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A B S T R A C T

Several types of data used in history matching for subsurface reservoir characterization have errors that are
spatially or temporally correlated. Although it is often assumed that correlated observation errors decrease
information content, using a simplified flow problem, we show that for data that are spatially dense (such as 4D
seismic data), correlated observation errors result in higher information content than data with similar levels
of errors, but without correlation. Unfortunately, correlations in the observation error are often unrecognized
and difficult to estimate, especially if the correlation scale of the errors is similar to a characteristic length of
the signal. In addition, many history matching algorithms are incapable of accounting properly for correlated
observation error, so data are either thinned or the observation error is inflated to partially account for the lack
of proper treatment. We show that neglecting correlations in the observation errors or inflating the variance,
result in loss of information content. Finally, we show that it is possible to iteratively estimate the correlated
observation errors through analysis of residuals after history matching.
. Introduction

Correlated observation errors are ubiquitous in model-based data
ssimilation if for no other reason than the fact that models are
ever completely accurate representations of reality and deficiencies
n a model generally result in errors that are correlated. Common
eneral sources of model errors in data assimilation include under-
arameterization, missing physics, and bias introduced in processing
f data prior to assimilation. Time-lapse or 4D seismic data suffers
n this regard as the attributes that are commonly used as data for
istory matching are derived from data that have been heavily pro-
essed. Roach et al. (2015) show that the effect of every step in the
rocessing of 4D seismic data is to decrease the variability among
urveys. The result, however, is an increase in bias which has long
ange correlation. When the ‘‘data’’ for data assimilation are attributes
hat have been inverted from the actual seismic data, the potential for
patially correlated errors increases (Thore, 2015). History matching of
eismic data also requires coupling of more than one complex model,
ach of which is necessarily simplified. A relatively thorough discussion
f sources of correlated observation and model errors in 4D seismic
ata can be found in a recent review paper on 4D seismic history
atching (Oliver et al., 2021).

The term ‘4D seismic’ data refers to spatial 3D seismic data sets
hat are measured multiple times (hence the 4th dimension). One
ttractive feature of 4D seismic data is that the density of observations
n the spatial domain is high compared to other types of data typically
vailable for reservoir characterization. Consequently, the data are

E-mail address: dean.oliver@norceresearch.no.

used to monitor changes in fluid saturation and pressure in regions
between wells where other measurements are not available. Because
of the spatial density and the ability to interpret changes in reservoir
properties, it is often assumed that the 4D seismic data must contain
large amounts of information for reservoir characterization and for
identification of locations of bypassed oil. Yet the actual improvements
in reservoir characterization resulting from assimilation of 4D seismic
data have been modest, implying a lower level of information content
than commonly assumed. It is natural to enquire as to the source of the
mismatch between expectation and experience. As 4D seismic data have
several distinctive characteristics (high spatial density, sharp saturation
fronts, and long range correlated observation error), we focus on the
effect of spatially correlated errors on information content for this type
of data. In particular, we investigate the possible influence of correlated
observation error in the reduction in 4D seismic data information.

Because of the extensive processing of seismic data, the errors in
seismic attributes are generally more complex than described by a
additive Gaussian model and information on reservoir properties will
always be lost when a simplified model of observation error is chosen
over a more accurate one. In this manuscript, we have focussed on
the information loss when the errors are assumed to be uncorrelated
because this is a nearly universal assumption in history matching; it
results in large information loss and yet including observation error
correlations for history matching is straightforward.

We begin in Section 2 with a discussion of various methods of
defining information content for data, including Shannon information
vailable online 1 November 2021
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and relative entropy. We then introduce a numerical flow example in
Section 2.3, which is subsequently used to illustrate the quantification
of information content for estimation of log-permeability and saturation
from repeated noisy observations of saturation. Despite the fact that
we believe that correlated observation errors are the norm in most
subsurface data assimilation problems, they are usually ignored and
often not recognized. It is common to assume an independent noise
model because it simplifies the calibration or history matching step in
the data assimilation. It is also common to estimate the noise from the
data themselves (without comparison with the model predictions). In
Section 3 we investigate the consequences of neglecting correlations in
observation error in the data assimilation, and the effect of inflating
the observation error variance to possibly compensate for neglected
correlations. Then, in Section 4 we discuss characterization of corre-
lated observation errors and a method for utilizing the estimate of
observation error covariance to extract more information from the data.

Although this investigation focusses on the effect of correlated ob-
servation error on information content on 4D seismic data, the general
conclusions will apply to other types of closely spaced data (temporally
or spatially) with correlated observation error. This includes data such
as well production and injection rates and pressures from wireline
formation testers. In many offshore locations, well production rates are
measured using a test separator, but these well tests are infrequent —
in some cases once per year. At intermediate times, the well produc-
tion is allocated based on choke setting or on multiphase flowmeters
with lower level of accuracy hence errors tend to be correlated in
time (Folgerø et al., 2013; Sadri and Shariatipour, 2020).

