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Abstract
The Edvard Grieg field is a highly complex and heterogeneous reservoir with an extensive fault structure and a mixture of
sandstone, conglomerate, and shale. In this paper, we present a complete workflow for history matching the Edvard Grieg
field using an ensemble smoother for Bayesian inference. An important aspect of the workflow is a methodology to check that
the prior assumptions are suitable for assimilating the data, and procedures to verify that the posterior results are plausible and
credible. We thoroughly describe several tools and visualization techniques for these purposes. Using these methods we show
how to identify important parameters of the model. Furthermore, we utilize new compression methods for better handling
large datasets. Simulating fluid flow and seismic response for reservoirs of this size and complexity requires high numerical
resolution and accurate seismic models. We present a novel dual-model concept for a better representation of seismic data and
attributes, that deploy different models for the underground depending on simulated properties. Results from history matching
show that we can improve data matches for both production data and different seismic attributes. Updated parameters give
new insight into the reservoir dynamics, and are calibrated to better represent water movement and pressure.

Keywords Data assimilation · Field study · Ensemble methods · Seismic modeling
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1 Introduction

Ensemble-based assimilation of production data for large-
scalemodels iswell established.Demonstrations of ensemble
-based history matching using time-lapse seismic data are
however more scarce, despite the fact that seismic surveys
are available for many offshore and onshore petroleum reser-
voirs. There are several reasons for this, such as difficult
characterization of the correlated data noise, complicated
seismicmodeling processes, challenging prior parameter and
uncertainty selection, and memory-exhaustive data volumes.
Large modeling errors and poorly specified data noise, com-
bined with limited degrees of freedom for the parameter
space, lead to unsatisfactory history-matching results. An
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analysis of the performance of ensemble-based assimilation
is found in [8]. In that paper the ensemble smoother with
multiple data assimilation (ES-MDA) method was used [9],
to update a selection of reservoir properties in a heavy-oil
turbidite reservoir in the Campos Basin, Brazil. Relatively
successful assimilation of both production and seismic data is
reported but with an underestimation of the posterior model
uncertainty. There exist other applications of ES-MDA for
4D seismic history matching [e.g.,15, 25, 33], and in gen-
eral, the mismatches to both seismic and production data
were reduced. In [19] both production and seismic data were
used to estimate a broad set of reservoir properties (porosity,
permeability, water-oil-contacts, fault transmissibility multi-
pliers, etc.) in a model for the Norne field. In that work, they
used a method based on regularized Levenberg-Marquardt
(RLM), solving a minimum average cost (MAC) problem,
see [21]. An improvement in the data match was reported.
Common for the above-mentioned works is that reservoir
models of moderate sizes are considered. Quantitative uti-
lization of large-scale data in the seismic domain therefore
remains a challenge, and it remains to embed model cali-
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bration into a robust Bayesian workflow [12] that captures
model checking and potential model improvement. For a
comprehensive review of 4D seismic historymatching cover-
ing different methodologies, data, and applications, see [28].

In this manuscript, we demonstrate and validate several
aspects of large-scale data assimilation using big data. In
particular, we investigate the use of time-lapse seismic data
for calibrating a reservoir model for the Edvard Grieg field.
The Edvard Grieg field is located in the North Sea in the
Utsira High and is operated by Aker BP ASA. The original
recoverable resources were approximately 60.4 million Sm3,
and the production started in 2015. The field is produced
with pressure support from water injectors, and the reser-
voir produces undersaturated oil, captured in sandstone and
conglomerate with varying quality. Ensemble-based assim-
ilation of seismic and production data for the Edvard Grieg
field has not been presented before, and an important con-
tribution of this paper is a demonstration of the workflow
and results for this field. We focus on all aspects of the
workflow, including prior model creation, model calibration,
and model checking and improvement. Significant improve-
ments in seismic modeling, including the use of models at
different scales, are presented. Unlike other applications, we
utilize a seismic model that also provides credible noise esti-
mates. In addition to seismic attributes, we use all available
well and repeat formation tester (RFT) data for assimila-
tion. To our knowledge, both the model and datasets are
considerably larger than other published works on ensemble-
based data assimilation for real fields. The reservoir models
consist of more than 1.5 million active grid cells, and the
seismic data is modeled in the seismic domain (Cartesian
grids) consisting of almost 200 million data values (for each
seismic cube). We apply data compression based on the
(in-house) wavelet techniques introduced in [22], but the
compression methodology introduced there is extended to
also include information in the simulated data. Data assim-
ilation is performed using an iterative ensemble smoother
introduced in [5]. This ensemble randomizedmaximum like-
lihood method (EnRML) searches for the minimum of the
objective functions using an ensemble-based approximation
of the Levenberg-Marquard method. It does not rely on a
predefined number of assimilation steps and differs in that
sense from the ES-MDA. The computer code used for this
study is based on the Python Ensemble Toolbox (PET) [26].

Parameterization and prior model creation are major
challenges in the history-matchingworkflow.Often improve-
ments are necessary if the calibrated models are not trust-
worthy or lack physical realism. In this study, we introduce
several tools for prior and posterior model checking. Analy-
sis of the model’s ability to match historical data is based on
the Mahalanobis measure [27], as well as novel techniques
for visualizing simulated coverage of spatially dense seismic
data [17].We also introduce and demonstrate tools for assess-

ing the credibility of the updated reservoir properties, as well
as tools for identifying important drivers among the vast and
different types of data. We go through several examples that
illustrate the importance of various parameter types, with
particular focus on their ability to tune the modeled response
of the seismic signals.

Successful assessment of complex and large reservoir
resources benefits from diverse input from different dis-
ciplines. The outcome of an automated history-matching
workflow, based on large models and big datasets, is a
valuable source of information that improves reservoir man-
agement. The models used in this study have a coarse
horizontal resolution compared to the vertical resolution, and
assigning realistic properties is a challenge. It is not possible
to capture all physical details with a numerical model, and
it is important to find plausible representations of the reser-
voir and flow properties that give the best possible match
to the measurements. The outline of the paper is as fol-
lows: In Section 2 we give a brief introduction to the Edvard
Grieg field, in Section 3 we present the flow and the seismic
models, and in Section 4 we present the methodology for
Bayesian inversion. The results are shown in Section 5. Two
types of seismic attributes are considered: amplitude maps
(Section 5.2) and impedance cubes (Section 5.3). The data
are based on acquisition from three seismic surveys (con-
ducted in 2016, 2018, and 2020) using Ocean Bottom Cables
(OBC). We generated one dataset based on the difference
between the 2016 base survey and the 2018 monitor survey,
and one dataset based on the difference between the 2018
monitor survey and the 2020 monitor survey. We assimilate
seismic attributes and production data simultaneously. The
production data consists of flow rates, bottom hole pressures,
and RFT data. The conclusions are given in Section 6.

2 Edvard Grieg field

The Edvard Grieg oil field is located in block 16/1 in the
North Sea approximately 180 kmwest of Stavanger, Norway,
and was discovered with well 16/1-8 by Lundin Norway AS
in 2007. Production start-up of the field was in November
2015 and is now operated by Aker BP ASA (Operator) and
its partners OMV Norge AS and Wintershall Dea Norge AS.
The field is currently producing light oil from 13 producers
located mainly in the central, southern, and eastern parts of
the field. To maintain the field’s pressure and voidage, water
is injected from three injectors in the west and one injector
in the southeast corner of the Edvard Grieg field.

The reservoir geology on Edvard Grieg is complex with a
wide range of unique facies of different geological ages. The
main reservoir can be found in an alluvial succession which
is dominated by generally poor north-derived fan deposits
in the eastern and south-eastern parts of the field, while the
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western and south-western parts are dominated by surround-
ing fan fringing deposits, also called plain deposits, seeFig. 1.
These plain deposits include lacustrine shales, fluvial sand-
stones, and a substantial package of high-porosity aeolian
sandstones. In addition, in areas between alluvial fans and
aeolian sediments depositions are reworked and re-deposited
by fluvial processes. The alluvial fan conglomerates found
on Edvard Grieg show a large variability between producible
conglomerates (found in 16/1-8) to almost non-reservoir con-
glomerates as seen in 16/1-10. The main difference between
these conglomerates is the composition of the matrix which
ranges from clean sandstones to muddy sandstones with very
low permeability. The latter is often referred to as conglom-
erates with silty matrix, while conglomerates with cleaner
sandstonematrix are referred to as conglomerates with sandy
matrix. Also, as the clasts often are generally of granitic
material and do not contribute to the net, clast-supported
conglomerates are of poorer reservoir quality than matrix-
supported conglomerates. To the north on the Tellus high,
the alluvial succession is not present, leaving us with high
porosity, high permeable bioclastic Cretaceous shelf sand
(Åsgard sandstones) overlying a Silurian and/or Ordovician
basement (as seen in 16/1-15). The Åsgard sandstones are
draped overmost of the northern, western, and south-western
parts of the field, pinching out eastwards. Also, when the
granitic basement is fractured and altered it has proven to
exhibit producible reserves (e.g. long-term production test in
16/1-28 S, now known as Troldhaugen).

