comparison
to distance-based localization, correlation-based localization does not
require physical locations associated with either model variables or ob-
servations, and can overcome or mitigate the long-standing challenges

1 For a symmetric matrix, the condition number is defined as the ratio of
he largest eigenvalue to the smallest one.
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Table 2
Information of the numerical subsurface model used in the UHS case study. The statistics of mean and STD reported below are calculated based on respective values distributed
on active gridblocks.

Model information

Storage site depth (mean ± STD) 1166.5 m ± 18.3m
Model size 61 × 61 × 12 (44 652 gridblocks distributed on 12 vertical layers, all active)
Gridblock size 𝛥𝑋 = 𝛥𝑌 = 50.0m for all gridblocks; 𝛥𝑍 ≈ 2.2m on average (uneven among gridblocks)
Phases Water and gas
Initial conditions (mean ± STD) Temperature (◦C): 60.0 ± 3.8 × 10−6; Pressure (bar): 81.5 ± 0.3; Water saturation (%): 21.9 ± 12.2

Number of wells 1 (labeled as ‘WELL3’. Vertical well with the perforation zone from Layer 2 to Layer 12)
Simulator ECLIPSE© 300
Simulation time 01 Jan 2018 - 09 Feb 2022 (1500 days in total)

Operating schedule

– N2 injection for the first 360 days with 4 sub-cycles; each sub-cycle includes 60 days of N2 injection, and then 30 days of well
shut-in; Operating target: bottom hole pressure (BHP)
After the first 360 days, fourH2 injection and four H2 withdrawal cycles alternate:
– In each injection cycle, H2 is injected for 90 days, with a subsequent well shut-in for 90 days; Operating target: surface flow
rate (RATE) at 6.0 × 105 sm3/day
– In each withdrawal cycle, H2 is produced for 90 days, with a following well shut-in for 15 days; Operating target: gas rate
(GRAT) at 6.0 × 105 sm3/day
w
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when dealing with non-local and time-lapse (or 4D) observations.
Additional advantages of correlation-based localization include: (1) It is
adaptive and can automatically take into account the effects of various
factors, such as the change of fluid dynamics in the subsurface, the use
of different ensemble sizes in the IES algorithm, the difference in the
combinations of distinct types of model variables and field data, and so
on [32,34]; (2) The implementation of correlation-based localization is
straightforward and can be conveniently transferred among different
case studies.

With these practical benefits said, a correlation-based automatic
and adaptive localization (AutoAdaLoc) scheme developed in [35] is
applied to the IES algorithm in the case study later, so that the model
update formula becomes

𝐦𝑖+1
𝑗 = 𝐦𝑖

𝑗 +
(

𝐓𝑖◦𝐊𝑖)
(

𝐝𝑜𝑏𝑠𝑗 − �̃�
(

𝐦𝑖
𝑗

))

, (11)

where 𝐊𝑖 is a matrix in the form of, e.g., 𝐊𝑖 = 𝐒𝑖𝑚𝐕
𝑖
𝑟𝜮

𝑖
𝑟
(

(𝜮𝑖
𝑟)
2 + 𝛾 𝑖 𝐈𝑟

)−1

(

𝐔𝑖
𝑟
)𝑇 for the update formula in Eq. (10), ◦ stands for Schur product,

and 𝐓𝑖 is a tapering matrix whose elements are computed following
a certain rule. To avoid distraction, we leave into Appendix A the
technical details of how to construct the tapering matrix 𝐓𝑖 in the
AutoAdaLoc scheme.

2.4. Dealing with big models and big data in the IES

The issue of big models and big data is relevant to the current
work, as in the case study later, 4D seismic surveys are conducted to
improve the quality of estimated subsurface models, which leads to
a relatively big seismic data set for subsurface characterization and
monitoring. Given the high dimensionality of the subsurface model and
the field data, applying the update formula of the IES algorithm would
require substantial computational resources. This point can be seen in
Eq. (11), where the update formula involves the Schur product 𝐓𝑖◦𝐊𝑖.
Since both matrices 𝐓𝑖 and 𝐊𝑖 are in the dimension of model size by
data size, with big models and big data, it would then require a huge
amount of computer memory to store 𝐓𝑖 and 𝐊𝑖 in a straightforward
implementation of Eq. (11).

In the literature, there are mainly two categories of strategies to
deal with the above-noticed problem. In one category, the main idea
is to divide a subsurface model into a number of sub-group model
variables, and each sub-group of model variables is updated sepa-
rately [30,36,37]. In this case, it would be necessary to either calculate
parts of the matrices 𝐓𝑖 and 𝐊𝑖 (e.g., each row) on-the-fly [30], or
re-compute the matrices 𝐓𝑖 and 𝐊𝑖 for each sub-group of model vari-
ables [36,37]. In another category, the essential notion is to conduct
dimentionality reduction by finding a (much) lower-dimensional rep-
5

resentation of the subsurface model, the field data, or both [38–40]. t
The lower-dimensional representations are then used in the update
formula Eq. (11), so that the dimensionality of the corresponding
matrices 𝐓𝑖 and 𝐊𝑖 (accordingly, the required computer memory) can
be significantly reduced.

In this work, we follow the previous work [41] and adopt a
3D wavelet-based sparse representation procedure to find a lower-
dimensional representation of the 4D seismic data. In comparison to
similar sparse representation methods in other work (e.g., 38,40),
the advantages of the wavelet-based sparse representation procedure
include its computational efficiency, and the ability to provide a
reasonably good estimation of the observation noise level in the seismic
data (as a by-product of the sparse representation procedure). For
brevity, the technical details of the wavelet-based sparse representation
procedure are omitted in the current work. Readers are referred to the
work of [41] for more elaborations.

3. Application of the ensemble-based workflow to an underground
hydrogen storage (UHS) problem

3.1. Case study settings

Table 2 presents a brief summary of the information regarding the
numerical subsurface model, which is taken from the UHS study of [8],
yet with some minor modifications to facilitate its integration into the
ensemble-based workflow. This study considers a UHS scenario in an
unsaturated aquifer (gas reservoir) that contains the water and gas
phases. The initial gas in place is comprised of nitrogen (N2), CO2,
methane (C1), ethane (C2), propane (C3) and normal butane (NC4),

hich can be used as part of the cushion gas for UHS. In general,
epending on geological and technical considerations, the typical depth
f a natural storage site (aquifer or depleted hydrocarbon field) for UHS
ay roughly vary from 300 m to 2700 m [5,42]. The depth of the

torage site in the current case study falls within this typical range, with
he mean depth being around 1166.5 m and the associated standard
eviation (STD) of depth being around 18.3 m.

