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Abstract
Because it is generally impossible to completely characterize the uncertainty in com-
plex model variables after assimilation of data, it is common to approximate the
uncertainty by sampling from approximations of the posterior distribution for model
variables. When minimization methods are used for the sampling, the weights on each
of the samples depend on the magnitude of the data mismatch at the critical points and
on the Jacobian of the transformation from the prior density to the sample proposal
density. For standard iterative ensemble smoothers, the Jacobian is identical for all
samples, and the weights depend only on the data mismatch. In this paper, a hybrid
data assimilationmethod is proposedwhichmakes it possible for each ensemblemem-
ber to have a distinct Jacobian and for the approximation to the posterior density to
be multimodal. For the proposed hybrid iterative ensemble smoother, it is necessary
that a part of the mapping from the prior Gaussian random variable to the data be ana-
lytic. Examples might include analytic transformation from a latent Gaussian random
variable to permeability followed by a black-box transformation from permeability to
state variables in porous media flow, or a Gaussian hierarchical model for variables
followed by a similar black-box transformation from permeability to state variables. In
this paper, the application of weighting to both hybrid and standard iterative ensemble
smoothers is investigated using a two-dimensional, two-phase flow problem in porous
media with various degrees of nonlinearity. As expected, the weights in a standard
iterative ensemble smoother become degenerate for problems with large amounts of
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data. In the examples, however, the weights for the hybrid iterative ensemble smoother
were useful for improving forecast reliability.

Keywords Weighted randomized maximum likelihood · Hybrid iterative ensemble
smoother · Denoising · Data assimilation

1 Introduction

In many geoscience applications, parameters of high-dimensional models must be
estimated from a limited number of noisy data. The data are often only indirectly
and non-linearly related to the parameters of the model. Consequently, the parameters
of the model are usually underdetermined, and estimation of a single set of model
parameters that satisfy the data is not sufficient to characterize the solution of the
inverse problem.

Although powerful methods for quantifying uncertainty in high-dimensional model
spaces with Gaussian uncertainty are available (Martin et al. 2012), and powerful
Monte Carlo methods are available for non-Gaussian low-dimensional model spaces,
it is still a challenge to quantify uncertainty for situations where the model dimen-
sion is large and the posterior distribution is non-Gaussian. In that case, approximate
sampling methods must typically be used. A relatively standard approach to approxi-
mate sampling is through the minimization of a stochastic cost function. The method
is known by various names including geostatistical inversing (Kitanidis 1995), ran-
domized maximum likelihood (Oliver et al. 1996), randomized maximum a posteriori
(Wang et al. 2018), and randomize-then-optimize (Bardsley et al. 2014). In thesemeth-
ods, a realization from an approximation to the posterior distribution is generated by
minimizing the weighted squared distance of the posterior sample to a realization from
the prior and the squared distance between the actual data and the perturbed simulated
data. The method provides exact sampling when the prior distribution is Gaussian
and the relationship between data and model parameters is linear. When the posterior
distribution is non-Gaussian but unimodal, it is possible to weight the realizations
from minimization such that the sampling is exact (Oliver et al. 1996; Oliver 2017;
Bardsley et al. 2014, 2020; Wang et al. 2018), although computation of weights in
high dimensions may be difficult.

The actual posterior landscape for distributed-parameter geoscience inverse prob-
lems is difficult to ascertain, although there are known to be features of subsurface flow
models that result in multimodal posterior distributions: uncertain fault displacement
in a layered reservoir (Tavassoli et al. 2005), uncertain rock type location in a chan-
nelized reservoir (Zhang et al. 2003), layered non-communicating reservoir flow with
independent uncertain properties (Oliver et al. 2011), and non-Gaussian prior distri-
butions for log-permeability (Oliver and Chen 2018). For relatively simple transient
single-phaseflowproblems, inwhich theprior distributionof log-permeability ismulti-
variate normal, the posterior distribution appears to be multimodal in low-dimensional
subspaces, but appears to be characterized by curved ridges in higher-dimensional sub-
spaces (Oliver and Chen 2011).
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Sampling the posterior distribution correctly for subsurface flow models is diffi-
cult when there are hundreds of thousands to millions of uncertain parameters whose
magnitudes must be inferred from the data. The Markov chain Monte Carlo (MCMC)
methods are usually considered the gold standard for sampling from Bayesian poste-
riors. Because of the high computational cost of evaluating the likelihood function for
subsurface flow models, however, MCMC is seldom used for subsurface models. For
a two-dimensional single-phase porous flow problem in which only the permeability
field is uncertain, an MCMC method with transition proposals required hundreds of
thousands of iterations to generate a useful number of independent samples (Oliver
et al. 1997). For a porous flow model with a more complex posterior but only three
uncertain parameters, a populationMCMC approach demonstrated goodmixing prop-
erties and provided good results, but at substantial cost (Mohamed et al. 2012). In order
to reduce the cost of the likelihood evaluation, Maschio and Schiozer (2014) replaced
the flow simulator by proxy models generated by an artificial neural network. An
iterative procedure combining MCMC sampling and artificial neural network (ANN)
training was applied to a reservoir model with 16 uncertain attributes.

Iterative ensemble smoothers, on the other hand, have been remarkably success-
ful at history matching large amounts of data into reservoir models with hundreds
of thousands of parameters. Based loosely on the ensemble Kalman filter (Evensen
1994), which is routinely used for numerical weather prediction, iterative ensemble
smoothers use stochastic gradient approximations for minimization, so that solutions
of the adjoint system are not necessary. The downside of this is that the methodology
must approximate the cost function as a quadratic surface. Consequently, the method
is not well suited to arbitrary posterior landscapes.

When the posteriori probability density function (pdf) has multiple modes of any
type, minimization-based simulation methods will almost certainly sample occasion-
ally from local minima of the cost function that contribute very little to the probability
mass in the posterior. These samples are usually, but not always, characterized by large
data mismatch after minimization. In the case of an exceptionally large data mismatch,
it is common practice to omit poorly calibrated model realizations when computing
mean forecasts and uncertainty quantification. It is much more difficult to decide how
to treat realizations with intermediate data mismatches, or realizations in general when
the unweighted distribution is known to be only approximate. Importance weighting
of realizations to correct for the approximate sampling is the principled approach to
uncertainty quantification in these cases.

It has been shown that a standard class of importance-weighted particle filters
are degenerate in high dimensions even when the so-called optimal proposal is used
(Snyder et al. 2015; van Leeuwen et al. 2019). The optimal proposal is defined as
the one that minimizes the variance of weights for particle filters that are based only
on the new observations and the particles generated at a previous step (Doucet et al.
2000). For updating schemes that are not limited to the use of the prior ensemble of
particles, the weights need not be degenerate. Ba et al. (2022) demonstrated that the
weights in a properly weighted randomized maximum likelihood (RML) scheme are
not necessarily degenerate, even when the problem is nonlinear. And it is known that
linear inference problems can be sampled exactly using the minimization methods, in
which case all weights are identical. When the problem has many modes, however,
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the local minimizer is attracted to modes with small probability mass, and the weights
may become degenerate simply because the weights on small local minima should
be small. Weights can also become degenerate when they are inaccurately computed
because of approximations in the gradient.

van Leeuwen et al. (2019) identify four approaches to reducing the variance in
weights for particle filters. The minimization approach (RML) used in this paper can
be considered to belong to the category in which particles are pushed from the prior
into regions of high posterior probability density. For inverse problems with Gaussian
priors on model parameters and linear observation operators, after minimization, the
particles are distributed as the target distribution, so weighting is not required. When
the posterior is multimodal, however, the problem of weighting can be relatively
complex, as each particle in the prior potentially maps to multiple particles in the
proposal density, each with a different weight. Ba et al. (2022) computed low-rank
approximations to the particle weights for a single-phase porous media flow problem
using the adjoint system for the flow simulator, but adjoint systems are not always
available, and the cost can be prohibitive. In this paper, we show how approximate
weights can be easily computed when an ensemble Kalman-based approach is used
to solve an inverse problem.