2. Information content in data

A qualitative interpretation of information content is that it is a
measure of how surprising an observation is, based on what is already
known about the system. Data with high information content force us
to substantially alter our assessment of uncertainty about quantities
of interest, whereas data with low information content will have little
effect on our assessment of uncertainty.

The information provided by an observation is sometimes defined
simply in terms of the subsequent reduction in the expected error
of the variable of interest relative to prior uncertainty in the vari-
able (Neuman et al., 2012). The information content will thus have
different values depending on the variable whose value we wish to
estimate. In typical applications of history matching, the goal might
be to calibrate a model of the reservoir that can subsequently be used
to make predictions. In that case, we might define the information
content in terms of the reduction in uncertainty in the parameters
of the model (e.g. permeability, porosity, and fault transmissibility).
Frequently, however, we may be more interested in the uncertainty
in predictions from the model, such as locations of remaining oil in
a petroleum reservoir or locations of contaminants in an aquifer, in
which case we may wish to define the information content in terms
of the reduction in uncertainty in the predictions.

2.1. Measures of information content

When we take a Bayesian approach to the quantification of un-
certainty, the information content must sometimes be defined more
broadly than simply the reduction in uncertainty, as it is possible for
assimilation of data to result in an increase in uncertainty. A more
general approach is to define the information content as the difference
between the prior probability, 𝑝pr , and the posterior probability, 𝑝po,
after conditioning to data (Majda et al., 2002; Xu, 2007; Petty, 2018;
Chen, 2020). The Kullback–Leibler directed divergence (or relative
entropy) from the prior to the posterior for model parameters 𝐦,

𝐷KL(𝑝po ∥ 𝑝pr ) = 𝑑𝐦 𝑝po(𝐦) ln
(

𝑝po(𝐦)
)

2

∫ 𝑝pr (𝐦)
can be used to quantify the information content in the observations.
The information content measured this way has two advantages: (1)
the information content is 0 if 𝑝po(𝐦) = 𝑝pr (𝐦), and (2) information
content is positive if the two distributions are different. For the special
case in which the prior distribution (perhaps after transformation of
variables) is approximated as Gaussian with prior mean 𝐦pr and prior
model covariance 𝐂𝑚,pr,

𝑝pr (𝐦) = (2𝜋)−𝑀∕2
|𝐂−1

𝑚,pr|
1∕2 exp

(

−1
2
(𝐦 −𝐦pr )T𝐂−1

𝑚,pr(𝐦 −𝐦pr )
)

.

and the posterior distribution can be similarly approximated as Gaus-
sian with posterior mean 𝐦po and posterior covariance 𝐂𝑚,po, the
relative entropy can be written as (Xu, 2007)

𝐷KL
(

𝑝po ∥ 𝑝pr
)

= 1
2

(

(�̄�pr − �̄�po)T𝐂−1
𝑚,pr(�̄�pr − �̄�po)

)

+ 1
2

(

Tr
(

𝐂−1
𝑚,pr𝐂𝑚,po

)

− 𝑘 + ln
( det 𝐂𝑚,pr

det 𝐂𝑚,po

))

. (1)

The first term on the right is a measure of the change in the mean of
the distribution, while the second term is a result of the change in the
covariance.

Despite the advantages of relative entropy as a measure of infor-
mation content, the Shannon information content (SIC) is the more
common measure. For problems with Gaussian prior and posterior
distributions, the Shannon information content (in nats) is

SIC = 1
2
ln
( det 𝐂𝑚,pr

det 𝐂𝑚,po

)

. (2)

Questions about the usefulness of the SIC as a measure of information
content have been raised several times in the data assimilation litera-
ture (Majda et al., 2002; Xu, 2007; Fowler and Van Leeuwen, 2012;
Petty, 2018). One disadvantage of SIC is that it is not invariant to
nonlinear transformations of the variables of interest so, for example,
we would obtain different estimates of information content of data for
estimation of log-permeability compared to estimation of permeability.
In this paper, we will generally report the information content in terms
of relative entropy.

Note that for Gauss-linear data assimilation problems the value of
the relative entropy is sensitive to the actual observations, while SIC is
a function only of the prior and posterior covariance matrices (Eq. (1)).
For Gauss-linear problems, the posterior covariance is a function of
what is measured, but it does not depend on the realization of the
data. If 𝐆 denotes the linear observation operator relating the model
parameters to the data, the posterior covariance is

𝐂𝑚,po =
(

𝐂−1
𝑚,pr +𝐆T𝐂−1

𝑑 𝐆
)−1

.

On the other hand, the relative entropy depends on the posterior mean
of the estimated quantity, so it is a function of the actual realization of
the data (with observation error). Thus, while it is possible to quantify
the expected information gain using relative entropy, it is not possible
to quantify the information content of a particular realization of the
data prior to data acquisition using relative entropy. The consequence is
that comparisons of information content based on relative entropy will
be ‘‘noisier’’ than computations based on SIC and it may be necessary
to average over several realizations of the truth to draw meaningful
conclusions.