In terms of the number of gridblocks, the size of the numerical
odel is 61 × 61 × 12, whereas the size of a gridblock is 50.0 m
50.0 m × 2.2 m on average. There is only a single well (labeled

s ‘‘WELL3’’) near the center of the field, which is used for both
2 injection and withdrawal. In this work, ECLIPSE© 300 is adopted
s the numerical simulator (for this reason, ECLIPSE keywords will be
dopted to describe several quantities of interest in the text below). The
elative permeability and capillary pressure curves used in simulations
re plotted in Fig. 2, with the associated critical gas saturation being
.05 (i.e., 5%). The simulation time is 1500 days in total. During

he first 360 days, only N2 is injected as the cushion gas. After that,
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Fig. 2. (a) Relative permeability of water (𝐾𝑤𝑟) and gas (𝐾𝑔𝑟) and (b) capillary pressure (𝑃𝑐 , in the unit of bar) as functions of water saturation (𝑆𝑤𝑎𝑡).
Table 3
Summary of history matching settings in the UHS case study.

History matching settings

Production data Well bottom hole pressure (WBHP), field gas injection rate (FGIR), field gas production rate (FGPR), field molar injection
(FCMIR) and production (FCMPR) rates of water, N2 and H2. Total number of production data = 468

4D seismic data Amplitude versus angle (AVA) data from near- and mid-offsets at three survey times. Total number of seismic data (before
dimensionality reduction) ≈ 4.5 × 106

Dimensionality reduction 3D wavelet-based sparse representation as in [41]. Total number of seismic data (after dimensionality reduction) = 5010
History matching algorithm IES with correlation-based adaptive localization [35]
Initial ensemble Containing 100 subsurface models that are generated through a sequential Gaussian simulation algorithm [43]
Parameters to be estimated Each subsurface model containing permeability along the X direction in the natural logarithmic scale (log PERMX) and porosity

(PORO) on all active gridblocks, as the parameters to be estimated (permeability along Y- and Z-directions are assumed to be
proportional to permeability along the X direction). Total number of parameters (model size 𝑚) = 89 304
e

alternating H2 injection and withdrawal cycles start, with more details
elaborated in Table 2. The critical temperature and pressure of H2 are
33.2K and 13.0 bar, respectively. With the settings in Table 2, H2 is
thus injected and contained inside the subsurface in a supercritical
state. During the H2 injection cycle, the injected gas is pure H2. Other
H2 mixtures (e.g., in the form of town gas) can also be considered,
although not investigated in the current work.

Table 3 reports the settings of history matching in this case study.
During history matching, the main objective is to estimate an ensemble
of subsurface models through the IES algorithm, in such a way that
the average data mismatch (cf. Eq. (13)) of the estimated ensemble is
reasonably reduced, in comparison to that of the initial ensemble of
subsurface models. As indicated in Table 3, the uncertain parameters
in a subsurface model include permeability along the 𝑥 direction in
the natural logarithmic scale (log PERMX) and porosity (PORO) on
all active gridblocks. Therefore, the total number of parameters to be
estimated by the IES algorithm (hence the model size 𝑚) is 2 × 44652 =
89304.

To initialize the ensemble-based workflow, an initial ensemble of
100 subsurface models is randomly generated through a sequential
Gaussian simulation (SGSIM) algorithm [43], so that at the field scale,
heterogeneities and uncertainties of model variables are taken into
account. The initial ensemble is then updated by the IES algorithm, by
conditioning subsurface models on available field data (cf. Eq. (11)). To
mitigate the adversary effects of the relatively small ensemble size, the
IES algorithm is equipped with a correlation-based adaptive localiza-
tion scheme, which was introduced in the previous sub- Section 2.3. As
an iterative algorithm, the IES needs to have certain stopping criteria
for runtime control. In this work, the following two criteria are adopted:
(1) the maximum number of iteration steps reaches 10; (2) the change
of average data mismatch in two consecutive iteration steps is less than
0.01%. The IES will stop if either of these two criteria is satisfied.
For the case study herein, only the first criterion is triggered in our
6

numerical investigations. As such, the final ensembles of subsurface
models are those generated at the 10-th iteration steps.

In this work, there are two categories of field data used in history
matching. One constitutes 9 types of production data, including well
bottom hole pressure (WBHP), field gas injection rate (FGIR), field gas
production rate (FGPR), field molar injection (FCMIR) and production
(FCMPR) rates of water, N2 and H2, collected from the well WELL3 at
52 report time steps. Accordingly, the total number of production data
is 9×52 = 468. In this synthetic case study, the production data are gen-
rated by inputting a reference subsurface model into ECLIPSE© 300

to run a forward simulation, and then collecting respective production
data at specified time steps. In addition, to mimic the situation in
practice, a sample of zero-mean Gaussian white noise is then added
to each production-data point, where the STD of the noise is 5% of
the magnitude of the data point. As will be shown later, when only
using these production data in the IES algorithm (referred to as the
‘‘Prod’’ scenario for convenience of discussion later), the performance
of history matching is not entirely satisfactory, in the sense that the IES
algorithm is not able to make substantial updates of the initial ensemble
of subsurface models, largely due to the limited information contents
contained in the production data from the single well in the field.

To tackle the issue of limited information in production data, an-
other category of field data, 4D seismic, is also adopted in history
matching together with production data, which is referred to as the
‘‘ProdSeis’’ scenario for distinction. In this case, the seismic attribute is
the amplitude versus angle (AVA) data from near- (10◦) and mid-offsets
(20◦) at three survey times, on day 30, 735, and 1455, respectively.
Appendix B explains the procedure to conduct forward simulations to
generate AVA data, whereas the observations of 4D AVA data used in
history matching are generated by plugging into the forward AVA sim-
ulator relevant static and dynamical properties (e.g., porosity, pressure
and saturation fields etc.) of the reference subsurface model at three
survey times, similar to the way used to obtain the observations of

production data.
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Fig. 3. Fields of (a) permeability along the X-direction and (b–c) total mole fraction (ZMF) of H2 of the reference model at the end of the simulation period (day 1500). For
better visualization, Panels (b) and (c) present a top view and a 2D intersection of the ZMF field, respectively. Figures are produced by ResInsight©.
For each seismic survey, the dimension of either the near- or the
mid-offset AVA data set is in the dimension of 61 × 61 × 201, for the
reason explained in Appendix B. Therefore, the total number of the 4D
seismic data set is 3× 2× 61× 61× 201 ≈ 4.5× 106, which, together with
the relatively big model size (𝑚 = 89304), makes it difficult for the IES
algorithm to directly use the 4D seismic data for subsurface character-
ization and monitoring. To solve this problem, the 3D wavelet-based
dimensionality reduction procedure in [41] is adopted, so that the
original 4D seismic data set can be sparsely represented by a set of
5010 leading wavelet coefficients in the wavelet domain. After this
dimensionality reduction procedure, it is these 5010 leading wavelet
coefficients that will be used as the effective observations in history
matching. With this data processing procedure, the dimensionality of
the effective observations becomes manageable by the IES algorithm.
As a side remark, zero-mean Gaussian white noise is also introduced
to the original 4D AVA data, with the noise STD being 30% of the
magnitudes of the data. This noise STD is assumed unknown, whereas a
wavelet-based algorithm can be employed to estimate the noise STD of
the leading wavelet coefficients, as a by-product of the wavelet-based
dimensionality reduction procedure [41].

