
1.  Introduction
Flood risks are predicted to increase under global warming, affecting people's health, environment, and 
socio-economic activities (Arnell & Gosling,  2016; Gu et  al.,  2022). Flood prediction uses a flood physical 
solver to estimate two-dimensional maps of flood-related quantities of interest, including the Flood Extent and/or 
the flood Hazard Rating (HR) that can be further used to assess impacts from the velocity magnitude (Kreibich 
et  al.,  2009; Nkwunonwo et  al.,  2020; Shirvani et  al.,  2021; Shirvani & Kesserwani,  2021). A deterministic 
flood physical solver does not account for the variability inherent in the input variables, due to measurement 
error uncertainty, which might lead to suboptimal decisions in flood management and mitigation strategies 
(Di Baldassarre et al., 2010). Probabilistic flood modeling has therefore become standard to propagate the vari-
ability in the input variables into the output quantities of interest. Probabilistic flood modeling can involve vari-
ability in many input variables, non-smooth responses in any of the simulated quantities of interest, which could 
lead to statistical distributions that are hard to capture such as discrete distributions with multiple modes (Aitken 
et al., 2022; Beevers et al., 2020; Shaw et al., 2021).

Ideally, an uncertainty quantification (UQ) framework involves experimental observations to first model the 
uncertain data (e.g., using the Generalized Likelihood Uncertainty Estimation (GLUE) (Beven & Binley, 1992) 
and Bluecat (Koutsoyiannis & Montanari, 2022)). The present UQ analysis framework assumes forward propa-
gation of Type-B uncertainty, for which the information of the parameters is extracted from published resources, 
that is often defaulted to a uniform distribution (Apel et  al.,  2004). Then, forward propagation from uncer-
tain input variables into the probabilistically simulated quantities of interest is often achieved using the SMC 
method (referred herein to as SMC) (Aronica et al., 1998; Dimitriadis et al., 2016; Huang & Qin, 2014; Jung 
& Merwade, 2012; Jung & Merwade, 2015; Karamouz & Fereshtehpour, 2019; McMillan & Brasington, 2008; 
Rahman et al., 2002; Stephens & Bledsoe, 2020).

Abstract  In probabilistic flood modeling, uncertainty manifests in frequency of occurrence, or histograms, 
for quantities of interest, including the Flood Extent and hazard rating (HR). Such modeling at the field-scale 
requires the identification of a more efficient alternative to the Standard Monte Carlo (SMC) method that can 
reproduce comparable output probability distributions with a relatively reduced sample size, including detailed 
histograms of quantities of interest. Latin hypercube sampling (LHS) is the most evaluated alternative for 
fluvial floods but yields no considerable sample size reduction. Potentially better alternatives include adaptive 
stratified sampling (ASS), Quasi Monte Carlo (QMC) and Haar-wavelet expansion (HWE), which are yet 
unevaluated for probabilistic flood modeling. To fulfill this gap, LHS, ASS, QMC, and HWE are compared 
to quantify sample size reduction to reproduce output detailed histograms—for Flood Extent, and average and 
maximum HR—while keeping the difference below 10% to the reference SMC prediction. The comparison 
is done for two test cases with two (i.e., inflow discharge and Manning's coefficient) and three (i.e., further 
including the ground elevation) input random variables, and a real case with five input random variables. 
With two input random variables, all four alternatives yield sample size reductions, with QMC and HWE 
considerably outperforming the others; with three and more input random variables, HWE becomes inflexible 
and LHS underperforms. Still, QMC is a better choice than ASS to boost sample size reduction for the real 
case and shall be preferred in probabilistic flood modeling. Accompanying research codes are openly available 
online.
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Brute-force SMC requires a large sample size, referred hereafter to Ns, to accurately propagate the uncertainty in 
the input parameters, but this is not ideal for field-scale applications where the framework would remain compu-
tationally intensive even with a fast flood physical solver such as LISFLOOD-FP (Aitken et al., 2022; Beevers 
et al., 2020). This study aims to identify alternative-to-SMC UQ methods that use reduced Ns to reproduce Flood 
Extent and HR-related histograms within a maximum allowed relative difference of 10%. Existing studies are 
often limited to analyze the reduction in the Ns for one alternative to SMC based on the conventional statistics 
like the mean or the variance (for example, Fan et al., 2015; Smemoe et al., 2007). However, the use of conven-
tional metrics may not be adequate to suggest reliable Ns reductions, because such metrics permit to overlook 
key information that could be present in complex output histograms (e.g., with more-than-one statistical peaks or 
multimodalities (Aitken et al., 2022; Beevers et al., 2020; Shaw & Kesserwani, 2020)). Hence, the quantification 
of the reduction in the Ns for probabilistic flood modeling would be more reliable when considering the metric 
of the relative histogram difference. Among the few papers that explored this aspect, Beevers et al. (2020) found 
that the Latin hypercube sampling (LHS) method (McKay et al., 1979) offers no reduction in Ns over SMC to 
reproduce the Flood Extent histograms for modeling of fluvial floods with a D-dimensional uncertainty space, 
with more-than-one input variables (D > 1). The present UQ analysis framework is aimed to further assess other 
alternatives to SMC, which could better reduce Ns when still accurately reproducing Flood Extent and HR-related 
histograms, including for rapid floods.