3 Modeling

In this section, we briefly describe the flow model and the
approach for simulating seismic data. The latter section is

divided in two main parts: the petro-elastic model and the
seismic model.

3.1 Flowmodel

In this study, we have used the open-source reservoir sim-
ulator Flow [29], developed in the Open Porous Media
(OPM) initiative. This simulator solves a black-oil (i.e., two
hydrocarbon components) flow model using a fully implicit
numerical scheme. The reservoir properties are defined
on a hexahedron (corner point) grid and pressure-volume-
temperature properties, as well as relative permeabilities and
capillary pressures, are defined using tables. The bound-
aries are defined using no-flow Neumann conditions. Each
well is modeled using multiple segments, and well equations
are solved fully implicitly and coupled with the reservoir
equations. Correlations between pressure and flow rates in
well pipelines are modeled using tables. The non-linear
system of equations is solved iteratively using a Newton-
Raphson method. For each iteration step, a linearized system
of equations is solved using a stabilized bi-conjugate gradient
method with ILU(0) preconditioning (the generalized min-
imal residual method was also tested, but the bi-conjugate
approach was superior for our reservoir model).

Two versions of the reservoir model for the Edvard Grieg
field were used in this study. Both versions have the same
configuration of wells. The 2018 model is developed using
knowledge from data until 2018 and has 8,626,176 grid cells,
of which 1,482,594 are active (in-active grid cells have no
flow passing through them, and do not contribute to the
numerical solution). The grid dimension in x-, y-, and z-
direction is 128×192×351. The other model was developed
in 2020 and has slightly adjusted original hydrocarbon vol-
umes in place. In addition, the model size is 12,254,400 grid

Fig. 1 Facies map (left) and permeability (right). The figures also show the location of wells and faults
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cells, of which 1,559,040 are active. The grid dimension in
x-, y-, and z-direction is 144 × 230 × 370. The main dif-
ference between the two models is the incorporation of a
new conceptual depositional model to reflect and simulate
the dynamic behavior seen from the production and seismic
data.

3.2 Simulation to seismic

The success of quantitative assimilation of seismic data in
history matching depends on a good seismic forward mod-
eling workflow that generates realistic seismic data based
on the reservoir models. The workflow is referred to as
“sim2seis” where the main objective is to simulate synthetic
seismic data and attributes that are then compared with field
seismic data to reduce the mismatch while updating various
reservoir parameters [28]. The whole process can be divided
into two parts: the petro-elastic model (PEM) and seismic
modeling. A brief description of them is given below.

3.2.1 Petro-elastic model

A key part of the 4D workflow is the petro-elastic model
(PEM) or rock physics model (RPM) for the different
facies/rock types, which is needed to compute the elastic
properties from the static and dynamic properties in the sim-
ulation model. It has not been the focus of this project to
develop a new PEM for Edvard Grieg. Consequently, the
project has relied on already existing models provided by
the Operator, and neither the underlying PEM/RPM nor the
uncertainties related to these have been assessed by thiswork.

In establishing the Edvard Grieg PEM the Operator has
defined four main facies groups from the geological frame-
work presented in Section 2:

• Sandstones; include aeolian, fluvial, reworked fluvial and
aeolian, and bioclastic shelf sand.

• Alluvial fan conglomerates; consist of conglomerates
with a sandy matrix and conglomerates with lower prop-
erties due to either: 1) matrix of low reservoir quality
(silty), or 2) that they are dominated by large clasts and
that the amount of effective matrix is limited.

• Basement; both weathered and porous basement (con-
taining matrix properties) and hard and fractured base-
ment. The latter with porosity only in fractures.

• Non-reservoir; predominantly lacustrine shales.

The Operator has supplied the project with appropriate dry
rock elastic property-porosity relations (i.e. power laws for
bulk and shear moduli, and density) per sandstone reservoir
facies based on log data from exploration and appraisal wells.
While the sandstones onEdvardGrieg in general followwell-
established elastic property-porosity relations such as the

friable sandmodel [2], the conglomerates behave differently.
It can be shown that the bulk modulus for conglomeratic
facies on Edvard Grieg seems to increase (stiffen) faster with
decreasing porosities compared with the shear modulus. It is
believed that this could be linked to the nature of conglom-
eratic rocks, which can be seen as a “two-phased” medium
with load-bearing clasts and in-between matrix. The clasts
in the alluvial sand conglomerates are considered to be quite
tight and not contributing to the net, while the matrix in the
sandy matrix conglomerate shows medium to good reservoir
properties [24]. Consequently, depending on the clast/matrix
ratio, the effective porosity of the total rock can be quite
low. To reflect this in the modeling scheme a different RPM
strategy was required for the alluvial sands compared to the
sandstones.

Avseth et al. [3] showed how the elastic properties of a
low-to-intermediate-porosity sandstone could be described
by combining the constant cement (CCT) and differential
effective medium (DEM) theories. At the low porosity inter-
val (0 ≤ ϕ ≤ ϕmax,DEM) they introduced pores of various
shapes as inclusions in an effectivemineral as the “host rock”
using DEM. Rock Physics Technology (RPT, 3rd party con-
sultancy company) on behalf of the Operator showed that
this model could work as a proxy for modeling the effects
of the presence of clasts in the conglomerates by treating the
clasts as “spherical pores” in the effective sandy matrix as
host in the same low porosity interval. Then the clasts would
act as a reinforcement/stiffening of the rock framework, i.e.
increasing the incompressibility, while their spheroid shape
would mean that they do not increase the resistance against
shear forces. The shear modulus would then be computed
using Hashin-Shtrikman-Walpole lower bounds [31, 32] at
intermediate and lower porosity ranges, which is also used to
connect the low- and high porosity end member models for
the bulk modulus. As the high-porosity end-member, RPT
suggested using the Patchy cement model [1]. This variant
of the [3] model is referred to as the Reinforced Kite model
by RPT. For the non-reservoir facies groups, simple power
laws and average values have been used to derive the p-wave
and s-wave velocities and densities needed for seismic mod-
eling. For simplicity, it is assumed that these facies groups
have no or negligible 4D effects, and their elastic values will
remain constant through time.

3.2.2 Seismic modeling

In this work, for seismic modeling, we have used the work-
flow developed by [16]. The idea is to model seismic data
from a reservoir model or geo-model while honoring fun-
damental seismic propagation like tuning effects, and lateral
continuity, as well as eliminating numerical grid effects. The
modeling workflow has two main steps: mapping reservoir
properties into a geophysical domain using a dualmodel con-
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cept and then seismicmodeling using the advancedKirchhoff
seismic modeling scheme.

The dual model concept recognizes the need for various
models for various disciplines (like reservoir, geophysical,
geological) to describe the same underground, but for differ-
ent applications and further can be mapped from one domain
to another [16]. Here, the mapping can be defined as shown
in Eq. 1, where G, R and S are geological, reservoir, and
seismic models of the underground u(�r), respectively.

G(u(�r)) ⇔ R(u(�r)) ⇔ S(u(�r)) ⇔ G(u(�r)) (1)

The idea is to construct the mapping that is compatible
with the geophysicalmodel in parallel with the reservoir/flow
model or the geo-model [17]. For example, reservoir/ flow
models are parametric in nature, while seismic is usually
modeled on a regular grid (such as a Cartesian grid). There-
fore,mapping fromonedomain to another should honor these
aspects.

First, we use the petro-elastic model to obtain seismic
properties (such as Vp, Vs , density) in reservoir cells. These
uniform cell properties (defined in the reservoir sample grid)
are then mapped into a geophysical model/ domain (Carte-
sian grid or regular grid). The mapping is done by projecting
the reservoir properties vertically to the cell interfaces and
mapping the structural grid to seismic bin positions as fol-
lows [16]:

• Grid all cell top and base boundaries from reservoir struc-
tural model corner points to reflective surfaces based on
seismic bin positions

• Project reservoir sample grid properties to reflective
surfaces and interpolate reflectivity based on reflective
surface sample points

• Interpolate velocity based on reservoir sample grids
within layers

Further, we follow some additional steps to fill and fix the
geophysical model that is to be used for seismic modeling.
For example, in the current approach, the undefined cells
are filled with average properties of the individual layers.
The zero-cell thickness grid properties are filled with linear
interpolation vertically. In addition, an overburden model is
used to obtain a realistic seismic response from the top of the
reservoir. Here, the overburden model (static elastic model)
is constructed by interpolatingwell-log information that con-
forms with the structural model of the reservoir grid.

Once the reservoir properties are mapped into the regular
grid, the seismic modeling scheme is used to generate a seis-
mic response. As the reservoir model has varying scales from
+ 100 m to 1 mm (mainly at pinch-outs area), both simple
convolution algorithmsmodel and advanced finite difference
modeling are not appropriate for this kind of scenario. This

may lead to numerical artifacts in the modeled seismic. Finer
gridding can improve the results but comes with a significant
computational cost. In addition to the lack of vertical res-
olution from imaging the reflected wave field, the simple
convolution algorithms model is not capable of modeling the
inevitable lack of lateral resolution. Thus the horizontal res-
olution is often over-predicted. Therefore, to address these
issues, an approximation of the combined Kirchhoff model-
ing and imaging operator known as the point spread function
is implemented with acceptable runtime. More details of the
modeling can be obtained in [11, 16, 17].