In the current work, two metrics, namely, average data mismatch
(DM) and average root mean squared error (RMSE), are used to mon-
itor or measure the performance of the IES algorithm during history
matching. Intuitively, DM (RMSE) measures the discrepancies between
simulated field data (estimated subsurface model) and real observations
(reference subsurface model) in the observation (model) space. As
mentioned in Section 2, the information of the average DM at each
iteration step will be utilized to determine how the iteration should be
carried out. Meanwhile, other than generating the observations of pro-
duction and seismic data, the reference model is not used elsewhere for
subsurface characterization and monitoring. As such, the information
of the reference subsurface model (hence that of the average RMSE)
is not directly exploited by the IES algorithm during history matching.
Instead, in this case, the average RMSE is mainly used to cross-validate
the performance of the IES algorithm, after history matching is finished.
Since RMSE calculates the distances between estimated and reference
subsurface models, and is a metric for performance cross-validation, it
serves as a more suitable metric than DM to evaluate the qualities of
estimated subsurface models.

Specifically, the DM 𝜁
(

𝐦;𝐝𝑜𝑏𝑠
)

of a generic 𝐦 with respect to the
observation 𝐝𝑜𝑏𝑠 is defined as

𝜁
(

𝐦;𝐝𝑜𝑏𝑠
)

≡
(

𝐝𝑜𝑏𝑠 − 𝐠 (𝐦)
)𝑇 𝐂−1

𝑑
(

𝐝𝑜𝑏𝑠 − 𝐠 (𝐦)
)

. (12)

Accordingly, the average DM 𝜁 𝑖
(

𝐌𝑖;𝐝𝑜𝑏𝑠
)

of an ensemble of subsurface
model 𝐌𝑖 = {𝐦𝑖

𝑗}
𝑁𝑒
𝑗=1 at the 𝑖th iteration step is

𝜁 𝑖
(

𝐌𝑖;𝐝𝑜𝑏𝑠
)

≡ 1
𝑁𝑒

𝑁𝑒
∑

𝑗=1
𝜁
(

𝐦𝑖
𝑗 ;𝐝

𝑜𝑏𝑠
)

. (13)

On the other hand, the RMSE 𝜀
(

𝐦;𝐦𝑟𝑒𝑓 ) of a generic model 𝐦 with
respect to the reference model 𝐦𝑟𝑒𝑓 is written as

𝜀
(

𝐦;𝐦𝑟𝑒𝑓 ) ≡ ‖𝐦 −𝐦𝑟𝑒𝑓
‖ ∕

√

𝑚 , (14)
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2

where the operator ‖ ∙ ‖2 returns the euclidean norm of its operand
∙, and 𝑚 is the dimension of the model 𝐦. Consequently, the average
RMSE �̂�𝑖

(

𝐌𝑖;𝐦𝑟𝑒𝑓 ) of the ensemble 𝐌𝑖 = {𝐦𝑖
𝑗}

𝑁𝑒
𝑗=1 at the 𝑖th iteration

step becomes

�̂�𝑖
(

𝐌𝑖;𝐦𝑟𝑒𝑓 ) ≡ 1
𝑁𝑒

𝑁𝑒
∑

𝑗=1
𝜀
(

𝐦𝑖
𝑗 ;𝐦

𝑟𝑒𝑓
)

. (15)

3.2. Numerical results

In the sequel, we compare numerical results in the Prod and Prod-
Seis scenarios from a few different angles, including history matching
performance in terms of DM and RMSE, predicted profiles of certain
types of production data, H2 storage performance, and visual inspec-
tions on some estimated subsurface models and the corresponding
predicted spatial distributions of H2.

3.2.1. Data mismatch (DM) and root mean squared error (RMSE)
Fig. 3 shows the fields of (a) permeability along the X-direction,

and (b–c) total mole fraction (ZMF) of H2 on 09 Feb. 2022 (day 1500),
with respect to the reference model. As can be noticed in Figs. 3(b)
and 3(c), a part of the H2 plume enters into a strip of subsurface
zone and stays relatively far away from the wellbore, which is often
referred to as the fingering phenomenon in the literature [4]. This
phenomenon is likely due to the relatively high permeability values
distributed on the same strip of the subsurface model, as can be seen
in Fig. 3(a). For the purpose of UHS, the migration of the H2 plume
into a region relatively far away from the wellbore is not desired,
as this may reduce the deliverability of H2 during the withdrawal
cycles. In a practical situation, however, the true subsurface conditions
(hence the corresponding spatial distribution of the H2 plume) are
typically unknown at the field scale. As such, from the perspective of
subsurface characterization and monitoring, an important question is
that when the reference model is not directly exposed to the history
matching workflow, can the IES algorithm help improve subsurface
understanding and make a better prediction of the spatial distribution
of the H2 plume? As will be shown through the numerical results below,
the answer to this question appears to be dependent on which kinds of
field data are available for history matching.

The above point is reflected by the history matching results in
Table 4, where the values of DM and RMSE (in terms of mean/average
± STD) of the initial ensemble and the final ones obtained in both
Prod and ProdSeis scenarios are presented. The additional messages
from Table 4 include: (a) In comparison to the average DM of produc-
tion data of the initial ensemble, the IES algorithm can substantially
reduce the average DM of production data in the final ensembles of
both Prod and ProdSeis scenarios. Meanwhile, the efficacy of the IES
algorithm in abating the average DM of seismic data appears less
substantial; (b) In terms of average RMSE (especially that of porosity),
using production data alone in the IES algorithm can only marginally
improve the qualities of subsurface models, relative to those in the
initial ensemble, whereas more model improvements can be obtained
by conditioning subsurface models on both production and seismic
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Table 4
Data mismatch (DM) and root mean squared error (RMSE), in terms of ensemble mean ± standard deviation (STD), with respect to the initial ensemble of subsurface models, and
the final ones obtained in the Prod and ProdSeis scenarios. Note that seismic data are not used in the Prod scenario, thus DM of seismic data is not available (N/A) therein.