In this paper, we develop an importanceweighting approach to the problem inwhich
the relationship between observations and model parameters is sufficiently nonlinear
that the posterior distribution for model parameters is multimodal. Although impor-
tance weighting in particle filters is a standard approach for dealing with nonlinearity
in small data assimilation problems, we apply it to problems with relatively large
numbers of model parameters and data. We show that this can be done in a hybrid
iterative ensemble smoother approach for which gradients required for minimization
are computed using a combination of analytical and stochastic gradients. The method
is applied to a two-phase porous media flow problem with multimodal posterior pdf.
In order to be useful for large problems, we improve an earlier approach through the
use of circulant embedding of the covariance matrix to allow matrix multiplication in
large models. Finally, we demonstrate that the weights computed using a hybrid or
ensemble Kalman-like approach are noisy approximations of the true weights and that
denoising the weights improves model predictability.

2 Methodology

Consider the following generic forward model for prediction of u given θ ,

B(θ, u) = 0, in �,

which for example could be a system of partial differential equations (PDEs) char-
acterizing a physical problem. In the parameter estimation problem, the task is to
quantify the unknown parameter θ given some limited observations of u on parts of
the domain �. The relationship between model parameters and observations is given
by the widely used model
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do = g(m(θ)) + ε,

where g(·) is the generic observation operator andm(·) is the model operator mapping
the unknown θ to the space of an intermediate variable, such as the hierarchical model,
transformation of permeability, and composite observation, including the three cases
of Sect. 2. In a finite-dimensional parameter space, θ ∈ R

Nθ , m(θ) ∈ R
Nm , and

do ∈ R
Nd . Assume that ε ∈ R

Nd is independent of θ and ε ∼ N(0,Cd). Given a prior
Gaussian distribution N(θpr,Cθ ), we expect to generate samples θ i , i = 1, . . . , Ne,
from the posterior distribution

π�(θ |do) = π�D(do, θ)

πD(do)
∝ exp(−Q(θ)),

with the negative log posterior function

Q(θ) = 1

2
(θ − θpr)TC−1

θ (θ − θpr) + 1

2
(g(m(θ)) − do)TC−1

d (g(m(θ)) − do).

In general, the normalization constant πD(do) is unknown, but independent of θ . For
simplicity, m(θ) is denoted as m.

In this paper, we apply ensemble Kalman-like approximations to the randomized
maximum likelihood (RML) method (Kitanidis 1995; Oliver et al. 1996; Chen and
Oliver 2012) for data assimilation. The RML method draws samples (θ i

′
, δi

′
) from

the Gaussian distribution

q�′�′(θ ′, δ′) = q�′(θ ′) q�′(δ′) = 1

(2π)
Nθ +Nd

2 |Cθ |1/2|Cd |1/2
× exp

(
− 1

2
(θ ′−θpr)TC−1

θ (θ ′−θpr) − 1

2
(δ′ − do)TC−1

d (δ′(δ′ − do)
)
,

(1)

for given θpr and do. The i th approximate posterior sample is then generated by
computing the critical points of the cost functional

Qi (θ) = 1

2
(θ − θ i

′
)TC−1

θ (θ − θ i
′
) + 1

2
(g(m) − δi

′
)TC−1

d (g(m) − δi
′
). (2)

The critical points are obtained by solving∇θ Qi (θ) = 0 for θ . In general, the maxima
and stationary points contribute little, and the Levenberg–Marquardt method with a
Gauss–Newton approximation of the Hessian is used for the minimization.The i th
increment in the iteration is written as

δθ l = θ i
′−θ l

1+λl
−CθGT

l

[
(1+λl)Cd+GlCθGT

l

]−1
[(

g(ml)−δi
′)− Gl(θ l−θ i

′
)

1+λl

]
,

(3)
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where Gl = (∇θl (g
T ))T , and λl is the Levenberg–Marquardt regularization parameter

for the 	th iteration.
The ensemble Kalman approximation of the RML is asymptotically exact for

Gauss-linear data assimilation problems and adopts an average sensitivity computed
from the ensemble samples to approximate the downhill direction (Chen and Oliver
2012), which results in inaccurate sensitivity when the problem is highly nonlin-
ear. To improve the accuracy of the sensitivity matrix for individual realizations, the
hybrid ensemble method is introduced. (The hybrid method can refer to many dif-
ferent approaches. Here, we refer to approaches that use gradients that are computed
partially from the ensemble and partially by direct differentiation.) Through proper
forms such as Eq. (6) and Eq. (7) in the hybrid ensemble method, some derivatives are
computed analytically and others are approximated from the ensemble. Consequently,
instead of a single common gain matrix applied to all realizations, the gain matrix
of each sample in hybrid ensemble methods is different. In a naïve implementation,
the computational cost will be very high for large models. We take advantage of the
block-circulant structure of the prior model covariance matrix or its square root to
reduce the cost substantially, applying circulant embedding for fast multiplication of
Toeplitz matrices.

For posterior distributions with multiple modes, the approximate samples from
minimization-based simulation methods will almost certainly converge to local min-
ima, some of which contribute very little to the probability mass in the posterior. These
samples may result in large data mismatch after minimization. Importance weights of
approximate samples from the proposal distribution are used to correct the sampling.
To compute the importance weights, it is necessary to compute the proposal distribu-
tion for RML samples. Solving ∇θ Q(θ) = 0 leads to a map from (θ , δ) to (θ ′, δ′) in
Ba et al. (2022),

{
θ ′ = θ + CθGTC−1

d

(
g(m) − δ

)

δ′ = δ.
(4)

Basedon themapofEq. (4) and theoriginal notation, the distributionof the transformed
variables is given by

p��(θ , δ) := n(θ ′)−1q�′�′(θ ′, δ′)J (θ , δ)

= n(θ ′)−1q�′
(
θ + CθGTC−1

d

(
g(m) − δ

))
q�′(δ)J (θ, δ),

(5)

where n(θ ′) is the total number of critical points of Eq. (2), and J (θ , δ) denotes the
Jacobian determinant associated with the map (θ , δ) → (θ ′, δ′). In the following, we
assume that the map is locally invertible, that is, J �= 0 everywhere. The form of
J (θ , δ) is provided by

J (θ , δ) =
∣∣∣∣I + D

(
CθGTC−1

d

(
g(m) − δ

))∣∣∣∣,

where D(·) is the gradient operator for CθGTC−1
d

(
g(m) − δ

)
with respect to θ .
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When importance sampling is implemented for highly nonlinear problems, the
variance in the log-weights will generally not be small. This is because the RML
proposal density is not identical to the target density, and the ensemble samples are
only approximations of the samples that would be obtained from exact computation
of minima. Because of the approximations, the actual spread in computed importance
weights will be larger than it should be. Denoising of importance weights has been
shown to be effective at improving the weights (Akyildiz et al. 2017). For the ensemble
methods based on RML, denoising will be performed when the variance of weights is
large.

2.1 Example Applications

The weighting of critical-point samples in the RMLmethod depends on the magnitude
of the data mismatch at the critical points and on the Jacobian of the transforma-
tion from the prior density to the proposal density. When standard iterative ensemble
smoothers are applied for data assimilation, the Jacobian is identical for all samples.
If a hybrid data assimilation method is applied, however, there is the possibility for
each ensemble member to have a distinct Jacobian and for the posterior distribution
of particles to be multimodal. In order to apply a hybrid method iterative ensemble
smoother, it is necessary that a part of the transformation from the prior Gaussian
random variable to the data be analytic. Examples might include transformation from
a latent Gaussian random variable to permeability followed by a system of partial
differential equations mapping permeability to state variables in porous media flow,
or a Gaussian hierarchical model for variables followed by a similar transformation
from permeability to state variables

G = (∇θ (g
T ))T = Gm(∇θ (mT ))T = GmMθ , (6)

where G is the sensitivity matrix of the forward operator g with respect to the latent
Gaussian random variable θ , Gm is the gradient of the forward operator with respect to
the log-permeability m, and Mθ is the gradient of the log-permeabilitym with respect
to θ .