Realistic seismic noise modeling is usually not carried
out in detail. Gaussian or vertically filtered Gaussian noise
is often generated, where scaling is done in some ad hoc
way. However, high-frequency noise in any spatial direction
is usually removed in data processing and is in that respect a
poor approximation of seismic noise. A more realistic noise
estimate takes into account that we have tried to image our
data and eliminate noise in the best possible way. The noise
that is remaining, is the noise that is indistinguishable from
data. To model realistic seismic noise an approach that gen-
erates noise that resembles data as accurately as possible is
adopted.

4 Methodology

Here we present the workflow for updating model param-
eters. We start with a description of how the prior models
are generated, followed by the main methodology for data
assimilation including the Bayesian inversion technique,
localization, and data compression.

4.1 Prior model

The prior ensemble is built from perturbations of selected
parameters. We consider three-dimensional field parameters
definedon all grid cells, two-dimensional surface parameters,
and scalar parameters. We use three different techniques for
generating perturbations of the parameters. The direct way
consists of using normal (Gaussian) distributions to gener-
ate (possibly correlated) realizations of a parameter type.
This approach is used for, e.g., porosity and permeability.
The realizations are generated using a Gaussian variogram,
and in this case, it is possible to directly generate correlated
Gaussian random fields. The methodology for doing this is
to our knowledge not yet published, but the algorithm can be
found in [26, gaussian_sim.py]. In this study, reser-
voir properties are implicitly conditioned on well-log data
by using a reference model (provided by the operators) as
the mean for the distributions. No additional conditioning
is applied, in order to account for the uncertainty related to
upscaling of log data. If a normal distribution is used, it is nec-
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essary to truncate the updated parameters if they fall outside
predefinedphysical bounds.Other parameters are better char-
acterized using log-normal distributions, e.g., permeability.
In this case, a normal distribution with mean μ̄ and stan-
dard deviation σ is used to populate the ensemble, but an
exponential transformation is used before the parameters are
exported to the simulator. The transformed distribution for
the parameters will then have a log-normal distribution with
mean exp(μ̄+σ 2/2). In this case, the parameters will always
be positive, but truncation might still be necessary to restrict
the range of the values. We use a hard cut-off in our study.
Some parameters (i.e., relative permeabilities and fault mul-
tipliers) are best represented as uniformly distributed on a
closed interval. In this case, we start with a standard nor-
mal distribution Z (i.e., zero mean and standard deviation
equal to 1), and transform the parameters using the cumu-
lative distribution function (cdf) before the parameters are
exported to the simulator. In addition, scaling is applied to
obtain the required upper and lower bounds. This transfor-
mation is summarized as Y = cdf(Z) × (b − a) + a, where
a and b are the lower and upper bounds, respectively. In this
case, no truncation is necessary as Y will always be within
[a, b].

4.2 Model calibration

Ensemble-based data assimilation is performed to automat-
ically calibrate the model. The methodology is based on a
Bayesian description of the problem, where we update the
poorly known prior state of the system by calibrating – or
conditioning – to the measured data. Assuming that we have
a Gaussian prior model and Gaussian measurement error,
Bayes’ theorem gives the following equation for the poste-
rior distribution of the calibrated model

p
(

�m| �d0
)

≈ e
− 1
2

[(
�g( �m)−�d0

)T
C−1
d

(
�g( �m)−�d0

)
+

(
�m− �mprior

)T
C−1
m

(
�m− �mprior

)]

.

(2)

Here, �m ∈ R
Nm is the vector of model parameters; �d0 ∈

R
Nd is the vector of measurements; �mprior is the prior mean

vector for the parameters; �g : RNm → R
Nd is the simulator

mapping the parameters into the data space which in this
study consists of the fluid flow simulator coupled with the
sim2seis;Cm ∈ R

Nm×Nm is the parameter covariancematrix;
and Cd ∈ R

Nd×Nd is the measurement covariance matrix. In
the EnRMLmethod, we seek to generate samples from Eq. 2
by first generating an unconditional (rough) sample from the
prior andmeasurement distributions, and then correcting this
model by minimizing the exponent in Eq. 2.

TheEnRMLmethod does not require any givenminimiza-
tion method. However, the Levenberg-Marquardt method
has been shown to work very well for subsurface flow
problems, see, e.g., [7, 19]. Here, we calibrate the model
using EnRML with the approximate formulation of the

Levenberg-Marquardt method, as introduced in [6]. Uncon-
ditional samples of the prior and measurements are drawn
from the respective distributions. The lth iteration of themin-
imization for sample j is given by

δ �ml+1, j = −
(
(1 + λl )C

−1
m + GT

l C−1
d Gl

)−1

×
[
C−1
m

(
�ml, j − �mprior

j

)
+ GT

l C−1
d

(
�g ( �ml, j

) + �ε j − �d0
)]

, j = 1 . . . Ne,

(3)

where Gl is the sensitivity of measurements to the model
state, where one element is given asGi, j = ∂gi/∂m j , and λl
is the Levenberg-Marquardt inflation factor for the Hessian.
The ensemble size is denoted Ne, and �ε j is a realization of the
measurement noise drawn from a Gaussian distribution with
zero mean and covariance Cd . To obtain the approximate
form, Eq. 3 is simplified by neglecting the terms contain-
ing the mismatch of the model parameters, and the equation
is rewritten by applying the Sherman-Woodbury-Morrison
matrix inversion formulas [13]. This gives

δ �ml+1, j = −CmG
T
l

[
(1 + λl ) Cd + GlCmG

T
l

]−1 (
�g ( �ml, j

) + �ε j − �d0
)

. (4)

Extracting the sensitivity of measurements to the model
state is notoriously difficult for reservoir simulators. To
avoid this EnRML approximates Gl from the ensemble, see,
e.g., [14] as

Gl = �
1/2
d 	Dl (	Ml)

−1. (5)

Here, 	Ml is the centered and scaled ensemble of model
properties at the (l)th iteration,

	Ml = [ �m(l,1), . . . , �m(l,Ne)

] (
INe − 1

Ne

�1�1T
)

/
√
Ne − 1,

(6)

where [ �m(l,1), . . . , �m(l,Ne)] is the Ne members of the ensem-
ble of model properties, INe is the Ne-by-Ne identity matrix,
and �1 ∈ R

Ne is the column vector of ones. Similarly, 	Dl is
the centered and scaled ensemble of predicted measurements
at the (l)th iteration

	Dl = [�g( �m(l,1)), . . . , �g( �m(l,Ne))
] (

INe − 1

Ne
�1�1T

)
/
√
Ne − 1, (7)

where
[�g( �m(l,1)), . . . , �g( �m(l,Ne))

]
is the ensemble of pre-

dicted measurement, i.e. the result of applying the forward
simulator, �g(.), to the ensemble of model properties at the
(l)th iteration. Finally, �1/2

d ∈ R
Nd ,Nd is a scaling matrix to

approximately normalize the data.
To make the method numerically stable, a truncated Sin-

gular Value Decomposition (SVD) of 	Dl is performed

	Dl = Up Sp V
T
p , (8)
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where the subscript p denotes the truncation level. That is,
we sort the singular values in descending order and retain
the first p values. The value of p is selected such that the
sum of the first p values corresponds to 98% of the sum
of all singular values. The remaining singular values, with
their corresponding singular vectors, are discarded. Inserting
Eqs. 5, 6, 7, 8 into Eq. 4 and simplifying, we obtain

δ �ml+1, j = −	Ml Vp Sp
[(
1 + λl

)
Ip + S2p

]−1
UT
p �

−1/2
d

(
�g ( �ml, j

) + �ε j − �d0
)

,

(9)

where we have also used the ensemble to approximateCm ≈
	Ml	MT

l .
The iteration described by Eq. 9 is repeated until the stop-

ping criterion is reached. In the numerical study, we stop
the iteration when the relative improvement in data misfit is
below a predefined threshold. In addition, to improve conver-
gence, we adapt λl for each iteration. For more information
about convergence criteria and updating rules for λl , we refer
to [18, 21].

4.3 Localization

The ensemble-based data assimilation method calculates
the updates based on Monte-Carlo estimates of covariance
and cross-covariance. Since we have limited computational
resources, we can only afford to run a relatively mod-
est ensemble of subsurface flow models. Hence, there is a
substantial sampling error associated with the Monte-Carlo
estimates. It is well known that localization can be used to
mitigate this sampling error.

There are numerous localization schemes available in the
literature. Typically, some sort of distance-based tapering has
been applied where updates are dampened as a function of
the distance between the parameter and data. Updates beyond
a user-defined critical distance are set to zero. Unfortunately,
these schemes have some drawbacks if data or parameters
don’t have a spatial position, see, e.g., [23]. An alternative
localization method, more suitable for large models with
large data, is based on the value of the estimated correlation
between the parameters and data. Updates pertaining to cor-
relation below a user-defined threshold are dampened – or set
to zero. This localization scheme is denoted as correlation-
based adaptive localization [20].