DM of production data DM of seismic data RMSE of log PERMX RMSE of PORO

Initial ensemble (0.61 ± 1.38) × 106 (3.74 ± 0.64) × 105 2.8115 ± 0.0731 0.0931 ± 0.0023
Final ensemble (Prod) (7.13 ± 7.30) × 104 N/A 2.7794 ± 0.0783 0.0930 ± 0.0023
Final ensemble (ProdSeis) (3.11 ± 1.87) × 104 (3.49 ± 0.35) × 105 2.5300 ± 0.0644 0.0888 ± 0.0023
Fig. 4. Field molar production (FCMPR) rates of water (top row) and H2 (middle row), and well bottom hole pressure (WBHP) (bottom row) obtained at different simulation time,
with respect to the initial ensemble (first column), and the final ensembles obtained in the Prod (second column) and ProdSeis (third column) scenarios, respectively. For FCMPR
of water and H2, their units are ‘‘kg-M/day’’ (kilogram-mole per day), and for WBHP, its unit is ‘‘bar’’. In each sub-figure, the observed field data at different report time steps
are marked by red dots, the field data generated by the reference model (without observation noise) are represented by an orange curve, whereas the field data corresponding to
the initial or final ensemble of subsurface models are depicted by blue curves. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
t

data; (c) In the ProdSeis scenario, the IES algorithm tends to result in
lower uncertainties (in terms of ensemble standard deviations) in both
DM and RMSE values, in comparison to those of the initial ensemble
and the Prod scenario.

3.2.2. Production data profiles
For further illustration, Fig. 4 shows the profiles of FCMPR of

water and H2, and WBHP. Quantities presented in each sub-figure
include the observed production data at different report time steps (red
dots), which are parts of the observations used in history matching;
production data from the reference model without any observation
noise (orange curve); and a set of simulated production data generated
from an ensemble of initial or final subsurface models (blue curves).
For FCMPR of water and H2, it is clear that after history matching, the
simulated data match their respective observations better than those
of the initial ensemble, regardless of whether seismic data are used in
history matching or not. It is also evident that the simulated FCMPR
8

o

data of water and H2 in the ProdSeis scenario fit the observations better
than those in the Prod scenario. In the meantime, for WBHP, the simu-
lated data corresponding to the Prod scenario have a better agreement
with the observations than those of the initial ensemble. In the ProdSeis
scenario, during the cycles of H2 injection, the simulated data tend to
provide a higher estimation of WBHP than those in the Prod scenario,
hence a worse performance in terms of data coverage.2 The comparison
of the results in Fig. 4 thus indicates the complexity of history matching
with multiple types of field data: Often adopting an additional type
of field data in history matching can help improve the data match of
some other types of field data, but not necessarily all of them. Note
that in this case study, with the wavelet-based sparse representation

2 From the perspective of uncertainty quantification, it would be desirable
hat the profile of simulated data has a good coverage of the underlying
bservations.
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Fig. 5. Field molar amount of H2 trapped in gas (FCGMI) (top row), field molar amount of H2 mobile in gas (FCGMM) (middle row) and field molar production totals of
H2 (FCMPT) (bottom row), at different simulation time. The units of FCGMI, FCGMM and FCMPT are ‘‘kg-M’’ (kilogram-mole). Similar to the settings in Fig. 4, in each sub-figure,
data of the reference model are plotted along an orange curve, whereas those of the initial or final ensemble are connected by blue curves. Note that the quantities presented
here, FCGMI, FCGMM and FCMPT of H2, are not used as observations in history matching. Therefore, unlike the situation in Fig. 4, there are no red dots in each sub-figure here.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
U
d
(
w
a
a
w
b
f
s
a
t
i
b
s
t
o
o
a
t
H
p
(
w
k

procedure, seismic data are represented by a set of leading wavelet
coefficients in the wavelet domain. As such, it becomes complicated
to interpret the changes of these leading wavelet coefficients. For this
reason, the profiles of seismic data (similar to those of production data
in Fig. 4) are not included here, whereas some sample sections of the
observed seismic data are shown in Appendix B (cf. Fig. 9).

Additional simulated data, including those of field molar amount
of H2 trapped in gas (FCGMI), field molar amount of H2 mobile in
gas (FCGMM) and field molar production totals of H2 (FCMPT), are
isplayed in Fig. 5. Note that the above-mentioned types of data are
ot used in history matching. Consequently, a comparison on the
rofiles of these data can be considered as an additional way to cross-
alidate the performance of history matching. In Fig. 5, one can see
hat after history matching, all three types of the simulated data from
ither the Prod or the ProdSeis scenario can provide better predictions
f respective reference data with less uncertainties, as reflected by
he quantitative results on day 1500 in Table 5 later. In particular,
ntroducing seismic data to history matching can further improve the
rediction accuracies in the ProdSeis scenario, in comparison to those
n the Prod scenario.

.2.3. H2 storage performance
The simulation results in Fig. 5 can also be used to assess the ability

f an ensemble of subsurface models to predict the performance of a
9

HS storage project. For illustration, Table 5 reports the actual and pre-
icted values of molar total H2 injected, total H2 recovered, H2 trapped
immobile), and H2 in place (mobile) at the end of the simulation time
indow, with respect to the reference model, and those of the initial
nd final ensembles, respectively. Here, the numbers of total injected
nd recovered H2 are described by the values associated with the key-
ords FCMIT and FCMPT in ECLIPSE© 300, respectively. In particular,
ecause the operating target during the H2 injection cycles is surface
low rate (cf. Table 2), the total amount of injected H2 is the same in all
ubsurface models (including reference model and those of the initial
nd final ensembles). Meanwhile, H2 trapped (immobile) corresponds
o the amount of H2 that are captured and consequently become
mmobile in the subsurface through various mechanisms, e.g., solu-
ility trapping, mineral trapping and residual trapping, similar to the
ituation in CO2 storage problems [44]. In this UHS case study, since
he mineral trapping mechanism is not considered, and the solubility
f H2 in saline water is very low (and thus negligible), the amount
f H2 trapped is mainly due to the mechanism of residual trapping,
nd is depicted by the keyword FCGMI in ECLIPSE© 300. Finally, in
he last column of Table 5, H2 in place (mobile) is the fraction of
2 that is in the gas phase and remains mobile in the subsurface. This
ortion of H2 can serve as the cushion gas for future H2 injections
after day 1500), but may or may not be recovered during subsequent
ithdrawal cycles. In ECLIPSE© 300, H2 in place is defined by the
eyword FCGMM.
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Table 5
Assessment of UHS performance by analyzing the allotments of H2, in terms of molar total H2 injected, recovered, trapped, and in place (in kilogram-mole, kg-M), on day 1500.
The simulation results of the reference model are included as the baselines, whereas those corresponding to the initial or final ensemble of subsurface models are presented in the
form of mean ± STD, below which the percentages of deviations of the ensemble means from respective baselines are presented in parentheses.

