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ABSTRACT

Modern geosteering is heavily dependent on real-time interpre-
tation of deep electromagnetic (EM) measurements. We have de-
veloped a methodology to construct a deep neural network
(DNN) model trained to reproduce a full set of extra-deep EM
logs consisting of 22 measurements per logging position. The
model is trained in a 1D layered environment consisting of up
to seven layers with different resistivity values. A commercial
simulator provided by a tool vendor is used to generate a training
data set. The data set size is limited because the simulator
provided by the vendor is optimized for sequential execution.

Therefore, we design a training data set that embraces the geo-
logic rules and geosteering specifics supported by the forward
model. We use this data set to produce an EM simulator based
on a DNNwithout access to the proprietary information about the
EM tool configuration or the original simulator source code. De-
spite using a relatively small training set size, the resulting DNN
forward model is quite accurate for the considered examples: a
multilayer synthetic case and a section of a published historical
operation from the Goliat field. The observed average evaluation
time of 0.15 ms per logging position makes it also suitable for
future use as part of evaluation-hungry statistical and/or Monte
Carlo inversion algorithms within geosteering workflows.

INTRODUCTION

Recovering sparse hydrocarbon resources requires precise posi-
tioning of a well in a subsurface environment burdened by uncer-
tainties. The process of dynamically changing the angle of a well
based on measurements acquired and transmitted in real time (RT)
from logging while drilling tools is commonly called geosteering.
The most useful and used measurements for geosteering are electro-
magnetic (EM) measurements, which combine reliability with deep
sensitivity (depth of investigation). The current generation of extra-
deep EM tools (also referred to as ultra-deep EM) can detect remote
boundaries up to 60 m away from measurement location (Wu et al.,
2019), and recent publications have also revealed sensitivity ahead
of bit (Larsen et al., 2018).

Taking advantage of such logging instruments requires automated
workflows. Traditionally for EM logging, deterministic inversions
are used (Sviridov et al., 2014; Pardo et al., 2015). Such processes
require the solution of possibly thousands of forward problems under
strict time constraints (Pardo et al., 2015; Shahriari et al., 2018).
However, deterministic inversion suffers from nonuniqueness of
the solutions (Shahriari et al., 2020c).
To reach high-quality geosteering decisions, it is convenient to

use statistical (Bayesian) interpretation, which provides uncertain-
ties (Kullawan et al., 2014). Bayesian workflows for updating geo-
models while drilling provide promising results in synthetic testing
(Chen et al., 2015; Luo et al., 2015; Alyaev et al., 2019). At the
same time, adequate uncertainty representation may require up to
100,000 forward simulations per logging position (Dupuis and
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Denichou, 2015). In contrast to simulation software developed in
the academic environment (Davydycheva et al., 2014), many
existing commercial forward models have limited parallel execution
capabilities. Moreover, due to the proprietary nature of the codes,
they cannot be easily reimplemented for parallel execution. Thus,
direct access to service companies’ forward models remains a cru-
cial element for field implementations of statistical interpretation
workflows (Hermanrud et al., 2019), limiting access to Bayesian
interpretation to the largest tool and service providers. It is desirable
to make Bayesian interpretation accessible also to (1) operators, for
geologic interpretation based on their unique knowledge of the
geology of the field, which are of utmost importance for reducing
uncertainties, (2) academic experts for accelerating the development
of data-driven interpretation methods, and (3) smaller service com-
panies for the development of new interpretation and geosteering
workflows.
Machine learning (ML) can approximate the physical simulators