The update defined in Eq. 9 can be rewritten in matrix
form as

δMl+1 = −	Ml Rl , (10)

where Rl ∈ R
Ne×Ne is a matrix where the columns hold the

projection of the ensemble of residuals. In the same spirit
as [20], we define the localized update as

δMl+1 = − (C ◦ 	Ml) Rl , (11)

whereC ∈ R
Nm×Ne is the matrix of tapering coefficients and

◦ defines the Schur product. The element of C is given as

ci,k = I (
abs

(
ρi,k

)
> �i,k

)
, (12)

where I (·) is the indicator function, ρi,k is the Monte-Carlo
estimate of correlation between parameter i and projected
data k, and �i,k is the threshold value for the localization.

The indicator function is one if the condition is fulfilled
and zero if the condition is not fulfilled. Hence, it acts as
a cut-off where only updates with a correlation above the
threshold are kept. Alternatively, one could apply a different
taper function. Luo and Bhakta [20] applied the Caspari-
Cohn function as a continuous taper, and we have also tested
various forms of the Sigmoid function. Figure 2 illustrates
the difference between these approaches.

The Monte-Carlo estimate of correlation is affected by
sampling noise. Ideally, one would therefore like to set the
threshold value equal to the noise level. To approximately
achieve this, the threshold value for the localization can be
calculated following the efficient procedure given by [20].
The procedure randomly shuffles the columns of Eq. 6 and
calculates the correlation between the shuffled parameters
and the projected data (denoted ερ). Since the parameters are
sampled as independent and identically distributed random
variables, the shuffling ensures that the correlation is theoret-
ically zero, and ερ can therefore be considered as an estimate
of the noise. Further, the standard deviation for this noise can
be approximated using themedian absolute deviation (MAD)
estimator

σ = median
(
abs

(
ερ

))

0.6475
. (13)

Fig. 2 Taper value as a function of estimated correlation for different
taper functions. For all functions,� = 0.5. Caspari-Cohn is abbreviated
C-C
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Fig. 3 Map from averaging absolute amplitudes in a window from 50
ms above to 50 ms below the reservoir top. The figure shows the map
based on the difference between the 2016 base survey and the 2018
monitor survey (left) and the initial simulated mean of the amplitude
maps (right). The results on the right figure are based on using simulated
SWATINIT for initialization. The axes show the UTM coordinates and

the colorbar shows the signal strength. The cells that are completed by
the wells are shown as white circles. The injectors are on the reservoir’s
west side and are labeled A-02, A-01, and A-05. The producers are also
shown, but not labeled. The horizontal red lines (labeled Line A and
Line B) indicate the slices that are discussed in this section

The threshold is then given as � = τ · σ , where τ is a
user-defined scaling. A unique taper function is calculated
for each of the parameter types.

4.4 Data compression

An important part of the methodology is the compression
of data for the reduction of required computer memory. We
follow [19, 22], but the techniques introduced there are mod-
ified to further include information in the simulated data. We
focus on minimal compression loss in areas where the data
show significant seismic information, in addition to the areas
where the models show false information (i.e., areas where
the modeled seismic signal is not seen in the actual data).
The updated procedure can be summarized as follows: Dis-
crete wavelet coefficients �c j are computed for the inverted
seismic attributes and the simulated attributes. Denoting the
actual data as �d0, and simulated data as �d j , j = 1 . . . Ne, this
can be written �c j = DWT( �d j ). Further, a median absolute

deviation estimator can be used to compute the standard devi-
ation for the noise associated with the wavelet coefficients.
We emphasize that these quantities are from a perspective of
image denoising, and do not necessarily represent all sources
of error in the seismic data. The estimated noise for the coef-
ficients can however be correlated in space and are suitable
for computing thresholds Tj separating leadingwavelet coef-
ficients from coefficients of minor importance. Denoting the
index-set of leading coefficients by I j , our compressed data
(eithermeasured or simulated) is defined as {ci }, i ∈ I , where
I = ∪I j . In our study below we apply data compression for
the large impedance cubes. No compression is used when
assimilating amplitude maps.

5 Results

The results are divided into three main categories: pre-
liminary results showing investigations of deficiencies in

Fig. 4 Initial water saturation using cell-based values (SWATINIT) (left) and using oil-water contacts (OWC) (right) for Line B. The left picture
shows wells that are open both initially and later in the production. The right figure only shows the well that is open initially (producer A-11)
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Fig. 5 The six equilibrium regions in the Edvard Grieg field

the prior model description and suggestions for improve-
ments, results using two-dimensional amplitude maps, and
results using three-dimensional impedance cubes. The sec-
tion focusing on amplitude maps is the most comprehensive
and includes model checking, data match, estimated param-
eters, and model validation.

5.1 Preliminary studies

A preliminary study based on a fraction of the data was car-
ried out using the 2018 model. Through this study we gained
valuable knowledge about the shortcomings and important
aspects of the reservoir and the model, enabling us to include
the governing parameters in the data assimilation. We con-
sidered the seismic amplitude map based on the difference
between the 2016 base survey and the 2018 monitor survey.
The amplitude map is calculated from full stack amplitude
versus offset (AVO) data, by averaging absolute amplitudes
in a window from 50 ms above to 50 ms below the reservoir
top. The field data are time-shift corrected. We used a pre-
generated cell-based property for the initial water saturation
(SWATINIT) for the Edvard Grieg field. Figure 3 shows the
field data and the mean of simulated amplitude maps. From
the field data, we identify a clear signal close to the upper
water injector (A-02), and a clear signal close to the middle
water injector (A-01). These signals are coming from injected
water and the waterfront moving fromwest to east. However,
the simulated signals are too strong, and the water is mov-

ing faster than the data indicates. Investigations of the initial
water saturation revealed a discrepancy between the provided
cell-based values and the oil-water contact generated based
on well logs. Figure 4 shows a cross-section in the west-east
direction, going through the southern field amplitude signal
(see Line B on Fig. 3). The left plot shows a simulation using
SWATINITand the right plot shows a simulationwhere initial
water saturations are generated using the oil-water contacts
(OWC). We clearly see that the oil zone pinches out earlier
on the left picture compared to the right picture. The conse-
quence of an early pinch-out is that there will be no water
replacing oil in this part of the reservoir, and the waterfront
appears to move faster. There are six equilibrium regions in
the reservoir model, each having a different oil-water con-
tact. The six regions are based on information in the seismic
data and are shown in Fig. 5. The zone between the injectors
and the producers is mainly covered by equilibrium regions
1 and 2.

The size of the simulated northern amplitude signal (near
A-02) is too large compared to the field data. We found that
one reason for this is a substantial flow from the water zone
(aquifer) into the oil zone. This is illustrated in Fig. 6. The
figure shows a cross-section in the west-east direction, going
through the northern field amplitude signal (see Line A on
Fig. 3). Strong influence from the aquifer is an indication
of high vertical permeability, and reduction of the vertical
permeability is a plausible remedy for correcting the spuri-
ous simulated amplitude signal. Figure 7 shows the current
vertical permeability for Line A.

The above considerations motivated us to include uncer-
tainty for the oil-water contact (OWC) and a vertical per-
meability multiplier (MULTZ) when generating the initial
ensemble. The benefit of doing so is illustrated in Fig. 8,
where the bottom plots show an average over an ensemble of
simulated amplitude maps. The northern signal is weakened
in the vicinity of injector A-02 and around producer A-11
(marked on the top left plot) in the east. The signal is also
strengthened approximately where the data show a change.
The differences are more prominent in the south. The west-
ern part of the signal is enhanced and the eastern part of the

Fig. 6 Initial (left) and final (right) oil saturation for Line A
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Fig. 7 Vertical permeability (PERMZ) for Line A. The white line indicates the initial OWC (see also Fig. 6)

signal is weakened. The improvements stem from the use of
oil-water contacts instead of pre-generated water saturations,
and from introducing uncertainty for the vertical permeabil-
ity. Note that for this ensemblewe selected a distributionwith
a mean value less than unity (1) for MULTZ.

5.1.1 Value of seismic data

The 2018 model was run both with and without using the
seismic data. Although the case using only well data had
slightly different prior distributions, the cases illustrate the

Fig. 8 Map from averaging absolute amplitudes in a window from
50 ms above to 50 ms below the reservoir top. Amplitude map based
on field data (top left), simulated amplitude mean maps after including
MULTZ andOWC (bottom left), mean of the simulated amplitudemaps

when using initial water saturation (bottom right), and the difference
between the simulated results (top right). The top right plot only shows
differences larger than 0.01
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Fig. 9 Difference between posterior and prior permeability estimate [mD] in x-, y-, and z-direction. Values below 50 mD are not shown on the
plots. Top: Results based on well data only. Bottom: Results based on both well data and seismic data

Fig. 10 Simulated seismic data based on posterior parameters (left), and the difference between the simulated seismic and the field data (right).
Values below 0.01 are not shown on the plots. Top: Results based on well data only. Bottom: Results based on both well data and seismic data
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Table 1 Standard deviations for measurement errors

Data type std (σ ) Unit

Oil rates 200 Sm3/day

Water rates 20 Sm3/day

Gas rates 20000 Sm3/day

BHP 10 Bar

RFT 2 Bar

value of including seismic data. Figure 9 shows the difference
between posterior and prior permeability in all directions
with and without seismic data. Especially in the x- and z-
directions, there is a clear shift from positive to negative
change in the estimated permeability. When seismic data are
assimilated, it is important to precisely model the waterfront
movement, and the permeability in the x-direction is updated
for this purpose. Also, as discussed above, the permeability
in z-direction influences the vertical water movement, which
is also crucial for matching the seismic data.