2.2. Effect of correlated observation errors on information content

Our primary objective in this paper is not to determine the infor-
mation content of actual 4D seismic data, as an investigation of that
type would be highly case dependent and would require specification of
data acquisition details, model details, petro-elastic models and either
forward or inverse modeling (Oliver et al., 2021). Instead, we focus on
the impact of correlated noise in an idealized problem that captures

the key elements of the 4D seismic history matching problem, i.e. the
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Fig. 1. True log10 permeability field and well locations for a numerical 2-phase flow
test problem. Water is injected in a well (I) at a fixed rate at the center of the grid.
Fluids are produced at equal rates from producing wells (P) at the four corners.

effect of spatially and temporally correlated errors in observations of
saturation maps on information content with respect to estimation of
permeability and remaining oil saturation.

It is clear that in some cases, correlated observation errors (when
properly accounted for) reduce the information content of data. If,
for example, one were to repeatedly measure the length of an object
with the same (inaccurate) ruler, additional measurements would not
increase the accuracy. Similarly, for observations with spatially corre-
lated error, increasing the observation density beyond a threshold value
will yield little or no improvement in analysis accuracy even when
the data assimilation is performed optimally (Liu and Rabier, 2002).
The assumption that correlations in observation error generally reduce
information content are fairly common (Daley, 1992; Aanonsen et al.,
2003), but the actual effect of correlation on information content is
complex and could result in either increase or decrease in information
content. Notably, correlations in observation error may increase the
accuracy of estimates of gradients of the observed field (Seaman, 1977;
Stewart et al., 2008). Similarly, Stewart et al. (2008) have shown that
positive error correlations reduce the weight on averages of observa-
tions, but increase the weight on differences. Based on those findings,
one might speculate that estimation of saturation fronts (boundaries
between regions of differing saturation) from dense seismic data may
benefit from correlations in observation error. Importantly for assim-
ilation of seismic data, Rainwater et al. (2015) reports that spatially
dense observations with correlated error contain more information
about small scale phenomena than similarly dense observations with
uncorrelated error.

2.3. Numerical flow example

We use an idealized numerical flow experiment that shares many
key characteristics of the 4D seismic history matching problem to
investigate the effect of correlated observation error. In particular, the
numerical model has been designed to allow simulation of repeated
spatially dense observations related to displacement of oil by water in a
heterogeneous porous media. The problem was also chosen to be small
enough to allow numerical experiments to be performed multiple times
with different ‘‘truths’’ and different observation error characteristics.

In the numerical model, water is injected at a constant rate into the
center of a 2D [0, 1]× [0, 1] reservoir grid (properties are uniform in the
third direction). Fluids are produced from wells near the four corners
of the model (locations marked with P in Fig. 1). The production rates
at the four producing wells are identical despite spatial variability in
3

permeability. Porosity is assumed to be uniform, but the logarithm of
permeability is multi-Gaussian with mean 0 and isotropic covariance
𝐂𝑚(ℎ) = 52 exp(−3|ℎ∕0.8|1.9) that depends only on the distance ℎ
between points. The ‘‘true’’ log-permeability field, sampled from this
distribution, is shown in Fig. 1 along with well locations.1

Water saturations are then ‘‘observed’’ on the 2D reservoir grid
at 4 different times (0.25, 0.50, 0.75, and 1.0). The observations are
noisy with both short and long range correlations in the observation
error. Short range observation errors are uncorrelated with standard
deviation of 0.1. Long range observation errors are correlated spatially
with mean 0 and covariance 𝐂𝐷 = 0.32 exp(−3|ℎ∕𝑟|1.9), where ℎ is the
distance between observation locations and the parameter 𝑟 is varied
to investigate the effect of correlation length. The total variance in
the observation error is the same in all experiments. Fig. 2 shows
the true saturations at three observation times, the noisy saturations,
and estimates of the flooded region obtained by direct thresholding
of observations. Note that the noisy observations (middle and bottom
rows) have observed values that are outside the physically plausible
range. This is a consequence of additive noise.

Insight into the effect of correlated observation error on information
content can be obtained from visual examination of dense spatially
distributed data with varying error correlation lengths. Fig. 3 shows
observations with relatively short correlation length in observation
errors (bottom row) and observations with long correlation (top row) at
three different observation times. The variance in the noise is identical
in both cases yet the region of increased water saturation is more easily
identified when the observation error has long correlation range. One
might guess from the figure that in this case, where the information
is largely determined by the location of the ‘‘front’’, the observations
for which the errors were more highly correlated will have the higher
information content.

2.3.1. Assimilation of the data
To quantitatively compute the information content from the data

requires estimation of the posterior distribution for the quantities to
be estimated. In reservoir characterization, one may be interested in
the permeability distribution conditioned on the observations of data.
This estimate could be used to forecast the future behavior of the
reservoir. One may also be interested specifically in estimation of water
saturation at some particular time as this can be used to determine
the location of remaining oil. We should expect that the information
content in the data for estimation of permeability will be different
from the information content for estimation of saturation, as has been
observed by Tiedeman and Green (2013) in the context of groundwater
modeling.