based on data alone and are faster than most high-fidelity models.
Deep neural networks (DNN) (He et al., 2016; Higham and Higham,
2018) have during the past few decades proven their unique ability to
overcome essential challenges in various fields of science and tech-
nology (Bhanu and Kumar, 2017; Lu et al., 2017; Yu and Deng,
2017). Analogously, the research of DNN and ML techniques have
also increased tremendously in the past few years in petroleum en-
gineering and computational geophysics (Aulia et al., 2014; Hegde
et al., 2015; Bougher, 2016; Lary et al., 2016; Araya-Polo et al.,
2017; Bize-Forest et al., 2018; Ge et al., 2019; Puzyrev, 2019; Chen
and Zhang, 2020; Colombo et al., 2020; Moghadas, 2020; Shahriari
et al., 2020b; Zhu et al., 2020). Recently, there have been several
noteworthy works aimed at well-log approximation: He and Misra
(2019) use a neural network to predict missing dielectric dispersion
logs from available logs. Shahriari et al. (2020a) and Kushnir et al.
(2018) use a DNN to approximate the forward problem for a 1D
medium. Because the forward problem is continuous and has a
unique solution, the approximations deliver acceptable accuracy
but have certain limitations. The model in Shahriari et al. (2020a)
is restricted to only three layers. Kushnir et al. (2018) approximate
a more complex 2D model with a geologic fault but only consider
traditional deep azimuth measurements (above 400 kHz) acquired
with shorter (up to 1.0 m) spacing instruments.
We present the full set of extra-deep RT EM logs consisting of 22

measurements per logging position with a DNN. To take full advan-
tage of the depth of investigation, we train the model to respond to
up to seven layers (three above and three below the logging instru-
ment). For the training (offline) phase, we generate a data set using a
commercial simulator software (Sviridov et al., 2014) that offers no
access to the source code. Critical to the success of the proposed
methodology is the design of a relatively small application-specific
and geologically consistent training data set, for which we demon-
strate that it yields accurate approximation in the modeled geosteer-
ing scenarios. For simplicity, we restrict our focus to isotropic
resistivities and a logging instrument direction that is near parallel
to the layering. However, a generalization to different directions and
anisotropic formations is straightforward.
In this work, we create a scalable EM simulator that is suitable for

cluster deployment without having access to the source code of the
software or the EM tool configuration. One crucial advantage of the
proposed data-driven simulator is its capability of performing more
than 5000 forward evaluations per second during the execution

(online) phase. In addition, the resulting DNN software overcomes
limitations posed by certain commercial simulators that use graphi-
cal user interfaces, which prevent their massive parallel execution
when using Markov chain Monte Carlo inversion methods.
The paper is organized as follows. We first discuss the forward

model and data generation procedures for realistic EM logs. We
then describe our selected DNN architecture. Finally, we present
our numerical results and draw our conclusions.

FORWARD MODEL AND TRAINING SET
GENERATION

We approximate the responses of the extra-deep EM tool using a
DNN. To establish the DNN model, we need a training data set. In
our case, we generate the data set using a high-fidelity physics-
based simulator with software provided by the tool vendor. Sviridov
et al. (2014) describe the vendor’s forward EM simulator, which
reproduces log responses in a layered medium with arbitrary orien-
tation of layers relative to the tool direction (the well angle). Here,
we treat the forward simulator as an unknown function F . In the
following, we describe its inputs and outputs.

Model inputs

In our study, we use the inputs native to the simulator with some
assumptions to reduce the input space for the sake of training effi-
ciency. We encode a total of seven layers (three above and three
below the logging position layer), which is a number often used
for practical purposes that is related to the look-around capabilities
of the logging instrument. For each layer, the input contains the
location of the boundary between layers relative to the measurement
point (six variables — the top and bottom layers are considered
to be of infinite thickness) as well as the resistivities parallel and
perpendicular to the layer (7 × 2 variables). In addition, we encode
the local geometry of the well by two angles. The first angle is the
relative angle between the tool and the downward-pointing normal
of the layered model. The second angle is the relative angle of the
well 20 m ahead of the receiver. The interpolation between the an-
gles defines the appropriate positions of the tool’s transmitters re-
quired for the computation. In total, this parameterization of the
model gives 22 input variables that we denote as vector P ∈ R22.