In Fig. 10 we show the simulated seismic data without
(top) and with (bottom) assimilation of seismic data. The
average seismic data mismatch (see Eq. 15) without assim-
ilation of seismic data is 5.99 and the average seismic data
mismatch with assimilation of seismic data is 1.76.

5.2 Assimilating amplitudemaps

We continued our investigations using the 2020 model for
the Edvard Grieg field. This model allowed us to utilize
two seismic monitor surveys, in addition to the base sur-
vey. We generate two datasets from the seismic surveys. The
first dataset is the difference between the 2018 monitor and
the 2016 base survey, and the second dataset is the differ-
ence between the 2020 monitor and the 2018 survey. The
production data were collected monthly from all wells in
the period from November 2015 until August 2020. We also

used the repeat formation tester (RFT) data and the bottom
hole pressures (BHP) from the wells. The properties for data
uncertainty and the prior model are summarized in Tables 1
and 2. In this study, data uncertainty is automatically inflated
if a field value is not covered by the prior prediction. The
inflation is proportional to the shortest distance between the
measured value and the ensemble of predicted data. We did
not include correlated errors for the well data. A detailed dis-
cussion of the impact of correlated errors is found in [10].
The initial damping factor (Section 4.2) is λ0 = 5000, and
adaptive localization (Section 4.3) is used with a truncation
scaling τ = 1.5. The convergence criterion (Section 4.2) is
0.01, and a scaling factor of 0.5 is used to down-weight the
seismic data compared to production data. See [19] for more
information regarding the scaling of different data types.

Based on the preliminary studies we decided to continue
initializing the model using oil-water contacts and to include
oil-water contacts andmultipliers of the vertical permeability
in the prior ensemble. In addition,we included the top surface
of the reservoir as an uncertain parameter. More specifi-
cally, we defined the top surface as the interface between
the Åsgård sand and the Shetland chalk. In this study, we did
not modify the top surface between the conglomerate and
the chalk. The sand layer is highly permeable, and thereby a
very good conductor of both fluids and pressure. The pertur-
bations we generate for the reservoir top are conditioned on
the depth at thewell locations, aswe assume that the depths at
these positions are accurately measured and we do not want
the wells to appear outside the high-permeable sand layers.
We decided to exclude uncertainty for the net-to-gross, and
instead, allow the uncertain porosity to determine the pore
volume in the reservoir. Finally, since the bottom hole pres-
sures are included as data, we add well production indices
(WPI) as uncertain parameters. This is crucial, as the flowing
well pressures depend on local reservoir properties modeled
using the production indices. The specification of the initial
ensemble is summarized in Table 2.

Table 2 Mean, standard
deviation, minimum, and
maximum for the prior ensemble

Parameter type mean (μ) std (σ ) min max

Top μref 2

Porosity μref 0.0625 0 1

Log-permeability (x, y, z) log(μref ) − σ 2/2 0.2 −5 10

Multz (cfd) 0 1 0 2

OWC μref 2

Log-WPI 0 − σ 2/2 1

Kr (w,o,g) (cfd) 0 1 0.75 1.25

Multpv (cfd) 0 1 1 3

Multflt (cfd) 0 1 0 1.2

Here μref indicates the reference model (provided by the operator). For spatially distributed parameters, a
variogram range of 40 gridblocks (in all directions) is used. See also Section 4.1
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Fig. 11 Coverage for well A-10. The figure shows (from left to right): the oil production rate, water production rate, gas production rate, and bottom
hole pressure. A blue asterisk indicates that the data point is covered, and the contrary for red

5.2.1 Model check

Before starting a data assimilation job, it is natural to inves-
tigate the plausibility of the generated prior models. In
particular, it is necessary to investigate the coverage of the
simulated data, with respect to the fieldmeasurements. In this
work, we define coverage by how well the ensemble repre-
sents the domain of interest. I.e., if field data is included in
the geometric envelope defined by the ensemble, the data is
said to be covered by the ensemble. This task is rather simple
for time-series production data, and in our workflow, we plot
this coverage before starting the assimilation. This is illus-
trated for well A-10 in Fig. 11. The data are covered with
a few exceptions, but the data that fall outside are close to
the ensemble. In future versions of the coverage measure, we
want to also account for the measurement uncertainty.

We have also developed a novel tool for visualizing the
coverage of seismic amplitudemaps, that is efficient for com-
paring a large number of seismic data with the ensemble. The
methodologyutilizes an importance attributewhich identifies
important data that are above the noise threshold. Coverage
and importance are used to visualize the spatial area where
the ensemble span covers the data and the area where a sig-
nificant discrepancy exists. The methodology for computing
the coverage plots is thoroughly described in [17]. Figure 12
(top) illustrates this for the two seismic datasets. The data
are mostly covered but with some exceptions for the first
dataset. The coverage plots are highly effective for locating
areas where the simulated ensemble is not properly model-
ing the data, but they do not show how far data are from
the ensemble span. To accommodate this, we also have the
possibility to plot coverage for slices through the reservoir,

Fig. 12 Top: Coverage maps for first (left) and second (right) seis-
mic amplitude dataset. The x- and y-axes show seismic crosslines and
inlines, respectively.Bottom: 1Dcoverageplots for first (left) and second
(right) seismic dataset at inline 1600. The x-axis shows the crosslines.

Green color indicates coverage, red is real amplitude not covered, blue
is modeled amplitude not seen, and white is unimportant areas. Impor-
tant areas require that both the ensemble and the field data are different
from the noise floor
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in either the x- or y-direction. Figure 12 (bottom) shows the
coverage through inline 1600. From this figure, it is clear
that all seismic field data along this inline are close to the
ensemble (shown in grey).

A drawback with the coverage measure used for the time-
series data above is that it is difficult to reveal inconsistencies
in correlations between measurements since the data uncer-
tainty is not taken into account. The Mahalanobis distance is
therefore a better way to evaluate the credibility of the prior
ensemble [27]. The Mahalanobis distance is used to mea-
sure the distance between a point and a distribution f , and is
written:

D2
M (do, f ) = (do − μ)C−1

p (do − μ), (14)

where μ and Cp are the mean and covariance for the distri-
bution f . In our application, the probability distribution is
represented by the ensemble of perturbed simulated obser-
vations, and μ and Cp are sample estimates. If the measure
is applied for a single observation (level 1) it will represent
an improved coverage merit that takes measurement uncer-
tainty into account. When applied to pairs of observations
(level 2) it is an effective measure that also takes correlations
between the data into account for identifying inconsisten-
cies. The squared Mahalanobis distance can be compared
with a chi-square distribution that represents a theoretical
value for the measure. For a single observation, the theo-
retical number using a p-value equal to 0.01 is 6.6, and for
pairs of observations, the corresponding theoretical value is
9.2 [27]. In our workflow, we compute the squared Maha-
lanobis distance for data in two different ways. In the first
way, we compute the measure for each point in time. In the
secondway,we lump time-series data (or spatially distributed
RFT data) together and project the ensemble onto the space
spanned by the most dominant singular vector. The latter
approach limits the amount of information since we only get
one number for each data type. In Table 3 we display the top
five score values using the second approach.

It is clear from the table that the pressure is particularly
difficult to model using the prior ensemble. Well A-07 is the
most problematic as it has the highest level 1 score, and it
has the highest level 2 score when paired with the water pro-

duction in well A-20. Also, the RFT pressure at well A-18
is represented in the table, paired with bottom hole pressures
from wells A-11 and A-07. Although the numbers slightly
exceed the theoretical valueswe decided to continueworking
with this ensemble and use it for data assimilation. A visual-
ization of the level 2 results is shown in Fig. 13. As we see,
the field measurements are in the periphery of the ensemble
cloud.

It is of interest to know which measurements are most
influential on the parameter updates, and which parameters
are most sensitive to the data. As part of our quality assur-
ance workflow, we compute the Kalman gain (see Eq. 4)
corresponding to each data-type, and rank the most influen-
tial data and the parameters they impact. In this study, the
largest updates are seen for the reservoir depth parameter,
and it is induced by the production data. More specifically,
the pressure inwellsA-01 andA-12 has the highest impact on
the reservoir depth, but also the production rates are ranked
high on the impact they have on the reservoir top. We have
implemented the possibility of exporting the Kalman gain
(as .grdecl files) for the different data types so that they can
be inspected in a visualization tool such as ResInsight [4].
Figure 14 shows the change of the top depth (see Table 2)
for the reservoir based on data from wells A-01 and A-12. A
higher value means higher depth (i.e., pushing the top reser-
voir deeper), which is equivalent to a thinner oil column.
From the sum of the two contributions (right plot), we see
that the general trend is to lower the oil column in the region
between the injectors and producers.