A wide range of UQ methods have been developed in many research fields and can be grouped into non-sampling 
and sampling methods (Zhang, 2021). Non-sampling methods based on spectral expansions in random spaces, also 
called intrusive stochastic Galerkin methods, and entail a redesign of the deterministic physical solver (Ghanem 
& Spanos, 2003; Pettersson et al., 2015; Shaw & Kesserwani, 2020), introducing solver-specific complexity that 
is hardly applicable in practice (Ge et al., 2008; Shaw et al., 2020). In contrast, sampling methods are readily 
useable with any deterministic physical solver and can either be based on random sampling or on deterministic 
realizations (Hickernell, 2018; Zhang, 2021). Random sampling uses generators of pseudo-random sequences to 
sample the uncertainty space (Matsumoto & Nishimura, 1998). The resulting estimator is then itself random, and 
accurately estimating the convergence for a statistical metric may require replications, leading to unaffordable 
costs for field-scale simulations (Rubinstein & Kroese, 2016; Beevers et al., 2020). Methods using deterministic 
realizations do not need replications since they generate non-random sequences to sample the uncertainty space. 
In this work, four alternatives to SMC are investigated, two based on random sampling and two on deterministic 
realizations.

Accelerated Monte Carlo methods with random sampling rely on variance reduction techniques to reduce Ns 
over SMC (James, 1985; Owen, 2013). From this category, LHS is a popular alternative (McKay et al., 1979; 
Pharr et  al.,  2016; Zhu et  al.,  2017; Zokagoa et  al.,  2021), which has been widely studied in many research 
areas (Kalagnanam & Diwekar, 1997; Yu et al., 2001). Kucherenko et al. (2015) analyzed the performance of 
LHS to SMC to estimate three types of synthetic response functions, concluding that LHS can only reduce Ns, 
by 10 times, for one function type featured by low sensitivity to the variations in the input variables, retrieving 
the findings in Yu et  al.  (2001). However, LHS did not offer reduction in Ns for any other type of synthetic 
response functions, including test cases of Flood Extent histograms of fluvial floods (Aitken et  al.,  2022; 
Beevers et al., 2020; Kucherenko et al., 2015). Other random sampling techniques include the stratified sampling 
(Botev & Ridder,  2017; Giunta et  al.,  2006; Pharr et  al.,  2016) and control variate approaches (Giles,  2015; 
Glasserman, 2004; Pasupathy et al., 2012). Stratified sampling and its adaptive versions, so-called adaptive strat-
ified sampling (ASS) (Etore et al., 2011; Pettersson & Krumscheid, 2022; Shields et al., 2015) was shown to 
offer promising reductions in Ns over SMC for a conventional statistical metric: For synthetic fluid dynamics 
problems, ASS yielded 100-to-1,000 times, 10-to-40 times, and 5-to-10 times smaller Ns with a two-, three- and 
four-dimensional uncertainty space (D = 2, 3 and 4), respectively (Pettersson & Krumscheid, 2022). Still, the 
ability of ASS is unassessed for probabilistic flood modeling. Alternatively, control variate approaches include 
Multi-Level Monte Carlo (Giles,  2015; Heinrich,  1998; Müller et  al.,  2013) and Multi-Fidelity Monte Carlo 
(Pasupathy et al., 2012; Ng & Willcox, 2014; Peherstorfer et al., 2016). For an academic flow reservoir prob-
lem with one-dimensional uncertainty space (D = 1), Multi-Level Monte Carlo yielded 6-to-18 times smaller 
Ns against SMC for the conventional statistical metrics (Müller et al., 2013). However, the Multi-Level Monte 
Carlo approach deploys many physical grids of different resolution supported by a sensitivity analysis, which 
is test-specific, making this approach burdensome for probabilistic flood modeling including high dimensional 
uncertainty spaces (D > 1) (Aitken et al., 2022). In contrast, the Multi-Fidelity Monte Carlo approach fixes the 