Synthetic logs/model outputs

The model outputs/the synthetic logs are in the same format as
the logging instruments during a drilling operation. Figure 1 shows
schematic of the instruments. Depending on the tool configuration,
there can be up to 22 individual measurements used for RT inver-
sion: four shallow apparent resistivities and nine pairs of deep direc-
tional measurements. We train the DNN to reproduce all of them.
Assuming no azimuth (sideways) angle, we can replace the value-
angle pairs of the directional measurements by projecting the direc-
tional measurements to the vertical axis, yielding one signed num-
ber. This gives a total of 13 values in the output, which we denote by
M ∈ R13. Table 1 summarizes the mnemonics used in the paper.
The RT logs are grouped in three categories:

1) The group of logs denoted as RT compensated resistivity
(CRES) represent the traditional resistivity logs included in
the deep EM tool (see Figure 1a). The measurements are pro-
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duced from two transmitter-receiver groups T1 → R2, R1 and
T2 → R1, R2 with the symmetric resistivity compensation
(Larsen et al., 2019). The phase difference and attenuation of
the signals are recorded at 2 MHz and 400 kHz (see Table 1).
These nonazimuthal measurements have a sensitivity up to
5.0 m radial distance from the logging instrument (Meyer et al.,
2008). The measurements are transformed into apparent resis-

tivities (in ohm·m) using corrections described by
Meyer (1999).

2) The group denoted as RTARSLLM is an azimuthal measurement
produced from the deep resistivity logging instrument between
two transmitter-receiver pairs T2 → R3 and T1 → R4 operating
at 400 kHz (see Figure 1a). The sampled voltages are processed
internally in the tool using standard symmetric compensation and

provide signal strength and a target direction,
which implies the excess of conductivity in
the EM environment around the transmitter-
receiver coil (Meyer et al., 2008; Fang et al.,
2010). In a 1D environment, the maximum
signal is always oriented in the direction of
the layering. Thus, we omit the angle and
use the signed value of the signal. The
processing provides real and imaginary com-
ponents, which are presented in nanovolts
(nV). Here, we only model the imaginary
component, which is more useful for geosteer-
ing, and it is provided in RT.

3) The extra deep EM tool (see Figure 1b) op-
erates at frequencies of 20 and 50 kHz and
deploys a set of synchronized receivers
and two transmitters, one which is cross-ori-
ented for acquiring the azimuthal compo-
nents (Hartmann et al., 2014; Larsen et al.,
2015). Its inputs are denoted as RT EDAR

Figure 1. The schematic of the EM downhole tools modeled in this paper. The “Deep”
EM tool operates at 2 MHz and 400 kHz, whereas the “Extra Deep” EM tool operates at
20 and 50 kHz. The transmitters and receivers are denoted with T and R, respectively.
The horizontal lines indicate coaxial coils, whereas the vertical lines indicate transverse-
oriented coils.

Table 1. Description of mnemonics of the signals used in the paper.

Mnemonics’ meanings

Mnemonic Tool T → R Description Units Frequency

RT_CRES_RPCEHX Deep T1 → R1, R2, T2 → R1, R2 AR: phase difference, cor/com ohm m 2 MHz

RT_CRES_RACEHX Deep T1 → R1, R2, T2 → R1, R2 AR: attenuation, cor/com ohm m 2 MHz

RT_CRES_RPCELX Deep T1 → R1, R2, T2 → R1, R2 AR: phase difference, cor/com ohm m 400 kHz

RT_CRES_RACELX Deep T1 → R1, R2, T2 → R1, R2 AR: attenuation, cor/com ohm m 400 kHz

RT_ARSLLM Deep T2 → R3, T1 → R4 AMS: imaginary, com *nV 400 kHz

RT_DTK_ATC50X Extra Deep Tz → R1, R2 PR: attenuation, com *dB 50 kHz

RT_DTK_PDC50X Extra Deep Tz → R1, R2 PR: phase difference, com *degree 50 kHz

RT_EDAR_ImV50k Extra Deep Tx → R2 AMS: imaginary, com *nV 50 kHz

RT_EDAR_ReV50k Extra Deep Tx → R2 AMS: real *nV 50 kHz

RT_DTK_ATC20X Extra Deep Tz → R1, R2 PR: attenuation, com *dB 20 kHz

RT_DTK_PDC20X Extra Deep Tz → R1, R2 PR: phase difference, com *degree 20 kHz

RT_EDAR_ImV20k Extra Deep Tx → R2 AMS: imaginary *nV 20 kHz

RT_EDAR_ReV20k Extra Deep Tx → R2 AMS: real *nV 20 kHz

The corresponding schematics of the Deep and Extra Deep tools can be found in Figure 1. Here, measurements marked with a star are scaled to nondimensional units and the ± sign
is used to distinguish the up or down direction of the maximum signal for AMS measurements.
AR, apparent resistivity (nonazimuthal); AMS, azimuthal maximum signal; PR, propagation resistivity (nonazimuthal); “cor”, borehole correction and correction from the complex refractive