Total H2 injected
(FCMIT, kg-M)

Total H2 recovered
(FCMPT, kg-M)

H2 trapped (immobile)
(FCGMI, kg-M)

H2 in place (mobile)
(FCGMM, kg-M)

Reference model

9.12 × 106

2.27 × 106 0.43 × 106 6.42 × 106

Initial ensemble (3.52 ± 1.03) × 106

(+55.1%)
(0.35 ± 0.06) × 106

(−18.6%)
(5.25 ± 0.97) × 106

(−18.2%)
Final ensemble (Prod) (2.80 ± 0.47) × 106

(+23.3%)
(0.39 ± 0.03) × 106

(−9.3%)
(5.93 ± 0.44) × 106

(−7.6%)
Final ensemble
(ProdSeis)

(2.22 ± 0.28) × 106

(−2.2%)
(0.43 ± 0.02) × 106

(0.0%)
(6.47 ± 0.23) × 106

(+0.8%)
Fig. 6. Log PERMX maps on Layer 2 of (a) the reference model, (b) the mean model of the initial ensemble, (c) the mean model of the final ensemble in the Prod scenario, (d)
the mean model of the final ensemble in the ProdSeis scenario, (e) a sample model (ensemble member) of the initial ensemble, (f) updated sample model obtained in the Prod
scenario, and (g) updated sample model obtained in the ProdSeis scenario. In each map, there is a small circle indicating the location of the well ‘‘WELL3’’.
With the above definitions, it can be seen that in Table 5, the
amount of total H2 injected equals the summed amount of total H2 re-
covered, H2 trapped (immobile) and H2 in place (mobile). It also
indicates that on average, the subsurface models in the initial ensemble
over-estimate (more than 50%) the amount of H2 that can be recovered,
while under-estimating (more than 18%) the amount of H2 remaining
in the subsurface. Using production data to calibrate the models in
the initial ensemble helps mitigate this issue, leading to the respective
percentage of over- or under-estimation more than halved, whereas in-
cluding both production and seismic data in history matching achieves
the best performance, making the respective percentage of over- or
under-estimation become no more than 2.2%, apart from reduced
uncertainties.

Based on the information in Table 5, one can calculate the average
recovery factor of H2 on day 1500, in terms of the ratio of average
total H2 recovered to total H2 injected, which are 24.9%, 38.6%, 30.7%,
and 24.4%, for the reference model, the models of the initial ensemble,
and those of the final ensembles in the Prod and ProdSeis scenarios,
respectively. These recovery factors appear to be relatively low, given
the settings in the current study. One may further improve the recovery
factor by, for instance, adding more wells in the field with a suitable
spatial pattern [42], which, however, is a topic beyond the scope of
this work. Meanwhile, one can also estimate the minimum average
loss factor of H2 on day 1500, as the ratio of average H2 trapped
(immobile) to total H2 injected, which are 4.7%, 3.8%, 4.3% and 4.7%,
accordingly. Comparing the numbers with respect to the initial and
final ensembles, it is evident that among others, the subsurface models
obtained in the ProdSeis scenario provide the best prediction of the
actual performance of UHS in the reference model, in terms of the
average recovery and loss factors of H .
10

2

3.2.4. Estimated subsurface models and the corresponding H2 distributions
Figs. 6 and 7 proceed to compare log PERMX and PORO, respec-

tively, in the subsurface models before and after history matching.
Since there are 100 models in each ensemble, while each model contains
12 vertical layers, it would be tedious to include the information of all
individual models. For this reason, here we choose to plot in Figs. 6
and 7, respectively, the log PERMX and PORO maps on Layer 2 of the
mean models of the initial and final ensembles (Panels (b) – (d)). We
also show the log PERMX and PORO maps on Layer 2 of an ensemble
member (a sample model) in the initial ensemble, and the same ensem-
ble member obtained in the Prod and ProdSeis scenarios, respectively
(Panels (e) – (g)). In this way, an inspection on the differences among
the log PERMX and PORO maps of both the mean model and the
sample model in the initial and final ensembles would help analyze
the effects of different field data on history matching. In addition, the
corresponding maps of the reference model (Panel (a)) are also included
as the baselines for comparison.

The results in Figs. 6 and 7 indicate that when only using production
data in history matching, the subsurface models in the final ensemble
stay close to those in the initial ensemble. In other words, the IES
algorithm cannot make significant changes to the model variables in
the initial ensemble (especially for PORO), which is consistent with the
results of RMSEs in Table 4. The main reason behind this observation
is that in this particular case study, there is only a single well ‘‘WELL3’’
in the field, which does not provide a good spatial coverage of the
subsurface. Accordingly, production data from ‘‘WELL3’’ do not contain
substantial information for model update. From the perspective of
sensitivity analysis, this means that production data are not sensitive to
many model variables in the whole field, especially PORO parameters,
as was also found in some previous work [39,41].
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Fig. 7. As in Fig. 6, but for PORO maps.
Fig. 8. As in Fig. 6, but for ZMF maps of H2 (on day 1500) at Layer 1 of respective models. Note that here a ‘‘mean map’’ corresponds to the result obtained by running a mean
subsurface model of an initial or final ensemble.
In contrast, when both production and seismic data are incorporated
into history matching, more substantial differences between the mean
or sample models of the initial and final ensembles can be noticed, also
in line with the results of RMSEs in Table 4. The main reason behind
these more noticeable model changes is that seismic data provide a
more extensive spatial coverage than production data, as elaborated
in Fig. 9 and the corresponding text in Appendix B. On top of the im-
proved spatial coverage, there is an explicit dependence of seismic data
on PORO parameters in the forward seismic simulator, as described
in Appendix B. Moreover, there is also an implicit relation of seismic
data to PERMX and PORO parameters. This is because the forward
seismic simulator uses the information of fluid pressure and saturations
in the whole field to simulate seismic data, whereas these pressure
and saturation profiles are obtained through the numerical simulator
ECLIPSE© 300, which in turn takes a subsurface model (consisting of
PERMX and PORO parameters) as the input. As such, when seismic
data are included in history matching, the IES algorithm makes more
considerable changes to not only PERMX, but also PORO parameters,
and results in improved performance of subsurface characterization and
monitoring.