Writing – original draft: Mahya 
Hajihassanpour, Georges Kesserwani
Writing – review & editing: Mahya 
Hajihassanpour, Georges Kesserwani, Per 
Pettersson, Vasilis Bellos

 19447973, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034011 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

HAJIHASSANPOUR ET AL.

10.1029/2022WR034011

3 of 33

grid resolution but varies the complexity in the physical solver(s), leading to 3-to-10 times smaller Ns against 
SMC (Peherstorfer et al., 2016). As this work aims to identify efficient alternatives to SMC for the same (fixed) 
physical solver and grid resolution, the control variate approaches are not considered.

Deterministic realization methods include the Quasi Monte Carlo (QMC) and non-intrusive stochastic colloca-
tion approaches (Zhang, 2021). QMC (Morokoff & Caflisch, 1995; Wong et al., 1997) can be applied to generate 
low-discrepancy sequences, or quasi-random samples, for sampling the uncertainty space, which can be based 
on Sobol (Sobol, 1979), Halton (Halton, 1960) or Hammersley (Hammersley, 1960) sequences. For financial 
modeling, Chatzivasileiadis  (2018) showed that QMC with Halton- and Sobol-based sequences yield 8 times 
and 2-to-5 times smaller Ns against SMC for the conventional statistical metrics, respectively. However, QMC 
with Hammersley-based sequences could lead to up to 40 times smaller Ns for high-dimensional uncertainty 
spaces (2 ≤ D ≤ 100) (Kalagnanam & Diwekar, 1997; Kucherenko et al., 2015; Wang et al., 2004). Therefore, 
only the QMC alternative with the Hammersley-based sequences is considered for probabilistic flood mode-
ling. In the non-intrusive stochastic collocation approach (Avasarala & Subramani, 2021; Eldred, 2009; Zio & 
Rochinha, 2012), global orthogonal polynomials can be used as continuous basis functions to span the uncer-
tainty space (Shaw & Kesserwani, 2020; Xiu & Karniadakis, 2002). However, this choice is not suited for proba-
bilistic flood modeling that needs an accurate representation of non-smooth responses in the quantities of interest 
that manifest in discrete histograms with multimodalities (Abgrall & Mishra, 2017; Shaw et al., 2020). Using 
discrete basis functions of the Haar-wavelet expansion (HWE) (Le Maı̂tre et al., 2004) remedies this issue, as 
exemplified by capturing critical physics of wetting and drying in the histograms using 4 times smaller Ns against 
SMC for a three-dimensional uncertainty space (D = 3) (Shaw et al., 2020). So far, HWE was only evaluated for 
diagnostic river-channel flow problems; and, like ASS and QMC, its performance in the context of probabilistic 
flood modeling is yet to be assessed.