index method; “com”, compensation using extra recievers; RT, transmitted in real time; Ti, transmitter; “i”: its id on the tool schematic; and Ri, reciever; “i”: its id on the tool schematic.
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and RT DTK for the azimuthal (Tx to R2) and nonazimuthal (Tz
to R1 and R2) components, respectively. For EDAR, the signals
are provided in nV and we use the ± sign to distinguish the
maximum signal direction. For DTK, the data from the two
receivers of the nonazimuthal signal are used to compensate
for any receiver sensitivity variation using special design and
proprietary technologies (Larsen et al., 2019); the raw signal
in decibel (dB) is used.

Ground truth data set

The ground truth data set for this study is generated by an auto-
matic workflow. For each input, we first select a random realization
of inputs following the rules described below. Then, an AutoIt script
(Bennett, 1999) executes the proprietary modeling tool for the se-
lected input models, which produces noise-free logs with the same
preprocessing that is used in the logging tool.
For this study, we restrict our focus to the angle range that is

most important for geosteering in near-horizontal layering: 80°–
92°, where 90° means drilling parallel to the layers. We assume
that the well trajectory is straight around the measurement point,
meaning that no bending in the logging instrument occurs and the
transmitters have the same orientation as the receivers. Thus, the
two angle parameters are equal. All inner layers in all models have
thicknesses uniformly distributed between 0.3 and 20.0 m and
rounded to 0.1 m. In addition, for simplicity, we restrict our study
to isotropic resistivities.
The initial training data set containing 22,469 samples consists of

a generic layered medium with uniformly distributed resistivities in
the logarithmic scale, yielding values between 1 and 122 ohm·m for
each of the layers (see Figure 2a).
Then, we enrich the training data set with 50,492 additional sam-

ples containing alternating sand-shale layers that better capture the
variety in high contrasts rather than small heterogeneities across the
layers. The ability to produce accurate predictions in such high-con-

trast scenarios is essential and of great value during geosteering op-
erations, so the ML model must be trained with a large number of
samples to improve its quality for this specific geologic scenario.
For that, we consider different sand-shale sequences typical to,
e.g., fluvial reservoirs (Larsen et al., 2015), where the shales resis-
tivities are in the range of 0.9–4.1 ohm·m and the sand resistivities
are in the range of 49.4–221.4 ohm·m. Within these ranges, resis-
tivities are randomly sampled in the logarithmic scale. We consider
two cases with respect to the nature of the middle (logging position)
layer. In the case in which the logging position is in a sand (see Fig-
ure 2b) we generate 25,203 samples with seven alternating layers. In
the case in which the logging position is in a shale (see Figure 2c) we
generate 25,289 samples with five alternating sand-shale layers. Be-
cause the sensitivity to the outermost (first and seventh) layers is very
low, the model is simplified to only five layers in this scenario. We
implement this by imposing that the two top layers share their elec-
trical properties. The same is imposed on the two bottom layers (see
Figure 2c). The total of 72,961 samples described above comprise
what we call the basic data set Db.
Early numerical experiments revealed that the data set dominated

by alternating sand-shale layers lacks the data needed to accurately
approximate the measurements in thick shale, which is typical when
approaching a reservoir. Therefore, the data set is augmented with
11,709 samples of “semidegenerate” sand-shale layering. This part
of the data set is generated with the same rules as the high-contrast
layers, but for each sample a random number of layers near the top
or bottom were assigned the resistivity of the first and seventh layer,
respectively. The logging position layer always maintains an inde-
pendent resistivity. The final extended data set, denoted De, con-
tains 84,599 input-output pairs. We denote the ith input-output
pair (sample) as ðPi;MiÞ ∈ R22 × R13.
The extremely high values of the apparent resistivities near the

layer boundaries (often called “horns”) are truncated by the simu-
lator to 2000 ohm·m. Our experiments indicate that removing such
samples from the data set provides a better fit of the final results.