Our estimates of the posterior distributions for log-permeability and
for saturation are obtained using an iterative ensemble smoother (Chen
and Oliver, 2012) to generate an ensemble of samples of permeability
from an approximation to the posterior. Although the iterative ensem-
ble smoother is limited as a sampling method to problems for which
the posterior is approximately Gaussian, that appears to be the case for
the relatively simple reservoir model used in this investigation. Well
injection rates and well production rates are fixed. The data are the
observed (noisy) saturations fields at 4 times (400 observations at each
survey). The only unknowns are the 400 log-permeability values on
the grid. Posterior samples of saturation are obtained by running the
reservoir simulator with permeability samples from the posterior as
input. When performing data assimilation, we did not localize updates
(a technique used to reduce the effect of spatial correlations and limited
number of degrees of freedom) because the range of the correlation
of permeability was approximately as large as the simulation domain,
making the viability of localization questionable. To reduce the effects

1 The simulator used for the numerical experiments can be obtained from
https://github.com/patricknraanes/HistoryMatching.

https://github.com/patricknraanes/HistoryMatching
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Fig. 2. Water saturation (𝑆𝑤) is observed at 4 dimensionless times: 0.25, 0.5, 0.75 and 1.0 (only the first three observations are shown). The observations are contaminated with
additive Gaussian noise consisting of white noise with standard deviation 0.1 and correlated Gaussian noise with standard deviation of 0.3 and correlation range of 1.2. The noise
is added to the true saturation (top row) to generate the observed saturations (middle row). The bottom row shows result of thresholding of observations. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Compare observations with relatively short correlation length (bottom row) with observations with long correlation (top row) at three different observation times. The
variance in the noise is identical in both cases.
of sampling error and spurious correlations without localization, we
used a fairly large (800-member) ensemble size.

As the observation errors are correlated and the number of data
is fairly large (1600), the update equation was modified to allow
4

a low-rank approximation of the observation error covariance ma-

trix (Evensen, 2009; Alfonzo and Oliver, 2020). The data mismatch

was monitored and iterations were stopped when the data mismatch

stopped decreasing — typically after 10 iterations.



Journal of Petroleum Science and Engineering 208 (2022) 109728D.S. Oliver
Fig. 4. Compare prior and posterior estimates of the change in water saturation, 𝛥𝑆𝑤. The top row shows the prior and posterior means, while the bottom row shows the prior
and posterior standard deviations for change in saturation.
After performing data assimilation, the information content can be
computed either from the change in the posterior pdf (relative entropy)
or in the change in the variance (SIC). Because we use an iterative
ensemble smoother, we are largely limited to a Gaussian approximation
of the relative entropy as in (1), in which case information content is
a measure of the change in the mean and the change in the covariance
from prior to posterior. Fig. 4 shows the change in the mean and in
the standard deviation for saturation at time = 1 after assimilation
of all noisy saturation observations with error correlation range 1.2.
The posteriori mean for saturation is much different from the prior
mean and the mean of the posteriori distribution is quite close to the
true saturation at the prediction time. Note also that the uncertainty in
saturation (bottom row of Fig. 4) is greatly reduced after assimilation
of observations with correlated error. The uncertainty in the posteriori
saturation is largely limited to the edges of the swept region.

The effect of correlation length in the observation error was quanti-
fied by performing numerical experiments in which observations were
generated and assimilated as described above. These experiments were
repeated multiple times with different correlation lengths in the obser-
vation error. For each correlation range in the observation error, we
performed the data assimilation with seven different true models. Each
data assimilation required approximately 11 iterations to converge so
we ultimately performed approximately 400,000 simulations. Results
are summarized in Fig. 5.

In Fig. 5a we see a minimum in the information content (relative
entropy) for estimation of ln𝐾 (log-permeability) when the correlation
range in observation error is about 0.2. This is similar to the charac-
teristic length scale of the saturation field that is obtained from an
analysis of the correlation of tangent lines to the saturation front at
𝑡 = 0.75 (Zhang and Lu, 2004), confirming quantitatively the qualitative
observation that when the noise and the signal have similar length
scales, the information content is minimized (Fig. 3). The effect of
observation error correlation length on estimation of saturation is
similar (Fig. 5b)

We also examined the accuracy of the estimated properties in
comparison to the values of the true properties. For this comparison,
it is necessary to repeat the experiments several times to reduce the
5

effect of sampling error on results. Once again, we see that for fixed
variance, long correlation length in the observation error is beneficial
for estimating the true properties (Fig. 5c). The root-mean-square error
(RMSE) in the estimate of ln𝐾 is generally lower for larger correlation
lengths in the observation error, although the spread in RMSE is
large. The increase in accuracy of estimation is more substantial for
saturation (Fig. 5d); we see a reduction in RMSE from approximately
0.11 when the correlation range of observation error and signal are
approximately the same, to approximately 0.05 when the correlation
length in the observation error is increased to 1.0. The reduction in
RMSE for estimation of log-permeability is less because even noise-
free data do not carry a large amount of information for identifying
permeability.