2.1.1 Hierarchical Gaussian

For a hierarchical Gaussian model in which hyper-parameters, β, of the prior model
covariance such as the principal ranges and the orientation of the anisotropy are uncer-
tain, we might use the non-centered parameterization (Papaspiliopoulos et al. 2007)
to express the relationship between the observable Gaussian variable m (e.g., log-
permeability) and the model parameters z (latent Gaussian variables) and β as

m = mpr + L(β)z,

where L is a square root of the model covariance matrix Cm = LLT . In this appli-
cation, the sensitivity of the observable variable m to the latent variables z and β is
nonlocal,
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Mθ = [
L (∇βL)z

]
.

In a hybrid iterative ensemble smoother (IES), the sensitivity of production data to
permeability and porosity, Gm , would be estimated using the ensemble of predicted
data and the ensemble of model perturbations.

2.1.2 Transformation of Permeability

In some applications of data assimilation to subsurface characterization, it is desirable
to generate prior realizations of the permeability field with non-Gaussian structure,
that is, continuous channel-like features of high permeability embedded in a low-
permeability background.Aproperty fieldwith these characteristics can be obtained by
applying a nonlinear transformation to a correlated Gaussian field, that is, m = f (θ),
where θ ∼ N(θpr,Cθ ). Unlike the hierarchical example, in which the sensitivity
matrix Mθ had dimensions Nm × Nm and was potentially full, the sensitivity of m to
θ for simple variable transformation will generally be diagonal.

2.1.3 Composite Observation Operators

For some types of subsurface data assimilation problems, the observation operator
might be separable into two parts, one of which can be treated analytically, while the
other might be a complex function of the parameters, determined by the solution of
a partial differential equation. An example is the observation of acoustic impedance
in a seismic survey. The state of the reservoir u (i.e., the pressure and saturation) is
a function of permeability and porosity, which are denoted as u(β1). The acoustic
impedance, Z , is related to the state of the reservoir and other reservoir properties
through a rockphysicsmodel,whichmayhave several additional uncertain parameters,
β2. Let θ = (β1,β2). The composite relationship is written loosely as

Z(θ) = Z(u(β1),β2).

The sensitivity of acoustic impedance to the permeability and porosity can be decom-
posed using the chain rule as

G = (∇θ (Z
T ))T = (∇u,β2(Z

T ))T (∇β1(u
T ))T = Gu,β2Uβ1 , (7)

in which case the sensitivity of impedance to the state variables and parameters of
the rock physics model, Gu,β2 , can be computed analytically, and the sensitivity of
the state variables to permeability and porosity, Uβ1 , can be estimated stochastically
as in an iterative ensemble smoother.

2.2 Data Assimilation Based on Ensemble Methods

In practice, iterative ensemble smoothers are often an effective approach for solving
large-scale geoscience inverse problems. These methods are based on the Kalman
filter (Evensen 1994), which uses a low-rank approximation of the covariance matrix

123



Mathematical Geosciences

to replace the full covariance and avoids the need to compute adjoints of the objective
functions as might be required in an extended Kalman filter. To improve the efficiency
of updating the unknown parameters, a so-called smoother method using all the data
simultaneously is generally adopted for parameter estimation problems. However,
most parameter estimation problems are nonlinear, and a single update in which all
data are simultaneously assimilated is not sufficient. For history matching, iteration
is required of a smoother application. Iterative ensemble smoothers (IES) and their
variants include two general approaches: multiple data assimilation (MDA) (Reich
2011;Emerick andReynolds 2013) and IESbased on randomizedmaximum likelihood
(RML) (Chen andOliver 2012). The iterative ensemble smoother formof theRMLuses
an average sensitivity to approximate the Hessian matrix. For the strongly nonlinear
problems, the ensemble average sensitivity will provide a poor approximation of the
local sensitivity. To partially rectify this problem, a hybrid RML-IES method has been
proposed to improve the estimate of the local sensitivity; some gradients are computed
analytically and others are approximated from the ensemble (Oliver 2022).

2.2.1 Iterative Ensemble Smoother

For the RML method, the computation of the gradient of the objective function with
respect to the parameters is necessary. In many high-dimensional problems, the com-
putation of derivatives is difficult. The iterative ensemble smoothers utilize ensemble
realizations to approximate the first- and second-order moments, which avoids the
need to compute derivatives directly. Using an iterative ensemble smoother method
(Chen and Oliver 2013), the update step (Eq. (3)) for the i th ensemble member at the
lth iteration can be approximated as

θ il+1= θ il −
1

1+λl
�θl (�θl )

TC−1
θ (θ il −θ i

′
)−�θl (�dl )

T
(
(1+λl)Cd + �dl (�dl )

T
)−1

×
(
g(ml) − δi

′ − 1

1 + λl
�dl (�θl )

TC−1
θ (θ il − θ i

′
)
)
, (8)

where

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�θl = 1√
Ne − 1

(θ1l , . . . , θ
Ne
l )

(
INe − 1

Ne
1Ne1

T
Ne

)
,

�dl = 1√
Ne − 1

(
g(m1

l ), . . . , g(m
Ne
l )

)(
INe − 1

Ne
1Ne1

T
Ne

)
,

δi
′ ∼ N(do,Cd), θ i

′ ∼ N(θpr,Cθ ).

Here, Ne is the number of model realizations in the initial ensemble. The ensemble
realizations are used to approximate the gradient of the forward operator gwith respect
to θ . The update in Eq. (8) is restricted to the space spanned by the initial ensemble,
and the number of degrees of freedom available for calibration of the model to data
is Ne − 1. To avoid the tendency for ensemble collapse with large amounts of data,
localization is almost always used in high-dimensional problems. Additionally, for
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highly nonlinear problems, the sensitivity of data to model parameters estimated from
the ensemble in Eq. (8) is a poor approximation to the local sensitivity, which often
results in failure to converge to local minima.

2.2.2 Hybrid Iterative Ensemble Smoother

For the hybrid IES, instead of using an ensemble stochastic approximation of the
sensitivity matrix G, the derivative of m with respect to θ is computed analytically,
and the chain rule is used to compute G as

G = Gm ·
(
∇θ

(
mT ))T = GmMθ . (9)

Then, the update equation (Eq. (3)) can be written as

θ l+1 = θ l − 1

1 + λl
(θ l − θ ′) − Cθ MT

θ (�ml )
−T (�dl )

T

×
(
(1 + λl)Cd + (�dl )(�ml )

−1MθCθ MT
θ (�ml )

−T (�dl )
T
)−1

×
(
g(ml) − δ′ − 1

1 + λl
(�dl )(�ml )

−1Mθ (θ l − θ ′)
)

,

(10)

where �ml is defined similarly to �θl , and Mθ = (∇θ (mT))T. The gain matrix for
each sample is different because the sensitivity matrix Mθ is evaluated at the model
realization—not estimated from the ensemble of realizations. Themain challengewith
straightforward application of a hybrid IES methodology is the cost of forming and
multiplying by the matrix Mθ for all realizations (Oliver 2022).

Unlike the ensemble Kalman-based methods that take advantage of low-rank
approximations of the covariance matrices, in the hybrid IES, the Toeplitz or block
Toeplitz structure of the covariance matrix for stationary Gaussian random fields is
utilized. It is then possible to efficiently compute the matrix–vector products using
the fast Fourier transform after embedding the Toeplitz matrix in a circulant matrix
(Appendix A).

2.3 Weighting of Model Realization

The RML method of sampling the posterior is only exact if the relationship between
the data and the model parameters is linear. For many nonlinear problems, however,
it is necessary to weight the samples to approximate the posterior distribution, in
which case the computation of the gradient of the objective function is necessary. To
avoid the need to compute G directly, ensemble-based methods offer an alternative.
However, exact sampling usingRML requires computation of additional critical points
and weighting of solutions (Ba et al. 2022). The importance weight for the kth RML
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sample is

ωk ∝ π�(θk)π�(δk |θk)
p��(θk, δk)

, (11)

where π�(θ) is the prior, and the likelihood π�(δ|θ) and the proposal density
p��(θ , δ) are provided by Eq. (5). Ba et al. (2022) showed that in high-dimensional
nonlinear cases where it is not feasible to sample all critical points, it is possible to
randomly sample a single critical point for each prior realization. If the critical point is
sampled uniformly from the set of all critical points, the factor n(θ ′) in Eq. (5) should
be set to 1.