The remaining 78,877 samples are split into
training (80%), validation (10%), and testing
(10%) data sets. Testing samples are unused dur-
ing training, and they are used only for quality
assessment of the model in the “Crossplots” sub-
section.

DEEP-LEARNING APPROACH

In this work, we design a DNN-based approxi-
mation Fw (where w stands for the finite set of
weights) of the forward function F . In the fol-
lowing, we describe the ML algorithm including
its rescaling, loss function, architecture, and
training process.

Rescaling the data

To equalize the effect of each component of the
training data set during the optimization process,
we build a min-max linear rescaling over each var-
iable. Note that for input and output variables rep-
resenting resistivities, we take the logarithm prior
to rescaling. We denote these rescaling functions
and their inverses as

Figure 2. Geologic model schematics. The measuring position denoted by a dot with a
well direction arrow is located in the middle layer. (b) Sand as the middle layer. (c) Shale
as the middle layer.
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Ψp≔fΨ1
p :::;Ψ

p
pg; Ψm≔fΨ1

m :::;Ψm
mg;

Ψp∶ðRpÞ→ ½0.5;1.5�p; Ψm∶ðRmÞ→ ½0.5;1.5�m;
P0
i¼ΨpðPiÞ; M0

i¼ΨmðMiÞ;
Pi¼Ψ−1

p ðP0
iÞ; Mi¼Ψ−1

m ðM0
iÞ; (1)

where p andm are the number of variables (components) in P andM,
respectively.
The functional approximation of the forward model Fw consists

of the rescaling introduced in equation 1 and the DNN relation be-
tween rescaled inputs and outputs ~Fw, which can be defined
as

FwðPÞ ¼ Ψ−1
m M 0 ¼ Ψ−1

m ½ ~FwðP 0Þ�; (2)

where M 0 is the rescaled DNN approximation of the output.

Loss function

We want the DNN approximation to satisfy FwðP 0
i Þ ≈M 0

i for all
ðP 0

i ;M
0
i Þ ∈ S 0

t ∪ S 0
v.

Therefore, we select the following loss function:

Lð ~FwðP 0
i ;M

0
i ÞÞ ¼ k ~FwðP 0

i Þ −M 0
ik1; (3)

where kk1 is the l1 norm.

Architecture

We use the architecture shown in Figure 3:

~Fw ≔ Lw5
∘ B4

w4
∘ B3

w3
∘ · · · ∘ B0

w0
; (4)

where ∘ is the function composition operator defined as
f ∘ gðxÞ ≡ fðgðxÞÞ. In the above, w ¼ fwi; i ¼ 0; : : : ; 5g are the
weights (unknowns) of the DNN. Then, the blocks of the DNN
are defined as

Bi
wi

≔ ðn ∘ lcw2
i
þ IÞðn ∘ lcw1

i
Þ ∀ i ∈ f0; 1; : : : ; 4g;

Lw5
≔ ðn ∘ ldw2

5

∘ R ∘ n ∘ ltw1
5

Þ; (5)

where wð·Þ ¼ fw1
ð·Þ; w

2
ð·Þg are the weights, I is the identity operator,

and the function lcwi
is a convolutional layer with its kernel size

equal to three and its filter size being 40 × i. A convolutional layer
extracts the most salient features of its inputs, whereas it is computa-
tionally more efficient than a fully connected layer. The blocks men-
tioned above resemble a residual block, which enhances
convergence and maximizes numerical stability.

Figure 4. History of decrease of (a) mean absolute
and (b) mean squared error during training.

Figure 3. (a) Sketch of the DNN architecture
composed by the addition of five blocks of type
B and one block of type L. (b) Architecture sketch
of B-type block. (c) Architecture sketch of L-type
block.