3. Neglecting correlation in observation error

Although data with correlated observation errors may, in some
cases, have higher information content than similar data with uncor-
related observation errors, the extraction of the additional information
might be difficult with typical data assimilation methods that either
ignore correlations in observation error or deal with the correlations
in an approximate way, such as by thinning observations or inflating
the error. In general, two types of problems have been observed when
the correlations are neglected: biased estimates of parameters or predic-
tions, and overconfidence in results. If the off-diagonal elements of the
observation error covariance are not simply neglected, but the variance
is inflated or the data are thinned to compensate for the neglect of
correlations, the results are much more varied.

Stewart et al. (2006, 2008) report that ignoring correlations in
observation errors results in a loss of information. Of course, if relative
entropy is used to measure information content, then this finding
should not be surprising as it simply says that the posterior pdf is
sensitive to off-diagonal elements in 𝐂𝐷; when relative entropy is used
to measure information content any difference in the approximate pdf
from the correct pdf translates to a loss of information. When Shannon
entropy is used to measure loss in information content, however, it is
only the effect on the confidence intervals that is important. Cooley and
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Fig. 5. Summary of the effect of correlated observation errors on estimates of ln𝐾 and 𝑆𝑤. Each box and whisker summarizes results from 7 instances of the truth.
Christensen (2006) found that data assimilation using simple weighted
least squares in which 𝐂𝐷 was replaced by a diagonal approximation,
esulted in confidence intervals on predictions from calibrated ground-
ater models that were several times too small (overconfidence). In

ontrast, Tiedeman and Green (2013) reported that neglecting the
orrelations in observation errors caused both increases and decreases
f parameter variances.

The largest effect of neglecting correlations in observation error
s typically observed on estimates of small-scale features. When seis-
ic data are used to monitor fluid movement or to identify fluid

aturation fronts,2 the front itself may be a small-scale feature of
he flow. Rainwater et al. (2015) compared optimal data assimilation
sing the full observation error covariance matrix with an approximate
ethod of data assimilation that neglected off-diagonal elements of

he observation error covariance matrix for a linear data assimilation
roblem applied to a multiscale stochastic model. Inflating the variance
as able to provide reasonable estimates for large-scale errors, but

educed accuracy for small-scale features. Both Stewart et al. (2008)
nd Rainwater et al. (2015) noted that the effect of failure to account
or correlations in observation error can lead to poor estimates of
mall-scale features. Liu and Rabier (2002) concluded that a data
ssimilation scheme that neglects correlations in observation errors,
imits the usefulness of high-density observations. This conclusion will
pply to closely spaced seismic data, closely spaced formation test
ressure data, and to frequent production rate data.

2 A saturation front is a location at the interface between regions of much
ifferent saturations, such as might occur if water is used to displace oil.
6

3.1. Quantifying information loss

Similar to the definition of information content, we define the
information loss resulting from the use of a diagonal approximation
of 𝐂𝐷 as the Kullback–Leibler directed divergence (or relative entropy)
from the approximate posterior, 𝑝app, to the correct posterior, 𝑝po. If
both pdfs are approximated as Gaussian the information loss is

𝐷KL
(

𝑝po ∥ 𝑝app
)

=

difference in the mean
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
2

(

(�̄�app − �̄�po)T𝐂−1
𝑚,app(�̄�app − �̄�po)

)

+

difference in dispersion
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1
2

(

Tr
(

𝐂−1
𝑚,app𝐂𝑚,po

)

− 𝑘 + ln
(det 𝐂𝑚,app

det 𝐂𝑚,po

))

. (3)

Note that information loss can be attributed to bias in the mean
estimate (the first term) and to miss-estimation of the dispersion (the
second term). Computation of the determinant of large posteriori co-
variance matrices for model parameters will generally be problematic,
but low-rank approximations are feasible (Xu, 2007).

3.2. Numerical flow example

Using the same simplified version of the 4D seismic data assim-
ilation problem introduced in Section 2.3, we investigate the loss
of information resulting from an approximate treatment of the error
covariance matrix. In all experiments the observation errors are the
sum of two types of Gaussian errors: the first is independent errors
with standard deviation of 0.1, and the second is correlated errors
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with standard deviation 0.3 and correlation range 1.2. We numerically
examine the effect of ignoring the correlation in the observation errors,
but possibly inflating the variance of the diagonal elements in the
approximation to 𝐂𝐷. Results from the experiments for estimation of
ln𝐾 are summarized in Fig. 6. The smallest values of 𝜎𝐷 in Fig. 6
0.1) correspond to neglect of the correlated observation error. This
ould be a plausible value to use in data assimilation if an image
enoising approach was used to estimate the noise level (Olsen, 1993).
n that case, the low frequency contribution to the noise would not be
eparated from the signal. The red dashed line indicates the level of
ncorrelated noise that would be used if one were able to correctly
stimate the total noise (independent and correlated) but neglected
ff-diagonal terms in the observation error covariance matrix when
erforming data assimilation.