Finally, Fig. 8 presents ZMF maps of H2 (on day 1500) at Layer 1 of
subsurface models, with the settings therein similar to those in Figs. 6
and 7. For the same reasons explained in the preceding paragraphs,
one can also observe that the ZMF maps in the Prod scenario remain
closer to those of the initial ensemble, in comparison to the maps in
11
the ProdSeis scenario. Including seismic data in history matching helps
improve the prediction of the distribution of the H2 plume. This point
is more evident when comparing the sample maps in Panels (e) – (g):
In the sample maps of both the initial ensemble and the Prod scenario,
there are incorrectly predicted pinch-outs of the H2 plume along the
upper right and lower left directions. In the corresponding map of the
ProdSeis scenario, the wrong predictions are corrected to some extent,
and a large part of the previously predicted pinch-outs has vanished.
Meanwhile, in comparison to the reference ZMF map in Panel (a), none
of the maps from either the initial or the final ensembles can provide
a correct prediction of the fingering phenomenon along the downward
direction, which indicates that even in the presence of seismic data,
there is no guarantee that the IES algorithm can achieve a perfect
estimation of the underlying truth (reference model in this case). This
deficiency can be attributed to a few potential issues. Among others,
one is the attenuation of seismic waves when they propagate through
the subsurface [45], which leads to reduced sensitivity of seismic data
to the formation properties in deeper subsurface. Another is that for the
purpose of runtime control, in practice it is not possible to run a history
matching algorithm with too many iteration steps. As such, often the
history matching algorithm could end up with a local minimum that
may not be sufficiently close to the underlying truth. With this said, the
results presented here suggest that there is still room to further improve
the performance of subsurface characterization and monitoring within
the adopted ensemble-based workflow.
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4. Discussion and conclusion

This work studies the underground hydrogen storage (UHS) problem
in a 3D case study from the perspective of subsurface characterization
and monitoring. To this end, we first present an ensemble-based history
matching workflow, and apply it to the 3D UHS case study. In this case
study, we investigate two scenarios: one of them only uses production
data for history matching (labeled as ‘‘Prod’’ scenario); and the other in-
corporates both production and 4D seismic data (labeled as ‘‘ProdSeis’’
scenario). Through a set of numerical investigations, we show that

• the ensemble-based history matching workflow can handle het-
erogeneities and uncertainties at the field scale;

• In either the Prod or the ProdSeis scenario, the proposed work-
flow helps improve the qualities of an initial ensemble of sub-
surface models, and increase the prediction accuracies of certain
quantities of interest (e.g., observed or unobserved production
data, recovery and loss factors of H2) while properly reducing the
uncertainties of the predictions;

• Meanwhile, because production data typically have limited spa-
tial coverage, including 4D seismic data helps mitigate this prob-
lem and thus improves the history matching performance.

n particular, the last bullet point is supported through the comparison
f the numerical results in the Prod and ProdSeis scenarios, which
ndicates that in the ProdSeis scenario, the history matching algorithm
ends to provide better predictions to various inspected quantities, such
s different types of production data and model variables, than that in
he Prod scenario does. One implication of this comparison result is that
ncorporating 4D seismic data would be beneficial for the development,
peration and management of a UHS project. At the time of this writing,
here only exist a few commercial UHS projects in salt caverns [2],
or which 4D seismic (or other geophysical monitoring tools) does not
ppear to be commonly used. Nevertheless, according to the recent
urvey in [22], among others, 4D seismic is routinely adopted for sub-
urface characterization and monitoring in several existing geological
O2 storage projects. Given the similarities between geological CO2
torage and UHS projects, it is thus expected that 4D seismic would be
mong the most useful monitoring tools for UHS in natural storage sites.
eanwhile, we also stress that from the practical point of view, the

ptimal choice of monitoring tools should take into account site-specific
isk factors, and would be typically project-dependent [22].

On the other hand, there is also a noticed issue in the ProdSeis
cenario, that is, even after assimilating seismic data, the spatial distri-
ution of the H2 plume still cannot be correctly predicted (especially for
he fingering phenomenon), which appears to be a common challenge
hen using seismic data for subsurface characterization and monitor-

ng [22]. Hence, this observation leads to an open research question:
an we further improve the history matching performance by including
ore types of field data? While in the literature there are some prelim-

nary investigations in this regard (e.g., 46), there does not seem to be
definite answer to this question, especially in the context of UHS. As
rule of thumb, whenever possible, our recommendation is to include
ifferent types of field data, e.g., tracer, distributed acoustic sensing
DAS) or electromagnetic (EM), which may offer new information
ontents complementary to those in existing production and 4D seismic
ata. With the inclusion of more types of field data, however, it might
e necessary that the IES algorithm be modified accordingly to mitigate
he negative impacts of conflicting information contents from different
ources [26,46]. Within this context, more efforts on history-matching
lgorithm developments are thus expected in our future investigations.
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ppendix A. Technical details of correlation-based adaptive local-
zation

For better elaboration of the localization technique, we re-write the
odel update formula, either Eq. (7) or Eq. (10), in a more compact

orm:
𝑖+1
𝑗 = 𝐦𝑖

𝑗 +𝐊𝑖
(

𝐝𝑜𝑏𝑠𝑗 − �̃�
(

𝐦𝑖
𝑗

))

, (A.1)

where 𝐊𝑖 is a matrix similar to the Kalman gain in a conventional
Kalman filter [47], with 𝐊𝑖 = 𝐒𝑖𝑚(�̃�

𝑖
𝑔)

𝑇
(

�̃�𝑖𝑔(�̃�
𝑖
𝑔)

𝑇 + 𝛾 𝑖 𝐈𝑝
)−1

in Eq. (7),

and 𝐊𝑖 = 𝐒𝑖𝑚𝐕
𝑖
𝑟𝜮

𝑖
𝑟
(

(𝜮𝑖
𝑟)
2 + 𝛾 𝑖 𝐈𝑟

)−1 (𝐔𝑖
𝑟
)𝑇 in Eq. (10).

To conduct localization in the IES algorithm, one replaces the
Kalman-gain-like matrix 𝐊𝑖 by the Schur product between 𝐊𝑖 and a
tapering matrix 𝐓𝑖, leading to a further modified update formula:

𝐦𝑖+1
𝑗 = 𝐦𝑖

𝑗 +
(

𝐓𝑖◦𝐊𝑖)
(

𝐝𝑜𝑏𝑠𝑗 − �̃�
(

𝐦𝑖
𝑗

))

, (A.2)

where ◦ stands for Schur product. As such, the focus of the localization
technique is on how to determine the tapering matrix 𝐓𝑖 to further
improve the performance of history matching.