Figure 15 (left) shows part of the grid with the high-
est change in porosity [m3/m3] (small values are filtered
out) from seismic data. The change is mostly positive (i.e.,
increased porosity), especially for the top layers between
injector A-01 and the producers. The colorbar on the figure
applies to all plots. The values are relatively small since this
is a contribution from single datatypes at a single iteration
step. The accumulated contributions from all datatypes and
all iterations lead to the updated porosity that is discussed
later (Section 5.2.3). For comparison, we also calculated the
Kalmangain for oil production atwellA-11onporosity (right
plot). Also here we see an increase of porosity at the top lay-
ers between well A-01 and the producers. There are some

Table 3 The level 1 and level 2
Mahalanobis measure

Data type Level 1 D2
M Data types Level 2 D2

M

BHP A-07 11.9 WPR A-20, BHP A-07 10.8

BHP A-08 11.2 BHP A-11, BHP A-12 10.4

OPR A-12 10.2 BHP A-11, RFT A-18 10.3

GPR A-12 8.13 WPR A-20, BHP A-08 9.71

BHP A-18 7.82 BHP A-07, RFT A-18 9.49

In the table, we use the notation GPR for gas production rate, WPR for water production rate, and OPR for
oil production rate. Other symbols are defined above
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Fig. 13 Crossplots for data pairs with highest squared Mahalanobis distance score [dimensionless]. The blue dots are projected ensemble members
and the red dot is the projected measurement

areas with negative changes in porosity for both datatypes.
A challenge when working with imperfect models is that the
lack of model complexity makes it impossible to match all
data. This can be seen as a contradicting contribution from
different data types on reservoir properties. However, if we
filter the positive porosity gain from seismic on the areas
where the porosity gain from oil production is negative (bot-
tom plot), it reveals that there are very few inconsistent grid

cells (i.e., cells where contributions from the two data types
contradict).

5.2.2 Data match

Although thewell data is not the primary focus of this paper, it
is a challenge to simultaneously reduce the datamismatch for
both seismic and well data. Scaling [19] of the two datatypes
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Fig. 14 Change in reservoir top parameter (see Table 2) induced by bottom hole pressure in injector A-01 (left) and producer A-12 (middle). The
rightmost plot shows the sum of the two contributions. The update is based on the first iteration. [meters.]

is an efficient way of ensuring this. In this study, we used a
scaling (or weighting) factor of 0.5. The average data match
is computed using the formula

J i = 1

Nd

1

Ne

N∑
j=1

‖do − dij‖2C−1
d

, (15)

where i is the iteration index, Ne is the ensemble size, Nd is
the number of data, and Cd is the data variance. The results
are shown in Fig. 16. The well data approached the noise
level after three iterations and the seismic data mismatch was

reduced by approximately 50%. The reduction in the seismic
datamismatch indicates a clear improvement to themodel but
also reveals that additional modifications of the prior model
or the ensemble smoother configurations are required to fur-
ther reduce the data mismatch.

The changes in prior and posterior amplitude maps for the
two datasets are shown in Figs. 17 and 18 shows the differ-
ence between the posterior simulated amplitudemean and the
field data. The first dataset is the difference between the 2018
monitor and the 2016 base survey, and the second dataset is
the difference between the 2020monitor and the 2018 survey.
The second dataset (bottom) reveals a large area without sig-

Fig. 15 Change in porosity [m3/m3] induced by seismic data (left)
and oil production at A-11 (right). The bottom plot shows the positive
change from seismic filtered on negative change from oil production.

The updates are based on the first iteration. Injectors are shown as blue
arrows, and producers are shown as green arrows. The colorbar applies
to all plots
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Fig. 16 Objective function for well data (production data, pressures,
andRFT data) and seismic data. The box plots show the range, quartiles,
mean (triangle), and median (orange line). Since the squared data are
scaled by the variance (Eq. 15), there are no units on the axes

nal, which is caused by marine restrictions in the vicinity of
the Edvard Grieg platform during data acquisitions. The first
dataset clearly shows a shift towards the east for the simulated
prior. A significant adjustment is then seen for the difference
between the initial and final simulated data (see the right-
most plot). The color scale shows a difference of magnitude
around 0.4. The second dataset is considerably weaker, but
also here there is an adjustment (reduction) in the east and
an increase in signal strength in the middle west region. All

adjustments are in accordance with the assimilated seismic
and well measurements, which indicate a successful update
of the parameters. The main contribution from the updated
parameters is the reduction of the waterfront displacement.
This is achieved by increasing the porosity in the upper lay-
ers and by reducing the permeability in the direction between
injectors and producers. This is discussed further in subse-
quent sections.Although clear improvements in the predicted
amplitude are obtained, the results also reveal that the sim-
ulated data are still overly dispersed compared to the actual
data. Ways to further improve the results will be a topic for
future research.

The production data mismatch is reduced for most of the
wells. A major contribution to this comes from uncertainty
reduction (increased precision) for the updated ensemble.
We assimilate data from the beginning of production (green
field), and only small amounts of water are produced. The
general trend is that less water is simulated compared to the
measured values. In addition, the reservoir is under-saturated,
so the produced gas is coming out of solution as a conse-
quence of the pressure drop in the production tubings. These
conditions make the reference model relatively good for the
prediction of production rates. However, the reference pres-
sure is poorly estimated for several of the wells. The updated
ensemble is only partially able to improve the pressure data
mismatch. Figure 19 shows production data for well A-18.
The uncertainty for the data is reduced for both oil and water
rates, and we obtain a slight increase in simulated water,

Fig. 17 Mean of simulated prior ensemble (left), mean of simulated posterior ensemble (middle), and the difference between the prior and posterior
results (right). The right plots only show differences larger than 0.01. Top: Dataset based on 2018-2016 difference; Bottom: Dataset based on
2020-2018 difference
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Fig. 18 Maps from averaging
absolute field amplitudes in a
window from 50 ms above to 50
ms below the reservoir top (left),
and the difference between field
data and the posterior results
(right). The right plots only
show differences larger than
0.01. Top: Dataset based on
2018-2016 difference; Bottom:
Dataset based on 2020-2018
difference

which is in accordance with the data. The bottom hole pres-
sures for injector A-02 and producer A-10 are shown in
Fig. 20. For the injector, we are underestimating the pressure,
and only a small shift toward the data is obtained after data
assimilation. Our ambition was to achieve a better match for
the pressures by including uncertainty for the well produc-
tion/injection indices, but in this case, the injection index is
onlymarginally modified. The reason for this is that the auto-
matic data noise inflation (mentioned in the first paragraph

of this section) has reduced the impact of the pressure data.
The inflation of this data type should therefore be reduced or
removed. This will be subject to further research in subse-
quent works. The pressure data for well A-10 is an example
of a well with a good data match using the reference model,
and in this case, the updated ensemble has low uncertainty
and is centered between the measurements.

The RFT data match is also improved for most of the
wells, and the uncertainty in the updated ensemble is reduced.

Fig. 19 Oil (left) and water (right) production rates at well A-18. The
red dots are themeasurements, the green line is the result using the refer-
ence model, the light gray domain indicates the spread of the ensemble,

and the dark gray indicates the 10th and 90th percentile for the ensem-
ble. Day 0 on the x-axis is production start-up in November 2015
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Fig. 20 Bottom hole pressure for injector A-02 (left) and producer A-
10 (right).The red dots are the measurements, the green line is the result
using the reference model, the light gray domain indicates the spread

of the ensemble, and the dark gray indicates the 10th and 90th per-
centile for the ensemble. Day 0 on the x-axis is production start-up in
November 2015

Figure 21 shows two examples of this for well A-08 and
well A-12. The updated ensemble is mostly centered around
its prior mean values, but for some of the data values the
ensemble is also slightly shifted toward the measurement.