Extra-deep EM logs using a DNN E273

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/86/3/E269/6365158/geo-2020-0389.1.pdf
by Norwegian Research Centre NORCE user
on 05 June 2024



Figure 5. Crossplots of the predictions on test data
versus physical simulation for shallow resistivity
logs. Resistivity estimated from (a) phase differ-
ence and (b) attenuation at 2 MHz frequency
and (c) phase difference and (d) attenuation at
400 kHz frequency. T1 → R2 and T2 → R1 pairs
are used (see Figure 1a and Table 1). Note the log-
arithmic scale.

Figure 6. Crossplots of the predictions on test data
versus physical simulation for the azimuthal extra-
deep measurements in nV: 50 kHz (a) imaginary
and (b) real and 20 kHz (c) imaginary and (d) real.
Tx → R2 pair is used (see Figure 1b and Table 1).
The measurements’ scales have been normalized
to nondimensional units.
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The terms ld and lt are fully connected layers, which perform the
final feature extraction and downsample the output to the required
output dimensions. The term R is a function that reshapes its input
behind the last layer, and n denotes the activation function. An acti-
vation function is a known simple nonlinear function applied on its
vector input component wise, e.g., a sigmoid or a rectified linear unit
(ReLU). In this work, we consider the so-called ReLU activation
function:

nðx1; :::;xrÞ¼ðmaxð0;x1Þ; :::;maxð0;xrÞÞ: (6)

Training

The described architecture with depth N ¼ 5 gives a total of
462,453 trainable parameters, also known as weights, which are de-
termined by minimizing the misfit on the training data set. This
number of weights is sufficiently large to ensure good-quality re-
sults. Smaller architectures are probably possible (e.g., Zhang et al.
[2017] advocate limiting the number of weights in classification
problems, although such theoretical results are not directly appli-
cable here). The use of a large number of weights may lead to over-
fitting problems. To prevent that, we evaluate our DNN over the
validation data set after each epoch to assess the quality of
generalization. The training is terminated when the error on the
validation data set stops decreasing.

After successful training of the DNN offline, the process of com-
puting the forward function during RT online operation reduces to
evaluating a DNN. The online evaluation only requires several sim-
ple algebraic operations proportional to the number of weights, and
it is computationally very fast.

Figure 7. Crossplots of the predictions on test data
versus physical simulation for the nonazimuthal
extra-deep measurements: (a) attenuation, dB
and (b) phase difference, degrees for 50 kHz
and (c and d) for 20 kHz. Tz → R1 and Tz →
R2 pairs are used (see Figure 1b and Table 1).
The measurements’ scales have been normalized
to nondimensional units.

Figure 8. A cross-plot of the predictions on test-data vs physical
simulation for the Deep 400 kHz azimuthal imaginary log. T1
→ R4 and T2 → R3 pairs are used, see Figure 1a and Table 1.
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NUMERICAL RESULTS

In this section, we present a numerical verification of the meth-
odology. First, we provide the details of the used training setup.
Then, we verify the fit on the testing data set, which was excluded
from training data and stopping criteria. After that, we test the DNN
model on an independent synthetic example inspired by real geo-
steering operations in layer-cake geology. In this synthetic example,
we also compare the performance of another DNN model trained on
a smaller data set Db that does not cover all scenarios from the
synthetic example. Finally, we show that the trained DNN model
provides sufficiently accurate results for a realistic case from the
Goliat field.

Training setup

We train our DNN over multiple epochs on the training data set
from the extended data set De and batch size equal to 512. We use

the default settings of the Adam optimizer (Kingma and Ba, 2015)
in TensorFlow (Abadi et al., 2015). Then, we use the validation data
set for early stopping to prevent overfitting using the standard Ear-
lyStopping callback in TensorFlow with the patience (the amount
of epochs without decrease of the loss for the validation data
set) set to 800. Figure 4 shows the reduction of training and vali-
dation errors. The early stopping was triggered after 11,745 epochs
with the total training phase taking approximately 13 h on a con-
sumer-grade GPU (RTX 2080ti). We use the weights obtained at
epoch 10,946 to produce the verification results in the rest of this
section.