In the current work, the correlation-based adaptive localization
(AdaLoc) scheme in [35] is adopted for its practical benefits (readers
are referred to 35 for more information of these benefits). To see the
main idea behind this localization scheme, we re-write Eq. (A.2) in an
element-wise form, as follows:

𝑚𝑖+1
𝑗,𝑘 = 𝑚𝑖

𝑗,𝑘 +
𝑝
∑

𝑠=1

(

𝑡𝑖𝑘,𝑠𝑘
𝑖
𝑘,𝑠

)

𝛥𝑑𝑖𝑗,𝑠 , (A.3)

where 𝑚𝑖
𝑗,𝑘 (𝑚𝑖+1

𝑗,𝑘 ) corresponds to the 𝑘th element of 𝐦𝑖
𝑗 (𝐦𝑖+1

𝑗 ), 𝛥𝑑𝑖𝑗,𝑠 to
the 𝑠th element of the innovation term 𝛥𝐝𝑖𝑗 ≡ 𝐝𝑜𝑏𝑠𝑗 − �̃�

(

𝐦𝑖
𝑗

)

, and 𝑡𝑖𝑘,𝑠 and
𝑘𝑖𝑘,𝑠 to the elements on the 𝑘th row and the 𝑠th column of the matrices
𝐓𝑖 and 𝐊𝑖, respectively.
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In [35], the tapering coefficient 𝑡𝑖𝑘,𝑠 is calculated by the following
formula:

𝑡𝑖𝑘,𝑠 = 𝑓𝐺𝐶

(

1 − abs(𝜌0𝑘,𝑠)

1 − 𝜃𝐺𝑘 ,𝑠

)

, for 𝑘 = 1, 2,⋯ , 𝑚; 𝑠 = 1, 2,⋯ , 𝑝, (A.4)

where abs is the operator taking absolute values of its inputs,

𝑓𝐺𝐶 (𝑧) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−1
4
𝑧5 + 1

2
𝑧3 + 5

8
𝑧3 − 5

3
𝑧2 + 1 , if 0 ≤ 𝑧 ≤ 1 ;

1
12

𝑧5 − 1
2
𝑧4 + 5

8
𝑧3 + 5

3
𝑧2 − 5𝑧 + 4 − 2

3
𝑧−1 , if 1 < 𝑧 ≤ 2 ;

0 , if 𝑧 > 2 ,

(A.5)

and

𝜃𝐺𝑘 ,𝑠 =
√

2 ln(#𝝆0
𝐺𝑘 ,𝑠

) 𝜎𝐺𝑘 ,𝑠 ; (A.6)

𝜎𝐺𝑘 ,𝑠 =
median(abs(𝝐0𝐺𝑘 ,𝑠

))

0.6745
. (A.7)

The tapering function 𝑓𝐺𝐶 in Eq. (A.4) corresponds to the Gaspari-
Cohn function [48], which is defined in Eq. (A.5). Meanwhile, 𝜌0𝑘,𝑠
tands for the sample correlation between the 𝑘th model variable and
he 𝑠th simulated observation data point, obtained from the initial en-
embles of model variable

{

𝑚0
𝑗,𝑘

}𝑁𝑒

𝑗=1
and the corresponding simulated

data point
{

[�̃�
(

𝐦0
𝑗

)

]𝑠
}𝑁𝑒

𝑗=1
, where [𝐱]𝑠 represents the 𝑠th element of a

dummy vector 𝐱. Eq. (A.4) implies that the tapering coefficients 𝑡𝑖𝑘,𝑠
only depend on the initial ensemble of subsurface models, but not on
the ensembles at later iteration steps. For this reason, the tapering
coefficients 𝑡𝑖𝑘,𝑠 are computed only once and for all model updates later.

In Eq. (A.6), one combines the universal rule [49] and the me-
dian absolute deviation (MAD) estimator [50] to calculate a common
threshold value 𝜃𝐺𝑘 ,𝑠 of a group (indexed by 𝐺𝑘) of model variables,
for a given data point (indexed by 𝑠). In the implementation, the
groups are created according to the types of the model variables. For
instance, model variables corresponding to the porosity values on the
gridblocks of a numerical subsurface model are put into the same
group. Meanwhile, #𝝆0

𝐺𝑘 ,𝑠
corresponds to the number of model variables

(equivalently, the number of sample correlation coefficients) in a group
for a given data point indexed by 𝑠, and 𝝐0𝐺𝑘 ,𝑠

stands for the substitute
sampling errors in the group of sample correlation coefficients 𝝆0

𝐺𝑘 ,𝑠
,

where the substitute sampling errors can be conveniently obtained by
the random shuffle method proposed by [35].

Appendix B. Simulation of amplitude versus angle (AVA) data

AVA data depict the variation of seismic wave amplitudes over
the angles (hence distances) between sources and receivers in seismic
acquisitions. Typically, the change of seismic amplitudes is related
to the modification of lithology or fluid contents in the subsurface
formations. As a result, AVA data can be used to estimate static and
dynamical properties (e.g., porosity, pressure and fluid saturations)
of subsurface formations through a subsurface characterization and
monitoring workflow [39,51,52]. For this purpose, it is necessary to
build a forward AVA simulator that involves a few steps (cf. Fig 1
of 41): (1) Run a numerical subsurface model to obtain the spatial
distributions of pore pressure and fluid saturations in the field; (2) Input
the pore pressure and fluid saturation fields into a petro-elastic model
(PEM) to compute certain relevant seismic parameters, such as P- and S-
wave velocities and formation/fluid densities in the subsurface; (3) Plug
the calculated seismic parameters into an AVA equation to generate
AVA attributes at different angles [53].

In this work, a soft sand model from [53] is used as the PEM. This
model assumes that the cement is deposited without grain contacts,
13

and that the initial framework of the uncemented sand rock is a dense
Table 6
Parameters in the petro-elastic model (PEM) and their values used in this work.

Parameter Notation Value (unit)

Critical porosity 𝜙𝑐 36%
Bulk modulus 𝐾𝑠 35 (GPa)
Shear modulus 𝜇𝑠 44 (GPa)
Lithostatic pressure 𝑃𝑙𝑖𝑡ℎ𝑜 25.3 (MPa)
Coordination number 𝐶𝑝 9
Degree of root 𝑛 3
Bulk modulus of water 𝐾𝑤 2.7 (GPa)
Bulk modulus of gas 𝐾𝑔 1.43 × 10−4 (GPa)

random pack of spherical grains with a critical porosity value (denoted
by 𝜙𝑐 hereafter) around 36%, which is the maximum porosity value
of a rock before suspension happens. The dry bulk modulus (𝐾𝐻𝑀 )
and shear modulus (𝜇𝐻𝑀 ) at the critical porosity are then be computed
ased on the Hertz–Mindlin model [54]:

𝜈𝑠 = (3𝐾𝑠 − 2𝜇𝑠)∕(6𝐾𝑠 + 2𝜇𝑠) ; (B.1)
𝑃𝑒𝑓𝑓 = 𝑃𝑙𝑖𝑡ℎ𝑜 − 𝑃 ; (B.2)

𝐻𝑀 =
𝑛

√

√

√

√

𝐶2
𝑝 (1 − 𝜙𝑐 )2𝜇2

𝑠

18𝜋2(1 − 𝜈𝑠)2
𝑃𝑒𝑓𝑓 ; (B.3)

𝜇𝐻𝑀 =
5 − 4𝜈𝑠
5(2 − 𝜈𝑠)

𝑛

√

√

√

√

3𝐶2
𝑝 (1 − 𝜙𝑐 )2𝜇2

𝑠

2𝜋2(1 − 𝜈𝑠)2
𝑃𝑒𝑓𝑓 , (B.4)

ith 𝐾𝑠 and 𝜇𝑠 standing for the bulk and shear moduli of solid min-
ral, respectively, and 𝑃𝑙𝑖𝑡ℎ𝑜 for lithostatic pressure. In Eq. (B.1), 𝜈𝑠

corresponds to Poisson’s ratio, whereas in Eq. (B.2), 𝑃𝑒𝑓𝑓 represents
the effective pressure, which is the difference between the lithostatic
pressure 𝑃𝑙𝑖𝑡ℎ𝑜 and the pore pressure 𝑃 (obtained from the numerical
simulation of a subsurface model). In Eqs. (B.3) and (B.4), 𝐶𝑝 is the
coordination number that describes the average number of contacts
per sphere, and 𝑛 is the degree of root. The values of 𝐾𝑠, 𝜇𝑠, 𝑃𝑙𝑖𝑡ℎ𝑜,
𝐶𝑝 and 𝑛 (as well as some other parameters) used in the current work
are reported in Table 6.