Introducing the quantities,

J (θ , δ) ≈ |INθ + CθGTC−1
d G|

V (θ) = Cd + GCθGT

η(θ) = g(m) − do − G(θ − θpr).

To simplify notation, the proposal density Eq. (5) which appears in the denominator
of Eq. (11) can be written as

p��(θ, δ)

=

π�(θ)︷ ︸︸ ︷
A0 exp

[
−1

2

(
θ − θpr

)T C−1
θ

(
θ − θpr

) − 1

2

(
g(m) − do

)T C−1
d

(
g(m) − do

)]

×

π�(δ|θ)︷ ︸︸ ︷
A1 |V |1/2 exp

[
−1

2

(
δ − g(m) − V−1η(m)

)T
V

(
δ − g(m) − V−1η(θ)

)]

×A2 |V |−1/2 exp

[
1

2
η(θ)TV−1η(θ)

]
J (θ , δ), (12)

where A0, A1, and A2 are all normalization constants, independent of θ and δ.
Because the first two lines in Eq. (12) cancel terms in the numerator of Eq. (11),

the importance weight for sample k is

ω ∝ |V |1/2 exp
[
−1

2
η(θ)TV−1η(θ)

]
J−1(θ, δ), (13)

where second derivatives of G at the critical point have been neglected.

2.3.1 Importance Weights for the IES

Although the IESmethod is based onRML, the application tomultimodal distributions
is limited, as all samples share a common estimate of G estimated from the ensemble
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of realizations

GCθGT ≈ �d�
T
d

G ≈ �d�
T
θ C

−1
θ

CθGT ≈ �θ�
T
d .

(14)

Because V (θ) and J (θ , δ) are the same for all samples, the computation ofweights can
be simplified. Neglecting the common multiplying constant, the IES approximation
to the importance weight is

ω ∝ exp

[
−1

2
η(θ)TV−1η(θ)

]
.

The only difference inweights is a result of differences in the term η(θ), which requires
computation of G from Eq. (14). For most practical problems, the ensemble size is
smaller than the dimension of θ , so the pseudo-inverse is used to approximate the
inverse of prior covariance matrix C−1

θ .

2.3.2 Importance Weights for the Hybrid IES

The hybrid IES is also based on the RMLmethod of sampling, but uses a different gain
matrix for each sample while still avoiding the need for solving the adjoint system.
For exact sampling from the posterior in strongly nonlinear problems, the computation
of weights is unavoidable. To compute the weights {ωi }Ne

i=1 of samples generated by
the hybrid IES, the analytic sensitivity matrix Mθ is used, which is Nm × Nθ . The
derivative Gm of the objective function with respect to the intermediate variable m
can be approximated by the ensemble samples. Finally, the computation of weights in
Eq. (13) can be performed by the following forms

GCθGT ≈ �d�
−1
m MθCθ MT

θ �−T
m �T

d

G ≈ �d�
−1
m Mθ

CθGT ≈ Cθ MT
θ �−T

m �T
d .

The dimensions of �m are Nm × Ne. Thus, the pseudo-inverse of �m is used in the
computation of G. For each sample, the terms of Eq. (13) are different. When Mθ or
Cθ has the Toeplitz properties, circulant embedding described in Appendix A is used
to reduce the computational cost of the matrix multiplication.

2.4 Excess Variance of ImportanceWeights

For highly nonlinear sampling problems, the variance in the log-weights should be
expected to be large, since the RML proposal density is not identical to the target
density. On the other hand, the actual spread in computed importance weights is larger
than it should be for a number of reasons, including the fact that the minimization
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method used for computation of samples is approximate. The iterations are generally
stopped before actual convergence, and the gradient is approximated from a low-rank
ensemble. A different initial ensemble would result in a different final estimate of G,
V , and det V . All of these will result in variability in the computation of weights,
and the non-normalized log-weights will consequently have a large spread. If the so-
called noisy log-weights are used directly to compute weighted forecasts, almost all
the weight will fall on a single model realization.

For large Bayesian inverse problems of the type encountered in the geosciences,
the likelihood is often difficult to evaluate, and noisy approximations to the likelihood
must instead be used (Dunbar et al. 2022). When the likelihood is noisy, however,
the transition kernel in MCMC, or equivalently the weighting of particles in impor-
tance sampling, will be affected by the noise (Alquier et al. 2016; Acerbi 2020). This
noise must either be removed or be otherwise accounted for if the sampling is to be
efficient. The problem of sampling with noisy importance weights has been reviewed
by Akyildiz et al. (2017), who showed that denoising can be an effective approach.
In the application to weighting of RML samples, the errors appear primarily in the
evaluation of the proposal density, not in the evaluation of the likelihood as in most
previous studies. Because the importance weights are ratios of likelihood to proposal
density, however, the effect of noise in either term on the weight is similar.

2.4.1 A Model for Noise in the Log-Weights

For simplicity, we denote the logarithm of the weights on the particles as ω, so that

ω = −1

2
log det V − 1

2
ηTV−1η,

where

V = Cd + GCθGT,

and

η(θ) = g(θ) − do − G(θ − θpr).

For a nonlinear problem, the sensitivities G at the minimizer will be variable, and
since G and the data mismatch enter quadratically in ω, we expect the so-called true
distribution of log-weights to be approximately chi-square. We additionally assumed
a Gaussian model for the distribution of errors in the computed log-weights, which
we also refer to as noise in the weights.

We can obtain an empirical characterization of the computational error by gener-
ating a number of realizations of the computed value of ω for the same prior sample
θ ′ but with different ensembles of realizations used for computation of G. We did this
for realizations of the monotonic transform of log-permeability by generating 16 inde-
pendent ensembles of 199 realizations and augmenting each ensemble with another
realization that was then common to each ensemble. Figure1a shows the evolution of
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Fig. 1 The distributions of log-weights for the monotonic log-permeability transform

the log-weight on the single realization that was common to all 16 ensembles. The
minimization was stopped when the iterations reached the terminated condition. (The
particle that was common to all ensemble members stopped updating by iteration 10
in all ensembles, where the iteration number just contains the iteration that the mean
of data mismatch is smaller than the last iteration.) Figure1b shows the distribution
of final values of ω (blue) and the Gaussian fit to the distribution of final values (red
curve).

Estimating reasonable parameters in the chi-square model of the true distribution
for large weights is more difficult than estimating the errors in the computation, partly
becausewe do not have an empirical distribution of log-weightswithout computational
noise. We instead used a trial-and-error approach in which the observed distribution
of log-weights was compared with a Monte Carlo distribution of noisy samples from
a chi-square distribution whose parameters were tuned to match the observed distri-
bution. Figure1c compares the distribution of RML-computed realizations with the
realizations from the modeled distribution of noisy large weights.

The posterior distribution for noisy log-weights (Eq. (15)) is modeled as the product
of a Gaussian likelihood model and a chi-square prior distribution,

P(ω|ωo) ∝ P(ωo|ω)P(ω)

or

P(ω|ωo) ∝
⎧
⎨
⎩
exp

(
− (ω−ωo)2

2σ 2
o

) (
ω−ωpr

σpr

)ν/2−1
exp

(
−ω−ωpr

2σpr

)
for ω > ωpr

0 for ω ≤ ωpr.
(15)

Once the parameters of the distribution have been estimated, the denoised weights are
estimated by computing the maximum a posteriori values of the individual weights;
that is, for each “observed” weight, we compute the maximizer of Eq. (15) to obtain
the denoised weight.