Crossplots

Although the training/validation data sets ensure that the model
approximates the simulator reasonably well, they do not ensure that
the model will generalize to other data points. Nor does the average
error explain how well different measurements are reproduced.
Figures 5, 6, 7, and 8 present the data fit for all the 13 modeled

RT measurements. The crossplots show deviation of the predictions
from the original high-fidelity forward model. The straight 45°
diagonal corresponds to the perfect fit. To give a numerical estimate
of the quality of the fit, we compute the coefficient of determination
r2 for each of the measurements.
The evaluation on the test data gives the r2 coefficient of 0.99

and above demonstrating a well converged model. One can observe
that the DNN delivers a better data fit for shallow logs (Figure 5)
than for deeper nonazimuthal measurements (see Figure 7). One
explanation can be that these logs can be well approximated
with a weakly nonlinear averaging, which a DNN can easily pick
up.

Synthetic example

To give an engineering insight into the quality of the model, in
this section we generate a synthetic log for all measurements in a
layer-cake environment for a near-horizontal well. The well trajec-
tory and the horizontal layer-cake geomodel are presented in
Figure 9. The log was sampled with a point each meter along
the measured depth of the well, yielding a total of 901 logging
positions.
This example represents a reasonably typical task for a predictive

model in a RT operation. Therefore, it is important to verify the
DNN’s capability to provide quick and accurate results for such
a setup.
The DNN is evaluated on a workstation running Intel Xeon

W-2155 CPU with 10 3.30 GHz cores. For the full range
of 901 logging positions along the well, the evaluation takes
0.13 s, that is, 0.15 ms per logging position, which should suffice
even for the most demanding RT inversion algorithms. The p
erformance results are similar to those reported in Kushnir
et al. (2018).
In Figures 10, 11, 12, and 13, we compare the logs

obtained from the original physical simulation versus those
predicted by the trained DNN. All plots qualitatively coincide ex-
cept for some small discrepancies appearing near the layer in-
terfaces.
Because the example is generated separately from the training

data set, it potentially contains combinations of values of angles,
resistivities, and depths that may not be present in the training set.

Figure 10. A comparison of ML-based vs physical approximations
of this log for the realistic test case in Figure 9. T1→ R4 and T2→
R3 pairs are used, see Figure 1a and Table 1. The measurements’
scale has been normalized.

Figure 9. The well trajectory and layer resistivities for the realistic
log example in measured depth versus true vertical depth coordinates.
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Figure 12. A comparison of ML-based versus
physical approximations for the azimuthal extra-
deep measurements in nV: 50 kHz (a) imaginary
and (b) real and 20 kHz (c) imaginary and (d) real.
Tx → R2 pair is used (see Figure 1b and Table 1).
The measurements’ scales have been normalized
to nondimensional units.

Figure 11. A comparison of ML-based versus
physical approximations for shallow resistivity
logs on the realistic test from Figure 9. Resistivity
estimated from (a) phase difference and (b) attenu-
ation at 2 MHz frequency and (c) phase difference
and (d) attenuation at 400 kHz frequency. Note the
logarithmic scale.
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Specifically, we observe pronounced inconsistencies before the
landing in the reservoir for the deeper nonazimuthal logs (see Fig-
ure 13). This might have several explanations. First, there may be an
ambiguity of layer thicknesses when a degenerate model (contain-
ing fewer layers) is converted to a seven-layer model during training
and evaluation. Consequently, the measurements that have learned
sensitivity to more layers are affected the most. Second, the training
data contain a relatively low number of samples in thick shale above
a reservoir. To that end, it is important to ensure that the model im-
proves with the availability of relevant training data that better span
the possible configurations.
In addition, Figure 13 shows the synthetic logs created by the

same DNN architecture, which was trained on the smaller basic
data set Db, which completely omits the semi-degenerate samples
that mimic the drilling in thick shales above reservoir. The results in
the initial 150 m measured depth (MD) in these attenuation logs are
clearly misrepresented by the DNN trained on the smaller data set.
We also observe a mismatch on other deep measurements, but it is
less pronounced compared with the attenuation logs. This improve-
ment indicates that the proposed architecture is suited for practical
logging scenarios, and that the model quality improves with addi-
tional training data relevant for examples at hand. At the same time,
increasing the training data set might be insufficient. We emphasize
that to get high-quality data-driven approximations for this exam-
ple, we designed a data set that captured the logging in thick shale
layers.