For a porosity value 𝜙 smaller than the critical value 𝜙𝑐 , the mod-
fied lower Hashin–Shtrikman (MLHS) bound [53] is used to compute
he effective dry rock bulk (𝐾𝑑) and shear (𝜇𝑑) moduli:

𝑍 = (9𝐾𝐻𝑀 + 8𝜇𝐻𝑀 )∕(𝐾𝐻𝑀 + 2𝜇𝐻𝑀 ) ; (B.5)

𝐾𝑑 =

⎡

⎢

⎢

⎢

⎣

𝜙
𝜙𝑐

𝐾𝐻𝑀 + 4
3
𝜇𝐻𝑀

+

1 − 𝜙
𝜙𝑐

𝐾𝑠 +
4
3
𝜇𝐻𝑀

⎤

⎥

⎥

⎥

⎦

−1

− 4
3
𝜇𝐻𝑀 ; (B.6)

𝜇𝑑 =

⎡

⎢

⎢

⎢

⎣

𝜙
𝜙𝑐

𝜇𝐻𝑀 +
𝜇𝐻𝑀
6

𝑍
+

1 − 𝜙
𝜙𝑐

𝜇𝑠 +
𝜇𝐻𝑀
6

𝑍

⎤

⎥

⎥

⎥

⎦

−1

−
𝜇𝐻𝑀
6

𝑍 . (B.7)

Meanwhile, the corresponding saturation effect is described based on
the Gassmann model [55], in which the saturated bulk (𝐾𝑠𝑎𝑡) and shear
(𝜇𝑠𝑎𝑡) moduli are determined by:

𝐾𝑠𝑎𝑡 = 𝐾𝑑 +
(1 −

𝐾𝑑
𝐾𝑠

)2

𝜙
𝐾𝑓

+
1 − 𝜙
𝐾𝑠

−
𝐾𝑑

𝐾2
𝑠

; (B.8)

𝜇𝑠𝑎𝑡 = 𝜇𝑑 , (B.9)

here in Eq. (B.8), 𝐾𝑓 is the effective fluid bulk modulus estimated
y the Reuss average method [56]. In the current study, since the
ubsurface model contains only the water and gas phases, 𝐾𝑓 is thus
iven by

𝑓 = (
𝑆𝑤 +

𝑆𝑔 )−1 , (B.10)

𝐾𝑤 𝐾𝑔
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Fig. 9. (a) A section of 3D seismic data along the Y-Z plane with X = 20 (called inline section with the inline number 20), from the mid-offset AVA data of the third survey
(day 1455); (b) A section of 3D seismic data along the X-Z plane with Y = 15 (called cross-line section with the cross-line number 15), from the near-offset AVA data of the first
survey (day 30); (b) A section of 3D seismic data along the X-Y plane with Z = 10 (at travel time 0.86 s) (called time section with the time number 10), from the near-offset
AVA data of the second survey (day 735).
where 𝐾𝑤, 𝐾𝑔 correspond to the bulk moduli of water and gas, and
𝑆𝑤 and 𝑆𝑔 to the saturations of water and gas, respectively. Note that

𝑤 and 𝐾𝑔 are considered as parameters of the PEM, whose values are
iven in Table 6. Meanwhile, 𝑆𝑤 and 𝑆𝑔 are dynamical properties of the
ubsurface formations, whose values are obtained by numerical model
imulations.

The next step is to compute the saturated density 𝜌𝑠𝑎𝑡 of the water-
as mixture, based on the follow formula [53]:

𝑠𝑎𝑡 = (1 − 𝜙)𝜌𝑚 + 𝜙𝑆𝑤𝜌𝑤 + 𝜙𝑆𝑔𝜌𝑔 , (B.11)

here 𝜌𝑚, 𝜌𝑤, and 𝜌𝑔 represent the densities of mineral, water, and gas,
espectively. In this work, the values of 𝜌𝑚, 𝜌𝑤, and 𝜌𝑔 are determined
y the default model in ECLIPSE© 300.

Subsequently, one can proceed to calculate P- and S-wave ve-
ocities, denoted by 𝑉𝑃 and 𝑉𝑆 , respectively, through the following
ormulae [53]:

𝑃 =

√

√

√

√

√

𝐾𝑠𝑎𝑡 +
4
3
𝜇𝑠𝑎𝑡

𝜌𝑠𝑎𝑡
; (B.12)

𝑉𝑆 =
√

𝜇𝑠𝑎𝑡
𝜌𝑠𝑎𝑡

. (B.13)

With the velocities 𝑉𝑃 and 𝑉𝑆 and the density 𝜌𝑠𝑎𝑡, the Zoeppritz
equation [53] is then adopted to calculate the reflection coefficients at
the interfaces between the layers of a subsurface model. In this case,
the reflectivity series is a function of two-way travel time, which is
computed based on the P-wave velocity 𝑉𝑃 and the vertical thicknesses
of the layers in the numerical subsurface model. The computed reflec-
tivity series is then further convolved with a Ricker wavelet (with the
dominant frequency of 45 Hz) to obtain the AVA data. In this work, the
AVA data are generated with the angles of 10◦ and 20◦, respectively,
and are referred to as the near- and mid-offset traces, accordingly.

For illustration, Fig. 9 shows three sample seismic sections from the
observations of 4D AVA data used in history matching. As mentioned in
Section 3.1, the 4D AVA data consist of vintages at three survey times.
At each survey time and for each AVA angle, we sample the values of
seismic traces within the travel-time window [0.85, 1.05] (in seconds),
with a sampling frequency of 1 millisecond. As such, within the travel-
time window, the total number of sample points is 201. Meanwhile,
at a given sample time, the number of seismic traces along either the
X- or Y-direction is equal to the number of gridblocks of the numerical
subsurface model along the same direction. Accordingly, at each survey
time, the dimension of the AVA data with either the near- or the
mid-offset is 61 × 61 × 201.
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