Madsen et al. (2017) argue that noise in certain seismic attributes
s usually correlated and that correctly accounting for correlations in
he noise is necessary for accurate inversion. They apply a hierarchical
ayesian inversion approach to estimation of the noise, which assumes
nowledge of the characteristics of the signal and the stationary noise
orrelation matrix, but not the variance of the noise. By estimating the
orrect total variance, they were able to avoid overfitting of results
nd obtain improved estimates of the posterior variance. Madsen et al.
2018) discuss in more detail why correlated (total) observation errors
ight occur in seismic data and the consequence of ignoring the

orrelation in seismic inversion.
The relative entropy for estimation of ln𝐾 from saturation data

with correlated observation errors is quite large if the off-diagonal
elements of 𝐂𝐷 are neglected. It can be reduced substantially, however,
by inflating the magnitude of the diagonal terms (Fig. 6a). It is not
possible to determine the reason for the reduction in relative entropy,
or the reason that the relative entropy remains relatively large at large
inflation, by examining only the values of relative entropy. However,
examination of the two components (difference in means (Fig. 6b) and
difference in dispersion (Fig. 6c)), shows that the reduction in relative
entropy is largely a result of the reduction in the error in the mean
estimate, measured with respect to the approximate covariance. Dis-
tance between approximate posteriori mean (neglecting correlations)
and ‘correct’ posteriori mean is reduced when the assumed observation
error is inflated. Note, however, that the difference is defined as follows

𝛥 ln𝐾 = (�̄�app − �̄�po)T𝐂−1
𝑚,app(�̄�app − �̄�po)

o the reduction may be a result of the increase in 𝐂𝑚,app, not to a re-
duction in the Euclidean distance between �̄�app and �̄�po. Consequently,
ven if the estimated mean was unchanged by inflation, the difference
ould appear to reduce as the variance in the observation error is

nflated. Inflating 𝐂𝐷 causes the difference between the approximate
osterior covariance for ln𝐾 and the correct posterior covariance to
ncrease (Fig. 6c).

In many cases, the estimation of saturation is of greater importance
han the estimation of permeability. We again look at the effect of ne-
lecting correlations in the observation errors and the effect of inflating
he approximate 𝐂𝐷, but this time focussing on the estimation of 𝑆𝑤.
ecall that the posterior samples of 𝑆𝑤 are obtained by running the
eservoir simulator on the posterior samples of ln𝐾 so that estimation
f ln𝐾 is still required. The effect of neglecting off-diagonal elements of
𝐷 on information content for the estimation of 𝑆𝑤 (Fig. 7a) is larger

han the effect on estimation of ln𝐾. Although inflation appears to be
eneficial in preventing information loss (and reducing the tendency
or overconfidence), the effect of variance inflation on the accuracy
f the estimation of saturation is negligible; when correlations in the
bservation error are neglected in the data assimilation, the RMSE in
he mean estimate of the saturation field is more than 2.5 times larger
han the error obtained using the full observation covariance and not
mproved at all by variance inflation (Fig. 7c).
7

3.3. Summary information loss

The numerical flow example with assimilation of saturation data
illustrated two effects of neglect of correlated observation errors: biased
estimates and overconfidence in estimation. Both effects result in loss of
information. We saw that it was possible to eliminate the tendency for
overconfidence by inflating the variance in the observation error, but
the RMSE measure of accuracy of the mean estimate did not improve.
Neglect of off-diagonal terms in 𝐂𝐷 has been reported to increase the
tendency for the uncertainty in parameters to be underestimated in
problems with model error (Brynjarsdóttir and O’Hagan, 2014; Vink
et al., 2015; Oliver and Alfonzo, 2018),

4. History matching with correlated observation error

4.1. Estimation of 𝐂𝐷

In the previous section, we saw that ignoring off-diagonal elements
of the observation error covariance matrix 𝐂𝐷 results in information
loss, which manifests itself as biased and overconfident estimation.
Inflation of the variance reduced the tendency for overconfidence, but
did not improve the quality of the mean estimate. Two challenges then
present themselves: how to use the correct observation error covariance
if it is known and how to estimate it if it is not known. We examine
how much information can be recovered by estimation of the full
approximate 𝐂𝐷 from the data and the model predictions, and how the
ull 𝐂𝐷 can be used efficiently in large models.