In this paper, we examine the capability of LHS, ASS, QMC, and HWE to efficiently capture relative histograms 
for Flood Extent, average and maximum HR (HRave and HRmax) with reduced Ns against SMC. Section 2 describes 
the UQ analysis framework including details on: the generation of input random variables (Section 2.1); the 
choice of the physical solver used for the probabilistic runs and definitions of Flood Extent, HRave and HRmax 
(Section 2.2); the technical structure of alternative-to-SMC UQ methods (Section 2.3); the comparison approach 
based on the relative histogram difference against the reference SMC prediction (Section 2.4); and the definition, 
purpose and characteristics of validation test cases, including uncertainty spaces with 2 ≤ D ≤ 5, considering 
torrential and fluvial flood types (Section 2.5). In Section 3, the comparative analysis is presented to identify the 
reduction in 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  , per alternative-to-SMC UQ method K (K = QMC, HWE, LHS, and ASS), to keep a difference 
below the target threshold of 7.5% ± 2.5% based on the relative histogram metric. Section 4 discusses the limi-
tations and general applicability of the present study, and Section 5 summarizes the key findings and concludes 
on the most efficient UQ method for probabilistic flood modeling. In Appendix A, the comparative analysis is 
reproduced using the difference based on the standard errors of the mean and the variance, showing how the use 
of these conventional metrics lead to an over-optimistic reduction in 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  , compared to the relative histogram 
metric. Appendix B gives instructions for running the open research codes that can be used to reproduce this 
comparative study (Hajihassanpour et al., 2022).

2.  UQ Analysis Framework
The present uncertainty propagation framework is described in Figure 1. The uncertainty in the values of the 
input parameters is represented by a vector of random variables, X = [X1,…,XD], in which each random variable 
is assigned a probability distribution that should reflect the information available about the corresponding input 
parameter (Figure  1, upper left). According to Haan et  al.  (1998), the choice of which probability distribu-
tions to adopt to model the uncertain hydrological parameters is less important than acquiring good estimates 
of their means and standard deviations. In this work, therefore, the input random variables are generated based 
on given means and standard deviations from surveyed uncertainty ranges in published resources (Section 2.1), 
and using uniform, or rectangular, probability distributions are recommended (https://www.isobudgets.com/
type-a-and-type-b-uncertainty/#type-b-uncertainty-definition; https://physics.nist.gov/cuu/Uncertainty/typeb.
html) to conservatively model such Type-B uncertainty (i.e., with equal probabilities) (Apel et al., 2004).

According to the prescribed distributions, the input random variables are then sampled, with either a random 
sampling (e.g., Figure 1, upper-right) or deterministic sampling, depending on the UQ method (Section 2.3). A 
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probabilistic run is achieved by applying a physical solver to all the samples (Ns simulations), leading to output 
samples for selected quantities of interest Y = [Y1,…,Yq] (Figure 1, lower-left). Histogram(s) for Y are generated 
for each UQ method, normalized to Ns to become relative histogram(s), to assess Ns reduction such that to keep 
the difference against the reference prediction (Figure 1, lower-right) below the target threshold of 7.5% ± 2.5% 
(Section 2.4).

2.1.  Generation of the Input Random Variables

In probabilistic flood modeling, the three most significant uncertain variables are the inflow discharge (forcing 
driver), Manning coefficient (physical driver), and ground elevation (geometric driver) (Alipour et  al., 2022; 
Bellos & Tsihrintzis, 2021; Dimitriadis et al., 2016; Jung & Merwade, 2012; Jung & Merwade, 2015; Savage 
et al., 2016; Tscheikner-Gratl et al., 2019). Here, each uncertain (i.e., random input) variable is assumed to result 
from the same measurement error at any point in time for the inflow discharge(s) and at any point in space for 
the Manning coefficient and the ground elevation. With this assumption, the dimensionality of the uncertainty 
space reduces to the number of random input variables to make the uncertainty propagation framework computa-
tionally feasible. Otherwise, non-correlated, cell-wise variations in the ground elevation would require a distinct 
random variable for every cell, leading to an unfeasible increase in the dimensionality of the uncertainty space 
(Stefanescu et al., 2012; Wechsler, 2007).