Goliat field example

To further verify that the resulting DNN can generalize, in this
section we consider an example from the Goliat field in the Barents
Sea. This fluvial formation of Middle Triassic age is characterized
by a prograding delta front environment (Larsen et al., 2015). We

Figure 14. A layer-cake approximation of the geology near the
well-landing point for well A from Larsen et al. (2015). The earth
model and the well trajectory have been rotated five degrees to make
the layering horizontal; here, MD 1000 corresponds to x000 in the
published inverted model.

Figure 13. A comparison ofML-based versus physi-
cal approximations for the nonazimuthal extra-deep
measurements: (a) attenuation, dB and (b) phase dif-
ference, degrees for 50 kHz and (c and d) for 20 kHz.
Tz→ R1 and Tz→ R2 pairs are used (see Figure 1b
and Table 1). The measurements’ scales have been
normalized to nondimensional units. The figures also
show a DNN approximation based on the basic data
set.
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select a section of the earth model that has no significant 2D
features between MD x000 and x105 (see Figure 8 in Larsen
et al., 2015). Therefore, we approximate it by a 1D model (see
Figure 14). As before, in this study, we do not consider
anisotropies.
Figure 15 compares the simulation of six representative logs us-

ing the original commercial simulator and its DNN approximation
for the considered Goliat field example. The results for the synthetic
layered case from the previous example (see Figures 10, 11, 12a,
13a) are of superior quality compared with those in Figure 15. How-
ever, for the synthetic case, we have extended the original basic
data set with samples covering the problematic areas. This example
highlights that the results achieved with no tuning of DNN or train-
ing data set still exhibit acceptable accuracy also for field cases. The

accuracy is specifically good for shallow logs
that exhibit smaller depths of investigation. As
in the previous example, we expect that further
tailoring the data set to the geology at hand
should improve the accuracy.

CONCLUSION

In this work, we have demonstrated that a
DNN can provide a high-quality approximation
to a complex, industry-quality forward model for
extra-deep EM logs used in modern geosteering
operations. The DNNwas trained using data gen-
erated with a numerical simulator provided by
the logging instrument vendor but without access
to or knowledge of its source code or the configu-
ration of proprietary tools.
We considered a relatively small data set com-

posed of 63,122 samples to train a high-dimen-
sional function Fw∶R22 → R13. By making the
data set geologically consistent and application
oriented, we produced a good approximation
to the relevant logs acquired during a simulated
geosteering operation on a synthetic case and his-
torical well from the Goliat Field. At the same
time, our numerical examples show that the
approximation works best within the regions that
are well represented by the training data set.
Therefore, an extension of the data set with ex-
pected geologic configurations is recommended
to maximize performance in each specific geo-
steering operation. Future extensions include
considering lower angles typical for well land-
ing, anisotropic resistivities, and more complex
geologic configurations.
We assert that data-driven approximations as

the one presented in this work are of crucial im-
portance when it comes to future implementa-
tions of advanced inversion and interpretation
workflows. The workflows based on a DNN
no longer require extra implementation on the
side of the instrument vendor and hence become
accessible to wider range of independent compa-
nies and researchers. In addition, the resulting
DNN forward model can be rapidly evaluated

(in our work, it takes 0.15 ms to evaluate all logs per logging posi-
tion on a regular workstation). Such short execution times open the
door for potential use as part of evaluation-hungry statistical and/or
Monte Carlo inversion algorithms.
Future work toward the inversion will include a study of the DNN

performance with noisy data as well as tailoring of bias correction
algorithms for the ML. Such studies will help to distinguish un-
handled geologic complexity from biases and inaccuracies gener-
ated by the ML algorithms.
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