For themonotonic log-permeability transform, with σo = 16.9, σpr = 6, and ν = 4,
we obtain the denoised log-weights shown in red in Fig. 2a. The effective sampling
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Fig. 2 The distributions of log-weights after denoising (red colors)

efficiency Neff/Ne = 97.8/1600 ≈ 0.109, based on Kong’s estimator Eq. (16),

NEff = 1∑Ne
k=1 ω2

k

, (16)

where
∑Ne

k=1 ωk = 1.
The spread in the weights for the case with non-monotonic transform of log-

permeability is much larger than in the case with monotonic permeability transform.
First, the computation of weights appears to be less repeatable: Fig. 2a shows the
evolution of non-normalized log-weights for the same sample when included in 16
otherwise independent ensembles. The spread of the final values for the common
particle (Fig. 2b) is approximately five times as large for the non-monotonic case (
σo = 95.3) as for the monotonic case (σo = 16.9). Presumably, the additional vari-
ability is a result of greater variability in G and the presence of more local minima.
Additionally, the prior spread of log-weights appears to be larger, again because of
multiple minima and the fact that the proposal distribution is farther from the tar-
get distribution in this case. For the non-monotonic log-permeability transform, with
σo = 95.3, σpr = 13, and ν = 3, we obtain the denoised log-weights shown in red in
Fig. 2b. The effective sampling efficiency Neff/Ne = 27.2/1600 ≈ 0.017, based on
Kong’s estimator Eq. (16).

3 Applications of Weighting to Assimilation of Flow Data

In this section, two data assimilation methods (hybrid IES and IES) are applied
to a two-dimensional, two-fluid-phase flow, incompressible problem with perme-
ability transforms, m = f (θ), of varying degrees of nonlinearity: a monotonic
log-permeability transform and a non-monotonic transform. Here, m and θ are the
same size, which leads to a diagonal Mθ . For the two applications, the uncertain per-
meability field in the porous medium is estimated by assimilation of a time series of
water rate observations at nine producing wells.
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The state, u, of an incompressible and immiscible two-phase (aqueous (w) phase
and oleic (o) phase) flow system is determined by the pressure p(x, t) and saturation
s(x, t), which in this example are governed by

⎧⎨
⎩

−∇ · (Kλ∗(s)∇ p) = q,

φ
∂s

∂t
+ ∇ · ( f∗(s)v) = qw

ρw

in � × [0, T ] , (17)

with the boundary condition

v · n = 0 on ∂� × [0, T ], s(x, 0) = 0 in � = [0, 2] × [0, 2],

where φ denotes the rock porosity, the source term q models sources and sinks, the
fractional-flow function f∗(s) measures the fraction of the total flow, λ∗(s) is the
mobility of the phase, K denotes the absolute permeability (assumed to be isotropic),
qw denotes the w phase source, and ρw denotes the density of the w phase. Since we
only inject water and produce whatever reaches our producers, the source term for the
saturation equation becomes

qw

ρw

= max(q, 0) + f (s)min(q, 0).

To close the model, we must supply expressions for the w phase and o phase

vi = −Kλ∗i∇ p, q = qw

ρw

+ qo
ρo

, sw + so = 1,

pw = po, v = vw + vo, λ∗i (s) = kri
μi

, i = w, o.
(18)

In Sect. 3.1, the hybrid IESmethodology is comparedwith the IESmethodology for
the flow problem with a monotonic log-permeability transform. In Sect. 3.2, a similar
comparison is made, but for the flow problem with a non-monotonic log-permeability
transform, which has a multimodal posterior distribution of the model parameters. In
both cases, the latent variable θ is assumed to bemultivariateGaussianwith covariance

Cθ (x, y) = σ 2
θ

(
1 − x2 + y2

ρ2

)
exp

(
− x2 + y2

ρ2

)
, (19)

where x and y are the lags in the two spatial dimensions, and ρ is a measure of
the correlation range. The permeability field for the data-generating model is a draw
from a prior model with the range parameter for the correlation length ρ = 1.1
and standard deviation 0.8 for the monotonic and non-monotonic transforms. The
true data-generating permeability values are as shown in Fig. 3. Figure4 displays
the corresponding water rate observations from the nine producing wells for both
permeability transforms. To compare the results from the standard IES and hybrid
IES, the ensemble size Ne = 200 for both methods.
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Fig. 3 The “true” log-permeability fields used to generate production data and forecasts. Black dots show
locations of producing wells

Fig. 4 Noisy observations of water cut in nine producing wells

The observation locations are distributed on a uniform 3 × 3 grid of the domain
[0.1, 1.9] × [0.1, 1.9] as shown in Fig. 3 (black dots). The noise in the observations is
assumed to be Gaussian and independent with standard deviation 0.02. The forward
model (Eq. (18)) is solved by the two-point flux approximation (TPFA) scheme, which
is a cell-centered finite-volume method (Aarnes et al. 2007). For the two test cases,
the forward model is defined on a uniform 41× 41 grid with time step �t = 0.1. The
dimension of the discrete parameter space is 1,681.

3.1 History Matching with aMonotonic Permeability Transform

To create a reservoir data assimilation test problem that is nonlinear but not obviously
multimodal, a permeability transform was used that has characteristics similar to rock
facies distributions, that is, regions with relatively uniform permeability and fairly
sharp transitions between those regions. In somecases, the regionoccupied by the high-
permeability facies is isolated and can bemodeled well by amonotonic transformation
of a Gaussian variable to log-permeability. To illustrate the effect of this type of
nonlinearity on weighting in data assimilation, the transformation

m = tanh
(
4θ + 2

) + tanh
(
4θ − 2

)
(20)

123



Mathematical Geosciences

Fig. 5 Model realizations for monotonic transformation of log-permeability using the IES and hybrid IES.
(The same prior ensemble is used for both methods)

is applied, where m and θ (scalars) denote the values of log-permeability and the
latent Gaussian random variable in a cell, respectively. For the hybrid IES method,
the gradient Mθ of log-permeability m with respect to the Gaussian parameter θ is
necessary. The analytic derivative is given by

dm

dθ
= 8 − 4 tanh2

(
4θ + 2

) − 4 tanh2
(
4θ − 2

)
.

With this transformation, values of θ < 1 are assigned m ≈ −2, and values of
θ > 1 are assigned m ≈ 2. The discretized form of the sensitivity Mθ is diagonal
with

Mθ =

⎡
⎢⎢⎢⎢⎣

dm1
dθ1

0 . . . 0

0 dm2
dθ2

0
...

. . .
...

0 0 . . .
dmNθ

dθNθ

⎤
⎥⎥⎥⎥⎦

,

while the covariance operator Cθ of Eq. (19) is dense but block-Toeplitz (Zimmerman
1989; Dietrich and Newsam 1997). Multiplication by Mθ is trivial, but the product
Cθ

(
MT

θ (�mi )
−T

)
is computed using the Toeplitz property of Cθ as described in

Appendix A.
When the hybrid IES is applied to this problem, the gain matrices are potentially

different for each realization, so it should be expected that some realizations will con-
verge to local minima with small probability mass if the posterior has multiple modes.
The samples with the largest weights are likely to be similar, however. Figure5 shows
the log-permeability fields for the first four prior realizations (top row) and corre-
sponding posterior realizations of log-permeability values for both methods (middle
row). The variability in the posterior realizations is smaller than the variability in the
prior realizations, but still fairly large. The log-permeability values of the four poste-
rior realizations from the hybrid IES with the largest weights (Fig. 5a (bottom row))
are much more similar, indicating that for this problem, importance weighting for the

123



Mathematical Geosciences

Fig. 6 The weights versus misfits for the monotonic log-permeability transform using the IES (top row)
and hybrid IES (bottom row). Blue points show computed weights

hybrid IES is beneficial in selecting realizations from the posterior that are similar to
the true model.

In contrast, when the IES is used for data assimilation with the same prior ensemble
of realizations, the first four posterior realizations obtained from the IES (Fig. 5b (top
row)) are similar to the four realizations with the largest weights (Fig. 5b (bottom
row)). As the same gain matrix is used for all samples generated from the standard
IES, the variability among posterior approximate realizations is smaller for the IES
than for the hybrid IES, and unlike the situation with the hybrid IES, the unweighted
and weighted posterior means obtained using the standard IES are almost identical
(not shown).