First, we note that it is not possible to estimate noise or observation
error in a single image without knowledge of the difference in the
characteristics of the signal and the noise. If, for example, the noise
is known to be uncorrelated and the variance stationary while the
signal is spatially correlated then the magnitude of the noise can be
effectively estimated (Olsen, 1993). Or, if the characteristics of the
signal covariance or the noise covariance are available, then a sensible
estimation of the other can be obtained from an image (Oppermann
et al., 2011). The situation with 4D seismic data is difficult in this
regard, as characterization of the covariance of the saturation signal is
challenging and very little information is available on the noise except
perhaps in regions of the formation where the signal is not expected to
occur.

It has been common to assume that the noise in the 4D seismic
data is either uncorrelated or has shorter correlation range than the
saturation signal when estimating the noise covariance for history
matching (Aanonsen et al., 2003; Emerick, 2016; Luo and Bhakta,
2017; Zhao et al., 2007), although this assumption does not appear
to be supported by other methods of estimation that used repeated
measurements in locations where no signal was expected (Abreu et al.,
2005; Alfonzo and Oliver, 2020; Nivlet et al., 2017). Alternatively,
the observation error covariance matrix can be estimated using data
mismatch statistics from before and after model calibration (Desroziers
et al., 2005). This statistic has been used both to select an optimal
inflation for diagonal approximations of 𝐂𝐷 (Li et al., 2009) and to
estimate an approximation of the full 𝐂𝐷 matrix (Miyoshi et al., 2013).
In those cases, the observation operators were linear and the data
assimilation scheme used was non-iterative. Oliver and Alfonzo (2018)
derived a residual statistic based only on the posterior data mismatch
statistics that can be used for iterative estimation of 𝐂𝐷.

In the approach described by Oliver and Alfonzo (2018), one must
specify a prior model for the model parameters and an initial guess for
the covariance of observation errors. The first guess will typically be
obtained using a filtering technique that assumes the observation errors
are uncorrelated. The estimated 𝐂𝐷 is then used to assimilate data,
resulting in an ensemble of synthetic data predictions that can then be
compared to the actual data. The process can be repeated and a new
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Fig. 6. Error in posterior pdf for ln𝐾 estimate measured by relative entropy, and components of relative entropy.
Fig. 7. Information loss for 𝑆𝑤 resulting from diagonal approximation of 𝐶𝐷 .
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estimate of 𝐂𝐷 produced. Using predicted data from the 𝑖th posterior
predictions, the (𝑖 + 1)th estimate of 𝐂𝐷 is estimated as

𝐂(𝑖+1)
𝐷 = (𝐝obs𝟏T − 𝐃(𝑖)

post )(𝐝obs𝟏
T − 𝐃(𝑖)

post )
T∕𝑁𝑒 (4)

where 𝐃 is the 𝑁𝑑 × 𝑁𝑒 matrix whose columns are posteriori samples
f the data and 𝟏 is the column vector of length 𝑁𝑑 , each of whose
lements are equal to 1. When the number of samples in the ensemble is
elatively small compared to the number of observations, the estimate
f 𝐂(𝑖+1)

𝐷 from Eq. (4) will benefit from some type of regularization.
nless there is reason to suspect that the variance is not stationary,

t is common to regularize the estimate by assuming that the obser-
ation error covariance depends only on the distance between the
bservations (e.g., Miyoshi et al., 2013; Alfonzo and Oliver, 2020).

Most data assimilation or history matching methods attempt to find
set of parameters 𝐦 that minimize an objective function containing a

erm of the form (𝐠(𝐦) − 𝐝obs)𝑇𝐂−1
𝐷 (𝐠(𝐦) − 𝐝obs), which adjusts values

of parameters 𝐦 in the model to be consistent with observations,
i.e. 𝐠(𝐦) ≈ 𝐝obs. When the number of data is large, it is common
to assume that 𝐂𝐷 is diagonal (i.e. that the observation errors are
independent), in which case computing the value of the objective
function is trivial. In some methods, such as the perturbed observation
form of ensemble-Kalman based data assimilation (Burgers et al., 1998;
Chen and Oliver, 2012), it is also necessary to generate perturbed
observations from the multivariate Gaussian distribution 𝑁[0,𝐂𝐷].

We illustrate the approach with application to the numerical flow
experiment introduced in Section 2.3. As in Section 3.2 we generate
saturation observations at four survey times with combined short and
long range correlations in the observation error. The white noise has
standard deviation 0.1; the correlated noise has standard deviation 0.3
and range 1.2 (dark blue curve in Fig. 8). Setting the initial guess for
𝐂𝐷 to be consistent with the white noise component of the observation
error (red curves in Fig. 8), the algorithm appeared to converge after
two iterations (black curves in Fig. 8). A third iteration did not change
the result substantially (green dotted curves). The experiment was run
a second time with a different realization of the true permeability and
a different realization of the observation error (Fig. 8b). Results in this
case were nearly identical to the first case (Fig. 8a).