5.2.3 Estimated parameters and dynamic variables

The dynamic variables are not directly updated as part of the
Bayesian inversion. It is however interesting to see the impact
updated static parameters have on the reservoir flow, and in
particular the saturation and pressure. The volume average of
the change in water saturation is computed using the formula

	Sw = 1

V p

∑
k

	Sw
k · V p

k , (16)

where	Sw = Sw
i −Sw

i−1 andV
p is the pore volume.The sub-

script i indicates the point in time for a seismic survey. The
average is computed for each column in the reservoir model,
and the summation index (k) is selected such that the total
depth is approximately 100meters, i.e., L = ∑

k 	Zk ≈ 100
m, where Zk is the cell thickness. Figure 22 (left) shows the
difference between posterior and prior 	Sw. The first plot
corresponds to the first amplitude dataset, and a clear delay of
the water movement is indicated by the blue color. Erroneous
water displacement is the main reason for the discrepancies
between the measured signal and the simulated observations
(Fig. 17). A further correction of the water displacement is
seen on the second plot, which corresponds to the second
dataset. Here the red color indicates that water is replacing oil
in the posterior model, and the waterfront is precisely located
at the transition between red and blue on the plot. Similar to

Fig. 21 RFT data for well A-08 (left) and A-12 (right). The red dots are the measurements, the green cross is the result using the reference model,
and the black dots are the ensemble members
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Fig. 22 Left: Difference
between posterior and prior
	Sw where 	Sw is saturation
change between the first monitor
survey and the base survey (top),
and between the second monitor
survey and the first monitor
survey (bottom) [percent].
Right: Difference between
posterior and prior 	P where
	P is pressure change between
the first monitor survey and the
base survey (top), and between
the second monitor survey and
the first monitor survey (bottom)
[bar]. The truncation values are
shown in the titles. All quantities
are based on volume averages

Fig. 23 Top: Difference between posterior and prior porosity (left)
[m3/m3], and vertical permeability multiplier (right) [dimensionless].
Bottom:Difference betweenposterior andprior permeabilities in x (left),

y (middle) and z (right) directions [mD]. The truncation values are
shown in the titles. All quantities are based on volume averages
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saturation, Fig. 22 (right) shows the volume averaged dif-
ference between posterior and prior pressure. For the Edvard
Grieg field, there is an increase in pressure (over time) around
the injectors in thewest and a decrease in pressure (over time)
around the producers in the east. The difference between the
posterior and prior pressuremaps reveals that these trends are
flattened, i.e., the overall pressure changes in the reservoir are
reduced over time. The governing explanation for this is the
increased porosity between the injectors and producers, see
Fig. 23 (top, left). An exception is an area around injector
A-02, where the porosity is approximately kept unchanged.
The increase in porosity between the injectors and producers
slows down the water movement, which is one of the major
contributions to a better match between measured and simu-
lated amplitude maps. The decrease in porosity in the north
and south can be a consequence of the correlated porosity
fields that are used for the prior ensemble, or it could be
related to spurious correlations that are not eliminated by
the localization. It could also be other physical explanations
related to pressure or water movement. As discussed in the
preliminary study, it is likely that the vertical connectivity
should be reduced in the vicinity of injector A-02, which is
confirmed by the blue area around this well, see Fig. 23 (top,
right). The overall modifications of the multipliers are how-
ever quite complex and consist of both increase and decrease
at different parts of the reservoir. For instance, there is a
significant reduction of the vertical permeability multiplier
between injectors A-01 and A-05, and around producers A-
13 and A-18. There is an increase in the vertical permeability
multiplier north of injector A-02, around producer A-10, and
in the southern part of the reservoir. However, reduced con-
nectivity around injector A-02 is strengthened by a reduction
in vertical permeability, seen in Fig. 23 (bottom, right). The
decrease of x-permeability, Fig. 23 (bottom, left), contributes
to slowing down the water movement between the injectors
and producers. Similarly, and the increase in y-permeability,
Fig. 23 (bottom, middle), contributes to a redirection of the
water movement towards the flanks of the reservoir.

The change in reservoir top depth is shown in Fig. 24
(right). Positive change means that the top is lower and the
oil column is reduced, and vice versa. It is a decrease in the
reservoir top east of injectors A-01 andA-05, that contributes
to higher (vertically averaged) water saturation in this area.
However, as mentioned in the section about model checking,
the main contribution to changing the reservoir top comes
from the pressure data. Due to relatively moderate changes
in the top depth, we decided to increase the uncertainty in
the top depth in future simulations, as two meters standard
deviation may be too small to gain a significant impact on the
flow.The prior and posterior standard deviations for the depth
parameter are shown on the left and middle plots, respec-
tively. The conditioning on well depths is seen as domains
with zero standard deviations.

In Fig. 25 we show a selection of scalar parameters with
large differences between the prior and posterior ensemble.
For the water contacts, the general trend among the posterior
distributions is to lower the contact and increase the thickness
of the oil column. Most change is seen for equilibrium zone
3 (see also Fig. 5) where the average change is almost two
meters. Regarding relative permeabilities, the largest update
is seen for the gas phase, which is lowered by approximately
0.2. This has an impact on the movement of gas that evap-
orates (comes out of solution) due to pressure drop around
the producers. Finally, we have included the results for the
pore volume multiplier. For this parameter, we selected a
prior mean of 2, and the updated mean is almost 2.75. The
purpose of adding uncertainty to the pore volume is to allow
variation of the pressure support from the aquifer, which is
strengthened in the posterior model.

Figure 26 shows prior and posterior distributions for three
(out of 17 in total) fault multipliers. These faults all change
significantly compared to the prior values, and the posterior
distributions all suggest less transmissibility, close to seal-
ing. The position of the faults is shown in Fig. 27. The first
gravitational fault acts as a barrier between injectors A-01
and A-02 and producers A-13 and A-18, and will impact the

Fig. 24 Differences between posterior and prior reservoir top depth (left), prior (middle) standard deviations, and posterior (right) standard
deviations. [meters.]
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Fig. 25 Oil-water contact for equilibrium zone 3 (left) [unit x-axis meters], relative gas permeability (middle) [dimensionless], and pore volume
multiplier (right) [dimensionless]. The y-axis shows the probability density

water movement in this direction and the production data for
the wells. The fault in the southwest is close to injector A-05,
and acts as a support for directing the water toward the east.
The Tellus fault is located north of producers A-07 and A-08
and less transmissibility for this fault is likely to impact the
pressure around these wells.

5.2.4 Model validation

As part of the posterior model validation, we compute dif-
ferent statistical measures. The first measure is how much
the standard deviation changes for a parameter or parameter
group (by parameter group we mean cell-based parameters
such as porosity or the reservoir top depth). This measure
is useful to check that the ensemble does not collapse (zero
standard deviation), but also to verify that the uncertainty
is actually reduced. The second measure is how much the
posterior parameters change compared to the prior values.
Generally, it is unwanted to move too far from the prior
values as this may imply geological structures that are not
credible or physical. In order to measure this we compute
the percentage of parameters in a group that has their poste-
rior mean value more than one, two, and three prior standard
deviations away from the priormean value. For scalar param-
eters, the measure is simply if this parameter changes more

than one, two, or three prior standard deviations compared
to the prior value. Table 4 summarizes the measures for the
parameter groups and the scalar parameters that changemore
than one prior standard deviation. Firstly, we can conclude
that the ensemble has not collapsed for this run. Secondly, a
moderate percentage of the parameters in the groups change
more than one standard deviation, and a very small num-
ber of parameters change more than two standard deviations.
No parameters change more than three standard deviations.
None of the scalar parameters changemore than one standard
deviation. In our opinion, these numbers are within a reason-
able range. In particular, it is important to limit the updates
of porosity, since the prior information is relatively accurate
in the vicinity of the wells.

For further inspection, we have implemented the possi-
bility to export (as .grdecl files) the amount of change for
grid-based parameters. Figure 28 shows the change in poros-
ity and x-permeability. As expected, the majority of change
occurs in the center of the reservoir that covers the wells.

5.3 Assimilating impedance cubes

In this section, we present results using 3D acoustic impedance
(Ip) cubes, and similar to amplitude maps, two datasets are
generated based on the difference between the first monitor

Fig. 26 Transmissibility multipliers for the first gravitational fault (left) [dimensionless], the fifth southwest fault (middle) [dimensionless], and
the Tellus fault (right) [dimensionless]. The y-axis shows the probability density
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Fig. 27 The faults sw5, gravit1,
and tellusf (shown in pink)
visualized on top of the
difference between posterior and
prior 	Sw where 	Sw is
saturation change between the
first monitor survey and the base
survey [percent]

survey and the base, and the difference between the second
monitor survey and the first monitor survey. The cubes are
represented in the seismic domain (see Section 3.2.2), and the
two datasets have original sizes of 58736259 and 47914645
numbers, respectively. Before assimilation, the data is com-
pressed using the methodology described in Section 4.4, and
the reduced sizes are 33886 and 52001 numbers, which cor-
responds to compression of 99.94% and 99.89%. Figure 29
shows the first data set without any compression and the
corresponding reconstructed dataset after compression.Visu-
ally, it is only minor differences between the two versions of
the dataset. In order to avoid different scales for simulated and

field data, each dataset is scaled using the 99.99 percentile
value for the dataset.

Wemade some adjustments to the setup of the assimilation
methodology in this case. The damping factor is increased
to λ0 = 1 · 107 (see Section 4.2) in order to force smaller
update steps. This adjustment was necessary to achieve a
proper decrease in the data mismatch during iterations. We
also reduced the localization truncation scaling to τ = 0.5
(see Section 4.3), in order to make sure that all parameters
with correlations to the data are included when updating the
models. Furthermore, because of the compression of the seis-
mic data, the prior mismatch for seismic data is of a similar

Table 4 Change in standard
deviations and mean values

Parameter Prior std Posterior std > 1σp > 2σp > 3σp

Top depth 1.24 0.35 17.3 0.13 0.

Log-perm x 0.20 0.06 16.2 0.08 0.

Log-perm y 0.20 0.06 16.2 0.70 0.

Log-perm z 0.20 0.06 14.9 0.24 0.

Multz 1.00 0.27 20.6 0.22 0.

Porosity 0.06 0.02 26.4 0.13 0.