For nonlinear problems such as this, it would be reasonable to expect the approx-
imate posterior realizations with largest weights to have small data mismatch with
observations. To investigate this hypothesis, a cross-plot of the weights versus squared
data misfits generated using the IES (top row) and hybrid IES (bottom row) is shown
in Fig. 6. Although the weights for the hybrid IES method are clearly correlated with
squared data misfit, and the models with largest data misfit always have very small
weights, there is considerable variability in weights even for small data misfit. The
more important observation is that the nonlinearity in g(·) increases the variability in
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weights, and the mean of the squared misfit (369) using the hybrid IES is substantially
larger than the expected value for samples from the posterior (270), while the weighted
mean is 330.

Since the IES method generated less variability in the posterior realizations, the
spread of weights in the IES method is expected to be smaller than the spread of
weights in application of the hybrid IES. In fact, however, the spread of weights
is quite large and almost independent of the data mismatch (Fig. 6 (top row)). This
appears to be a result of errors in computation of G, an underestimate of the magnitude
of V , and the degeneracy inherent in weighting of optimal proposals based purely on
an ensemble of particles.

Because the range of the covariance of the permeability field is relatively large
compared to the domain of interest, the observation locations are spatially distributed,
and the production data from all wells are matched fairly well by the weighted and
unweighted samples (Fig. 7). The posteriori means of the log-permeability fields (not
shown) look similar to the truth, except that the truth is somewhat “rougher.”

The justification for data assimilation or history matching of subsurface models is
generally to provide accurate assessments of future reservoir behavior. Figure7 show
the quality of the match to observed data and the predictability of future performance
of the unweighted and weighted posterior ensembles at three representative wells.
For this case, the differences in predictability between the weighted and unweighted
realizations are small, although the prediction interval is narrower for the weighted
hybrid IES, due in part to the small effective sample size.

For a Gauss-linear inverse problem, there should be no correlation between the
weight on a sample from the posterior and the data mismatch—in fact, for this case,
the weights should be uniform when a minimization-based sampling approach is
used. For the nonlinear two-dimensional porous flow example with a monotonic log-
permeability transform, the log-weights did correlate with data mismatch when the
standard IESmethodwas used for data assimilation (r = −0.416) andwhen the hybrid
IES method was used (r = −0.647). In both cases, the quality of the data mismatch
provided some information on the weighting that should be applied to a particle.

3.2 History Matching with Non-monotonic Permeability Transform

In this section, the problem of history matching and uncertainty quantification
for permeability fields with a low-permeability “background” and connected high-
permeability “channels” are considered. Again, soft thresholding of the Gaussian
random variables is used to generate regions with relatively sharp transition to a dif-
ferent facies. The non-monotonic permeability transform is given by

m = 2 tanh
(
4θ + 2

) + tanh
(
2 − 4θ

) − 1, (21)
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Fig. 7 The posterior predictions of wells 1, 2, and 6 using the unweighted and weighted hybrid IES for the
monotonic transform. Black points show true observations

where θ is again the prior Gaussian random variable. The corresponding derivative of
log-permeability with respect to the Gaussian latent variable, required for the hybrid
IES, is then

dm

dθ
= 4 − 8 tanh2

(
4θ + 2

) + 4 tanh2
(
2 − 4θ

)
.

The true data-generating log-permeability field for this test problem is shown inFig. 3c,
andwater cut observations for the nine producingwells are plotted in Fig. 4b. Although
the data are not noticeably different from the data in the monotonic case (Fig. 4a), the
presence of the channel facies makes the problem slower to converge to a mode and
more likely to converge to a mode with small probability mass.

For the non-monotonic transform case, the variability of posterior realizations from
the hybrid IES is larger than in the monotonic transform case, as illustrated by the first
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Fig. 8 Model realizations for a non-monotonic transform of log-permeability using the IES and hybrid IES

Fig. 9 Model realizations with the smallest weights for non-monotonic transformations using the IES (top
row) and hybrid IES (bottom row)

four prior realizations and corresponding posterior realizations (Fig. 8a). In this case,
the differences are due to the use of the analytic sensitivityMθ in the hybrid IES,which
allows realizations to converge to different local minima. The posterior realizations
with the largest importance weights (Fig. 8a (bottom row)) show reasonable similarity
to the true field. When the IES method was used for data assimilation, the first four
posterior realizations (Fig. 8b (top row)) and the four realizations with the largest
weights (Fig. 8b (bottom row)) were almost identical. The lack of diversity results in
the unweighted and weighted posterior means being very similar when a standard IES
is used. Importance weighting has very little effect for the IESmethod on this problem.
The effective sample size of the IES for the two cases is low, however, because the
posterior spread has been underestimated (Chen and Oliver 2017; Ba and Jiang 2021).

In addition to the greater diversity in the realizations compared to the monotonic
case, the importance weights and the data mismatch are alsomuchmore diverse for the
non-monotonic transform (Fig. 10) when the hybrid IES is used. In the non-monotonic
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Fig. 10 The non-normalized log-weights versus misfits for the non-monotonic transform using the IES and
hybrid IES. Blue points show computed log-weights

case, the expected mean of the data misfit part of the log-likelihood is still 270 (half
the number of observations). Figure10 shows, however, that the data misfits of most
posterior samples are concentrated in the interval [1, 000, 6, 000]. The posterior mean
of unweighted data misfits is 3,794—approximately 14 times the expected value. The
posterior mean of data misfits for weighted realizations, on the other hand, is 617,
which is still larger than expected but much smaller than the mean for the unweighted
realizations.

Weighted and unweighted mean log-permeability fields for the non-monotonic per-
meability transform are shown in Fig. 11. Themiddle and bottom rows of Fig. 11 show
mean values of log-permeability at location (x, 1.75) for two different sets of results
using different convergence trajectories (i.e., different values for the multiplier of λ in
Levenberg–Marquardt minimization). The unweighted mean for the hybrid IES bears
limited similarity to the true field and shows little connectivity of the high-permeability
facies. This is a result of averaging with many dissimilar realizations that are not all
well calibrated. The weighted mean looks much more like the truth, as it puts more
weight on samples with higher probability mass. The effect of importance weighting
is perhaps more obvious in the posterior distribution of predictions of water cut. The

123



Mathematical Geosciences

Fig. 11 The true log-permeability (left) and the unweighted and weighted posterior means using the hybrid
IES (middle) and IES (right) for the non-monotonic transform

spread in the unweighted predictions is large, even during the history-matched period
(Fig. 12 (left column)) and much larger than expected given the observation error.
On the other hand, the quality of the weighted posterior realizations (right column) is
excellent, except for well 1. The main problem with the weighted ensemble appears
to be that the spread is too small, resulting from the small effective sample size.

For the more highly nonlinear two-dimensional porous flow example with non-
monotonic log-permeability transform, the correlation between the importance log-
weight and data mismatch was very high (r = −0.813) when the hybrid IES was
used for data assimilation, and the data mismatch after calibration could serve as a
useful tool for eliminating samples with small weights. For the standard IES, however,
the approximated weights were clearly not accurate, and the correlation between log-
weight and data mismatch was correspondingly small (r = −0.087). In this case, the
data mismatch would not have provided a useful proxy for weighting.

3.3 History Matching Using the Hybrid IES

The hybrid IES algorithm is somewhat more complex than the standard IES. A naïve
implementation would be very costly for realistic geoscience problems because of the
additional matrix–vector operations required to compute the update step. Additionally,
the weights computed from the hybrid IES are only an approximation of the weights
computed in the randomized maximum likelihood method, and the weights will be
noisy as a result. The following subsections address solutions to these issues.