The means of the ensemble of posteriori saturation realizations for
three of the iterative estimates of 𝐂 are shown in Fig. 9. The saturation
8

𝐷

plot on the left labeled ‘iter 0’ corresponds to the use of the initial
guess for 𝐂𝐷, which in our case we took to be diagonal. The estimated
saturation distribution obtained using a diagonal 𝐂𝐷 is similar in
appearance to the saturation estimate that would be obtained from
selection of a saturation front directly from the data (see the blue level
contour at bottom right in Fig. 2) – when correlations in observation
error are neglected it is not possible to distinguish correlated noise
from signal. After a single iteration for updating of 𝐂𝐷, the estimated
saturation mean (center of Fig. 9) is similar to the true saturation (top
right corner of Fig. 2).

We quantify the effect of iterative estimation of 𝐂𝐷 through com-
putation of relative entropy of the data for log-permeability and for
saturation. Fig. 10a shows the information loss when performing data
assimilation to estimate 𝑆𝑤 and ln𝐾 using an incorrect value of 𝐂𝐷
relative to a data assimilation that uses the correct 𝐂𝐷. The information
loss decreases dramatically following a single update (iteration 1) of the
estimate of 𝐂𝐷. Further iterations had almost no impact on information
content. The accuracy of the estimate os 𝑆𝑤 as quantified by RMSE also
showed a dramatic improvement after a single update of the estimate
of 𝐂𝐷 (Fig. 10b). In this case, continued iteration did result in a small
dditional decrease in RMSE to a value of 0.08. For comparison, the
alue of RMSE obtained when using the correct 𝐂𝐷 is 0.06. The fact
hat a large improvement in information content is obtained by a single
pdate to the estimate of 𝐂𝐷, and that the gains in subsequent updates

are relatively minor is consistent with the findings of Stewart et al.
(2013) and Bédard and Buehner (2020), both of whom report that it is
generally better to include an approximate correlation structure in 𝐂𝐷
than to incorrectly assume that the observation errors are independent.

5. Summary and recommendations

The results from history matching of 4D seismic data have generally
been disappointing — despite the clear benefits from 4D seismic mon-
itoring, 4D seismic data often appear to add little to predictability of
models (Oliver et al., 2021). The motivation for this investigation was
partially to determine possible reasons for the mismatch in expectation
for information and experience and to investigate if the apparent lack
of information could be a consequence of choices in history matching
methodology.
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Fig. 8. Iterative estimation of 𝐂𝐷 using Eq. (4). Each curve shows the estimated observation error covariance (y-axis) as a function of spatial separation between data point
locations (x-axis). The numerical experiment was performed several times with different random seeds to verify repeatability of results. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Improved estimates of water saturation at time 1 from iterative estimation of 𝐂𝐷 . The first plot (iter 0) uses the initial guess for 𝐂𝐷 .
Fig. 10. Increase in information content (relative entropy) and improvement in accuracy of estimated saturation resulting from iterative estimation of 𝐶𝐷 .
Information content in data can be measured a number of ways. We
focussed on the use of relative entropy (also known as the Kullback–
Leibler divergence) to measure information content in the data. When
defined this way, any change in the parameter pdf from the prior to the
posterior due to the assimilation of data results in positive information
content. Since the relative entropy is measuring the change in the
probability distribution, the same data may have different information
content for estimation of different quantities. We examined informa-
tion content for estimation of log-permeability and for estimation of
9

saturation at a specific forecast time. Although correlated observation
errors are often assumed to reduce information content, we found that
information content in densely spaced saturation data is not necessarily
reduced when the observation error is spatially correlated. Specifically,
we found in our numerical experiments that if observation error is
correctly characterized and correctly used in assimilation, information
content is lowest when the signal and the observation error have
similar length scales so that the two are difficult to separate. Highest
information content occurs when the scales of error and permeability
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field are very different. Large range correlation error in observations
is not harmful to saturation estimation if the correlation errors are
correctly characterized and handled correctly in the data assimilation

On the other hand, information is reduced if actual correlations are
neglected in data assimilation. The result is incorrect estimates of the
variable mean and poor quantification of uncertainty. One common
approximate approach to dealing with correlated observation errors
is to inflate the variance, but ignore correlations. For dense spatial
data like 4D seismic data, inflation of the observation error is not
equivalent to data assimilation that accounts correctly for correlations
in observation error. Inflation of variance in the observation error
covariance matrix reduces the tendency to be overconfident, but may
not improve mean estimates when errors are correlated.

It is not possible to estimate correlated observation errors directly
from an image without characterization of statistics of the signal, which
in the case of time-lapse saturation observations must be obtained
from the model. We showed that the total observation error (measure-
ment error plus modeling error) for saturation could be estimated by
comparing actual observations to the posterior ensemble of saturation
predictions. Iterative estimation of 𝐂𝐷 greatly improves the estimate of
he saturation and the quantification of uncertainty with corresponding
ncrease in information content in the data. Extracting large amounts
f information from the observed saturation data was possible, even
hen the noise level was fairly large. It did require, however, that the

orrelation length for the noise was much longer than a characteristic
cale of the saturation distribution and that it was properly estimated.
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