Multpv 1.03 0.18 � − −
Krg 1.01 0.32 � − −
Log-WPI A-07 0.99 0.37 � − −
Multflt sw4 1.00 0.31 � − −
Multflt sw5 1.01 0.24 � − −
Multflt gravitat 1.03 0.30 � − −
Multflt gravit1 1.03 0.13 � − −
Here multipliers for pore volume and faults are denoted ‘Multpv’ and ‘Multflt’, respectively. Relative perme-
ability for gas is denoted ‘Krg’
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Fig. 28 Amount of change for porosity [m3/m3] (left) and x-
permeability [mD] (right). The colors indicate more than two standard
deviations in positive direction (red), more than one standard deviation

in positive direction (orange), more than two standard deviations in neg-
ative direction (blue), and more than one standard deviation in negative
direction (light blue)

Fig. 29 Volume view of impedance. Visualization of the first dataset (difference between first monitor survey and base survey) for field data without
compression (left), with compression (middle), and the difference (right). The data are scaled and therefore dimensionless

Table 5 Mean, standard
deviation, minimum, and
maximum for the prior ensemble

Parameter type mean (μ) std (σ ) min max

Top μref 5

Porosity μ̄ref 0.0625 0 1

Net-To-Gross (NTG) μ̄ref 0.0625 0 1

Log-permeability (x, y, z) log(μ̄ref ) − σ 2/2 0.3 −5 10

Multz (cfd) 0 1 0 2

OWC μref 3

Log-WPI 0 − σ 2/2 1

Kr (w,o,g) (cfd) 0 1 0.75 1.25

Multpv (cfd) 0 1 1 10

Multflt (cfd) 0 1 0 1.2

The blue color indicates changes compared to the previous case using amplitudemaps. The bar overμ indicates
that the mean is computed as the average of reference values for each facies type. For spatially distributed
parameters, a variogram range of 40 gridblocks (in all directions) is used
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Fig. 30 Objective function for well data (production data, pressures,
andRFT data) and seismic data. The box plots show the range, quartiles,
and mean (triangle). The orange line represents the average reference
data mismatch

magnitude as the prior mismatch of production data. We can
therefore omit the scaling factor between seismic and pro-
duction data in this case.

We also did some modifications to the setup of the prior
ensemble in this case. The major change is that the mean
of the ensemble is now based on the mean of the reference
parameters, evaluated in each facies type. I.e., we first com-
pute the mean of the reference fields for each facies type
and then use the calculated values as the mean for the Gaus-
sian distribution we use to generate the prior ensemble. In
addition, we have extended the span of the parameter repre-
senting the top reservoir. In the previous case, the parameter
represented the interface between the chalk and sand facies.
Now the parameter represents the interface between the chalk
and all facies types (i.e., both sand and conglomerate). We
also included the Net-To-Gross in this study, and we have
increased the uncertainty for some of the parameter types,
thereby achieving a broader search space for the updated
models. The values used for generating the prior ensemble
are summarized in Table 5.

The data mismatch for well and seismic data is shown
in Fig. 30. Since the information contained in the refer-
ence model is mostly ignored in this case, we decided to
compare the calculated prior data mismatch with the cor-

Fig. 31 Vertically averaged maps of scaled impedance. Visualization
of the first dataset (difference between first monitor survey and base
survey) for field data (top left), prior simulated data (bottom left), poste-
rior simulated data (bottom right), and the difference between the final

simulated data and the initial simulated data (top right). The data are
scaled using the 99.99 percentile value for the dataset, and therefore
dimensionless
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Fig. 32 Differences between posterior and prior reservoir top depth (left), prior (middle) standard deviations, and posterior (right) standard
deviations. [meters.]

responding values obtained using the reference model. The
data mismatch for the reference model is computed based
on a forecast using an ensemble with identical statistics as
listed in Table 5, except that the mean values are reference
fields without any averaging. Also, the random seed is iden-
tical when generating ensembles with and without averaged
reference values. A Forecast of a full ensemble is required
for the reference model since the data compression depends
on the simulated ensemble (see also Section 4.4). The figure
shows that the datamismatch decreases for each iteration and
the final updatedmodel achieves a lowermismatch compared
to the reference case.

We will focus on the seismic data in this section, as the
data match for production data is similar to the previous
case. Also, the Mahalanobis measures are of a similar mag-
nitude as before. Figure 31 shows the first dataset based on
inverted seismic measurements and prior and posterior simu-
lated observations. We have computed an average of the data
over the vertical direction. As for the amplitudemaps, the dif-
ferences in prior and posterior datasets are visually enhanced
by plotting the difference using a cold/warm colormap. As
before, the main contribution to the improved data match is
the sharpening of the waterfront, seen as a reduction of the
signal ahead of the front and an increase of the signal behind

the front. A similar conclusion can be drawn for the second
dataset and to limit the length of the paper we omit the fig-
ures for this. As mentioned at the beginning of this section,
we used small update steps for the iterative smoother when
assimilating impedance data. The consequence is smaller
changes in the model, compared to the case using ampli-
tude maps. However, it is likely that we can achieve a higher
reduction in the data mismatch by adjusting the damping
factor and the adaptive rules for updating the factor. In the
conclusion section, we discuss other possibilities for improv-
ing the model.

Figure 32 shows the estimated change in the reservoir top
and the corresponding change in standard deviations. Notice
the extended spatial domain for the depth, compared to the
previous case. Similar to the previous case, we see a decrease
in the top depth east of the injectors. As this has a direct
impact on the connectivity in the high-permeability zone,
the reduction of the top depth influences the reservoir pres-
sure and thereby also the simulated impedance. The standard
deviation for this parameter is reduced, but for most of the
domain (except around thewells) the posterior standard devi-
ation is above 2 meters.

Finally, in Fig. 33we show the change in volume averaged
porosity and the corresponding prior and posterior parame-

Fig. 33 Differences between volume averaged posterior and prior porosity (left), prior (middle) standard deviations, and posterior (right) standard
deviations. [m3/m3.]
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ter fields. The increase in porosity east of injector A-01 is
the main driver for waterfront displacement and contributes
to improved data match. There are also significant changes
in porosity further away from the wells, which may be a
consequence of the spatial correlations imposed on the prior
porosity fields.

6 Conclusion

The primary objective of this study is to demonstrate a
functional workflow for assimilating large datasets (seismic
attributes) into complex reservoir models and to demonstrate
the results for the Edvard Grieg field. Here, a novel approx-
imation of the combined Kirchhoff modeling and imaging
operator known as the point spread function is implemented
and multi-scale models for simulating seismic data are pre-
sented. Further, we use a new compression technique for
handling large datasets. We have demonstrated the use of
several new methods and visualization techniques for model
creation, model checking, and model validation, which is
essential for an efficientworkflow. In particular, newmethods
for checking the coverage of simulated data are introduced,
and we demonstrate the use of the Mahalanobis distance to
evaluate the credibility of the prior ensemble. We also show
how ranking of data based on their impact on the reservoir
properties, and visualization of the changes induced by the
most influential data, can provide valuable insight intomodel
deficiencies. We also check if data are giving contradicting
contributions to the reservoir properties, and if model imper-
fections imply that additional parameters need to be included
in the workflow. These techniques allowed us to improve
the model and form a foundation for parameter selection,
even before executing the Bayesian inversion. After history
matching the reservoir, we computed statistical measures for
validating the updated ensemble and checking that ensemble
collapse is avoided.

Posterior results show that we can reduce the data mis-
match for both well data and seismic data. Of particular
interest is the fact that calibrated models are better at predict-
ingwater displacement. The combination of seismic data and
the iterative ensemble smoother results in a modified reser-
voir model with different pore volumes and STOOIP (stock
tank original oil in place), which alters the water movement
and adjusts the seismic response in agreement with the data.
This was achieved without contradicting the well logs and
direct observations of reservoir properties. Consistent results
are obtainedbasedon twodifferent seismic attributes, namely
average amplitudemaps and scaled impedance cubes, and the
updates for the reservoir properties are in accordancewith the
operators’ geological understanding of the field.

The seismic data mismatch is reduced by approximately
50% in our study. The obtained values are not yet at the theo-

retical limit (the limit is unity when using the data mismatch
formula described in this paper), which indicates room for
improvement. As demonstrated in e.g., [27], validation of
results from the posterior model, after running the Bayesian
workflow, may reveal that parameters (e.g., fault multipliers
or water-oil contacts) are missing in the model. A successful
calibration then requires model improvement (i.e., identifi-
cation and inclusion of missing parameters) before running
the workflow again. The inclusion of the top surface of
the reservoir was a consequence of this approach, and this
parameter accounts for structural uncertainty in the model
updating part. However, in our case, we may be required
to include additional structural parameters describing the
geological model in the set of prior uncertain parameters.
This will be a topic for future research. Since the specifi-
cation of correlated measurement errors is difficult, we also
want to pursue an alternative approach that integrates out
the measurement errors, as described in [30]. In addition,
the study revealed a need for faster models targeted for data
assimilation, which enables the evaluation of different hyper-
parameters (e.g., settings for the inversion methodology) and
data types. Multi-fidelity models (e.g., models with different
levels of upscaling) are already being investigated, and the
use of these models for fast and efficient large-scale data
assimilation will be a prioritized task in the future.
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