3.3.1 Efficiency of the Update Step in the Hybrid IES

Timing experiments showed that the cost of the proposed method for computing the
update step using fast Fourier transform (FFT) (see Appendix A) was substantially
decreased compared with the straightforward approach used by (Oliver 2022). The
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Fig. 12 The posterior predictions for wells 1, 2, and 6 using the unweighted and weighted hybrid IES for
the non-monotonic transform. Black points show true observations

computational complexity of the hybrid method stems from the need to perform
Ne minimizations using individual gradient estimates and the cost to generate Ne

prior ensemble members from a high-dimensional parameter space. The covariance
matrix is generally dense and large in the discretized space. While the sampling step
from the prior distribution contributes to the cost of the hybrid IES, the cost is dom-
inated by minimization of the objective function. For the two-phase flow example,
the cost to generate 200 prior samples is about 0.054s (timing should be consid-
ered illustrative, but for reference, all results were obtained on a computer with an
i7-5500U@2.40GHz× 4 processor with 7.5 GiB memory and a 64-bit operating sys-
tem). The run time is approximately 31,000 times faster when using the FFT with
nonnegative definite minimal embeddings compared with a method that uses the
Cholesky decomposition and matrix multiplication, as shown in Table 1. Note that
the increase in cost for the non-monotonic case is a result of the varying number of
iterations required for the minimizer to converge for the different settings. In the case

123



Mathematical Geosciences

Table 1 Computational cost of the hybrid IES (units = second)

Whole algotithm Prior ensemble Cθ MT
θ (�m )−T

FFT for monotonic 1427.82 0.054 0.0894

Non-FFT for monotonic 3206.29 1693.65 0.1824

FFT for non-monotonic 1691.62 0.054 0.0961

Non-FFT non-monotonic 4354.54 1697.35 0.2451

of the hybrid IES method, the cost to generate the Ne hybrid gradient is dominated
by the cost to perform Ne matrix–vector multiplications with different cost functions.
Hence, the computational complexity for the hybrid IES can be expected to be greater
than the cost for the standard IES method. For the weighted hybrid IES, there is an
additional cost incurred in the computation of the weights. Although several of the
terms in the weights can be obtained at low cost through the ensemble approximations
that were used for the Hessian, the Ne times matrix multiplications are necessary to
compute the weights. When FFT was applied to compute hybrid gradients, the cost of
computing Cθ MT

θ (�m)−T was reduced from 0.18 s to 0.089s for each sample relative
to the case in which the matrix–vector multiplication did not use FFT (i.e., the FFT
method was twice as fast).

All computational costs, including the cost of minimization, could be reduced
through careful modification of the algorithms. In particular, the efficiency of the
weighted hybrid IES could be improved by tempering the objective function at early
iterations to avoid convergence to local minima with small weights.

3.3.2 Effect of DenoisingWeights on Predictability

Unweighted posterior realizations generated byminimization of a stochastic cost func-
tion are often described as well history-matched, but differences in the quality of the
match to data between some realizations and observations are too large in practice
to be explained by observation error. To investigate the potential benefit of weighting
the samples and of different degrees of denoising, we compute the accuracy of proba-
bilistic predictions beyond the history-matching period for data assimilation using the
hybrid IES. (Optimalweightingwas not investigated for the standard IES, asweighting
was not useful for the non-monotonic log-permeability case.) For this investigation,
observations used in history matching end at t = 60, and predictions are evaluated at
t = 70 for all nine producers using the “log score” (Good 1952; Gneiting and Raftery
2007). The logarithmic score evaluates the probability of the outcome given a proba-
bility density function (pdf) empirically defined by the ensemble of predictions. The
log score rewards both accuracy and sharpness of the forecasts. A higher log score
signifies better probabilistic prediction,

LogS(P, u) = − log(p(u)),

where a Gaussian approximation of p has been used.
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Fig. 13 Evaluation of optimal regularization of weights for forecast predictability using the hybrid IES

The effective sample size and the log score of the forecasts were computed at t = 70
for all nine wells for a range of degrees of regularization of weights. Regularization
of log weights was accomplished by applying a power transformation with exponents
between0 and1 to the computedweights. The effective sample size (ESS) is affected by
the degree of regularization—the ESS is 200 if equal weighting is used (i.e., if a power
transformation with a very small exponent is applied). When the exponent is close to
1, one ends up using the weights as computed without denoising or regularization.
Figure13a shows predictability scores for a range of degrees of regularization using
the hybrid iterative smoother with the monotonic permeability transform. Figure13b
shows corresponding results for the non-monotonic permeability transform. The solid
black curves in both cases show the log score, which is somewhat small for both
cases when the effective sample size is small, even though only the so-called best
realizations are used for the forecast. The poor predictability for small effective sample
size is a result of the small spread in the ensemble, so that even small inaccuracy
of the prediction is highly improbable. As the effective sample size increases, the
predictability initially increases rapidly because of the increase in the spread, but
when the exponent of the power transform is decreased sufficiently, the predictability
gradually decreases as more so-called bad samples are added. The impact of bad
samples is smaller in the monotonic case than in the non-monotonic case because the
root-mean-square error (RMSE) in the worst samples is smaller in the monotonic case.

Figure 14 compares unweightedpredictionswithweightedpredictions anddenoised
weighted predictions for one of the wells (producer 4) in both two-dimensional porous
flow examples. For producer 4, the agreement between the forecast from the data-
generating model and weighted forecasts is nearly perfect, although the quality of
the agreement at some other wells is lower. Better forecast predictability as mea-
sured by the log score is obtained using denoised importance weights, as described
in Sect. 2.4.1, although in both examples (monotonic and non-monotonic log perme-
ability transforms) the correct level of denoising was difficult to determine.

Although the effect of denoising is quantitatively different for the monotonic
and non-monotonic permeability transforms, in both cases the best predictability
is obtained when the weights are regularized such that the effective sample size is

123



Mathematical Geosciences

Fig. 14 The posterior distribution of forecasts conditioned to data to t = 60 using the hybrid IES method.
The black dots show the observed data

intermediate between the ESS for unweighted samples and the ESS for the weights
computed using Eq. (13).

4 Landscape of the Posterior

The efficiency of the hybrid iterative smoother for sampling the posteriorwas relatively
low in the flow example with the non-monotonic permeability transformation. For an
ensemble size of 200, the effective sample size after denoising was approximately 5.5.
The small sizemakes probabilistic inference difficult—even though themeanweighted
forecasts were generally accurate, the estimates of the uncertainty often were not. In
order to obtain an effective ensemble size of approximately 40 afterweighting, it would
be necessary to use an initial ensemble size of approximately 1,600.As the efficiency of
the randomized maximum likelihood sampler using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm for minimization with the gradient computed from the
adjoint system was similar to the efficiency of the hybrid IES for a similar problem
(Ba et al. 2022), it seems likely that the low efficiency is a result of the roughness of
the posterior landscape rather than a problem with minimization.

The efficiency of sampling algorithms depends strongly on the landscape of the pdf
to be sampled and on the goal of the sampling. If the objective is simply to sample
in the neighborhood of the maximum a posteriori point, then using exact gradients
is not always beneficial, especially if the log posterior is characterized by multiple
scales—a smooth, long-range feature that is approximately quadratic and shorter-
range fluctuations to the surface (Plecháč and Simpson 2020). If the posterior pdf is
characterized, however, by a small number of nearly equivalent modes, then ensemble
methods may fail to converge (Oliver and Chen 2018; Dunbar et al. 2022). In the
numerical example with non-monotonic transformation of the log-permeability, the
IES converged to the maximum a posteriori (MAP), but failed to sample other local
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Fig. 15 The fitness landscape for the non-monotonic porous flow problem

minima. In order to clarify the behavior, the fitness landscape was evaluated in the
neighborhood of the true data-generating model and over a larger region.

The dimension of themodel space is too large to visualize the landscape of the poste-
rior directly. Instead, two illustrations of the fitness landscape for the non-monotonic
log-permeability transform case were created by selecting three realizations of the
model parameters to define a subspace of the model space. From three realizations,
an orthonormal basis was constructed, and the log-likelihood function on a grid con-
taining the three realizations was evaluated. In the first plot of the fitness landscape
(Fig. 15a), the subspace contains both the true model, θtrue, and the negative of the
true model, −θtrue. (Both are equally probably before conditioning to the data.) A
third realization with relatively low weight was included to provide an independent
basis vector needed for the two-dimensional subspace. In this case, there is a fairly
large energy barrier separating the modes containing θtrue and −θtrue and a smaller
barrier separating θtrue from θ0. In Fig. 15b, the subspace contains the truth and two
realizations with large posterior weights. Again, each realization appears to lie in a
separate mode of the likelihood, although that cannot be verified without examining
the surface in higher dimensions. In any case, the posterior landscape is complex,
and accurate gradients may be of limited usefulness if the goal is to locate the global
minimum.

5 Summary and Conclusions

Iterative, ensemble-based data assimilation methods for sampling the posterior dis-
tribution are based on minimization of stochastic objective functions. These methods
of sampling are approximate when the mapping from parameters to observations is
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nonlinear. To correct the sampling, importance weighting can be used. It is, how-
ever, generally difficult or costly to compute the importance weights if derivatives are
computed from the adjoint system. On the other hand, the cost is relatively low for
ensemble-based methods which avoid the need for adjoints. It was shown that stan-
dard products from hybrid iterative ensemble smoothers could be used to compute
approximations to the importance weights. The weights computed in this way are
noisy—largely because of low-rank stochastic approximations of derivatives. Denois-
ing of the importanceweights increased the effective sample size, decreased theRMSE
in the estimate of the posterior model mean, and increased the predictability of future
reservoir behavior.

Although the IESmethod convergedmore quickly than the hybrid IES in the numer-
ical test problem with a multimodal posterior, the posterior realizations from the IES
appear to be samples from a single mode. In some cases, the IES sampled from the
mode with the highest probability, so that while the uncertainty was underestimated,
the fit to data was good. In other cases, however, the IES samples were centered on a
mode with lower mass and the fit was not as good. The posterior mean model for the
multimodal problems using the IES was very sensitive to the choice of minimization
parameters. Weighting was not effective in this case because the posteriori distribu-
tions of samples were not from the critical points of the stochastic cost function. We
did not evaluate the possibility of combining multiple posterior ensembles from the
IES, but it seems likely that the weighted results from a large number of ensembles
would provide a better representation of the posterior.

Finally, it was noted that the posterior landscape of the inverse problem for the
two-dimensional, two-phase immiscible flow appears to be multimodal when the per-
meability field is generated from a transformation that creates channel-like features of
high permeability in a low-permeability background. The characteristics of the pos-
terior distribution have implications for the types of data assimilation methods that
can be expected to provide reasonable assessment of the uncertainty. For the flow
problem with “channel-like” geology, it appeared that the standard IES may be capa-
ble of generating an ensemble of well-calibrated models, but the spread in that case
was artificially small. The hybrid IES method provided an ensemble of models with
much greater variability, but weighting of the calibrated realizations was necessary for
posterior inference, and the effective ensemble size was much smaller than the actual
ensemble size.
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Appendix A: Fast Matrix–Vector Multiplication

To accelerate the update step in the hybrid IES in large inverse problems, we apply
circulant embedding for fast multiplication of Toeplitz matrices. Assuming that the
forward model is defined on a uniform (nx + 1) × (ny + 1) grid, the dimensions of
the corresponding covariance matrix are (nx + 1)2 × (ny + 1)2, which is extremely
large in typical geoscience data assimilation applications. If the priormodel covariance
function is stationary and themodel variables are defined on a two-dimensional regular,
equispaced grid, the covariance matrix Cθ is symmetric level-2 block-Toeplitz. To
reduce the storage and the computation cost, the embedding Toeplitz covariance is
applied to circulant matrices. Circulant matrix–vector products can then be computed
efficiently by fast Fourier transform (FFT) (Zimmerman 1989; Dietrich and Newsam
1997). A circulant matrix Č is a Toeplitz matrix that has its first column č periodic. A
Toeplitz matrix Cθ can always be augmented to generate a circulant matrix Č. This
process is called embedding, which can be written as

Cθ = M†ČM(H(ξ)) = M†F [−2](F [2](č)F [2](ξ̌)
)
,

where the operationM(H(·)) injects and embeds ξ into ξ̌ , andF [2] is evaluated by the
FFT. Under the assumption of stationarity, the random field Y (x, y) has correlation
function r(x, y) that depends only on the separation of variables.

123

http://creativecommons.org/licenses/by/4.0/


Mathematical Geosciences

Let hx and hy be constants denoting, respectively, the horizontal and vertical mesh
size of a two-dimensional rectangular domain formed by the points (xi , y j ), where

{
xi = ihx , 0 ≤ i ≤ nx
y j = jhy, 0 ≤ j ≤ ny .

The ordering of the grid nodes is done from left to right, bottom to top. Thus, the cor-
relation matrix R is block-Toeplitz (Zimmerman 1989; Dietrich and Newsam 1997),
which is symmetric and uniquely characterized by the first block row

(R0, R1, . . . , Rny ),

with R j being the square of dimension nx + 1. Based on the node ordering, R j has
first row and first column entries, respectively, given by

r(ihx , jhy)
nx
i=0 and r(−ihx , jhy)

nx
i=0.

The blocks R j are symmetric only if the correlation function has the special form
r(|x |, |y|). When R j is Toeplitz for j ≥ 1, it is uniquely characterized by its first row
and first column which are written as

(r0 j , r1 j , . . . , rnx j ) and (r0 j , r−1 j , . . . , r−nx j )
T .

The minimal circulant embedding of R j that ensures that the embedding matrix
has an even dimension (for FFT computation) is then given by the square circulant
matrix S j of dimension 2(nx + 1), for which the first row is

(r0 j , r1 j , . . . , rnx j , φ j , r−nx j , . . . , r−1 j ). (A1)

The circulant embedding of Toeplitz matrices can be constructed by Eq. (A1). Once
constructed, the circulant embedding is used to quickly generate samples from the
prior and to evaluate products such as CθGT , which would otherwise be infeasible.

Appendix B: List of Symbols

List of Symbols

Nθ Number of model parameters
N (·, ·) Gaussian distribution
Nd Dimension of observational space
Cm Covariance matrix of Gaussian prior for m
Cd Covariance matrix of ε

Nm Number of intermediate variable
Cθ Covariance matrix of Gaussian prior for θ
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β Hyparameter or other reservoir properties
θ il i th sample for the lth iteration
B Generic forward model operator
θpr Mean of Gaussian prior
πD(do) Normalization constant
Q(θ) Negative log likelihood function
π�(θ |do) Posterior distribution
π��(θ, δ) Target distribution
q�′�′(θ ′, δ′) Proposal distribution of (θ ′, δ′)
p��(θ, δ) Proposal distribution of (θ, δ)

κri Relative permeability of phase i
θ ,δ Samples of target distribution
θ ′,δ′ Samples of Gaussian qθ ′�′(θ ′, δ′)
Z Composite observation operator
f Nonlinear transform from θ to m
n(θ ′) Total number of critical points
G Differential operator of g wrt θ
Gm Differential operator of g wrt m
p(u) Predictive distribution of u
Č Circulant matrix augmented by Cθ

P(ωo|ω) Likelihood function of weights
Mθ Differential operator of m wrt θ
IN N -dimensional identity matrix
P(ω|ωo) Posterior distribution of weights
Boldletter Vector or matrix of corresponding letter
Unboldletter Analytic representation or scalar
Ne Number of samples
Neff Effective sample size
m Intermediate variable
do Observations
w Weights
ε Observation error
l Iteration index
J Jacobian determinant
σo Standard deviation of ωo

V , η(θ) Auxiliary variables
u(x) Model state
p(x, t) Pressure
s(x, t) Saturation
� Spatial domain
L Square root of CM

ωo Observation of weights
P(ω) Prior of weights
hx ,hy Mesh size
nx ,ny Number of grid nodes
g Observation operator
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μi Viscosity of phase i
�θ Ensemble deviation for θ

1N N -dimensional one-vector
�m Ensemble deviation for m
�d Ensemble deviation for d
C Covariance operator
č First column of Č
σ Standard deviation of C
λl lth Regularization parameter
ρ Correlation length of C
δθl Increment for the lth iteration
ν Freedom of Chi-square prior for ω

σpr Standard deviation of prior for ω
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