The uncertainty in a given mean inflow discharge, 𝐴𝐴 𝑄𝑄(𝑡𝑡) at a time instant t, results from measurement errors in the 
estimation of rainfall-runoff, hydrological data and/or hydrometric data (Sharafati et al., 2020). This uncertainty 
is often assigned to a 16% range (Bates et al., 2011). Therefore, a uniform inflow discharge random variable, 
Q(t,ξQ), follows:

𝑄𝑄(𝑡𝑡𝑡 𝑡𝑡𝑄𝑄) = 𝑄𝑄(𝑡𝑡) + 𝜉𝜉𝑄𝑄 𝜎𝜎𝑄𝑄(𝑡𝑡)� (1)

Figure 1.  The uncertainty quantification analysis framework. Upper-left: pre-defined uncertain variables, via probability distribution functions, spanning a 
D-dimensional uncertainty space; upper-right: a typical (random) sampling in the uncertainty space; lower-left: the output of a probabilistic run, after applying a 
physical solver for all samples, for the quantities of interest; lower-right: a relative histogram for a quantity of interest for evaluation against a reference prediction 
(brute-force standard Monte Carlo runs).
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where ξQ is a random variable taking values in [−1,+1] and 𝐴𝐴 𝐴𝐴𝑄𝑄(𝑡𝑡) = 0.08𝑄𝑄(𝑡𝑡) is the range of variation with respect 
to the mean 𝐴𝐴 𝑄𝑄(𝑡𝑡) . In flood modeling, a number of P mean inflow discharges, 𝐴𝐴 𝑄𝑄1(𝑡𝑡) , …, 𝐴𝐴 𝑄𝑄𝑃𝑃 (𝑡𝑡) (P > 1), can be 
given (Kesserwani & Sharifian, 2023; Sharifian et al., 2023). In this case, the variation in each of 𝐴𝐴 𝐴𝐴1

(
𝑡𝑡𝑡 𝑡𝑡𝑄𝑄1

)
 , …, 

𝐴𝐴 𝐴𝐴𝑃𝑃

(
𝑡𝑡𝑡 𝑡𝑡𝑄𝑄𝑃𝑃

)
 follows Equation 1, assuming that 𝐴𝐴 𝐴𝐴𝑄𝑄1

 , …, 𝐴𝐴 𝐴𝐴𝑄𝑄𝑃𝑃
 are not intercorrelated (Neal et al., 2013), leading to an 

uncertainty space dimension of D = P.

Although measurement error uncertainty for the discharge has a strong impact on the outputs (Bellos & 
Tsihrintzis, 2021), the uncertainty in the spatial Manning coefficient can also be significant, such as for fluvial 
floods (Alipour et al., 2022; Beevers et al., 2020; Dimitriadis et al., 2016). The Manning coefficient's uncertainty 
depends on friction elements (e.g., vegetation, land, or soil type) and is often assigned a range of 10%, from 
bibliographical values and calibration to match observed flood-related data (Bellos et al., 2018; Neal et al., 2009). 
Therefore, the uniform Manning coefficient random variable follows:

𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑛𝑛) = 𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥) + 𝜉𝜉𝑛𝑛 𝜎𝜎𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥)� (2)

where ξn is a random variable taking values in [−1,+1], 𝐴𝐴 𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥) is a given mean Manning coefficient—that can be 
spatially varying to take a different value at each spatial point (x, y)—and 𝐴𝐴 𝐴𝐴𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥) = 0.05 𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥) is the range of 
variation with respect to 𝐴𝐴 𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥) . For the considered test cases (Section 2.5), a constant mean Manning coefficient 
value is used, thus further assuming 𝐴𝐴 𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥) = 𝑛𝑛 to reduce n(x,y,ξn) to n(ξn). Note that, Equation 2 can be further 
used considering spatially varied mean Manning coefficient data, 𝐴𝐴 𝑛𝑛(𝑥𝑥𝑥 𝑥𝑥) , incorporating many land use types and 
channels (Sharifian et al., 2023), without loss of generality. However, using spatially varied roughness would lead 
to similar performance as with a uniform constant roughness (Alipour et al., 2022).

It is sometimes necessary to also include uncertainty in the mean ground elevation variable, 𝐴𝐴 𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥) , with respect 
to which the range of variation σz(x,y) can be generated from the analysis of the Digital Elevation Model (DEM) 
data. The range of variation σz(x,y) is often assigned a measurement error uncertainty as high as 10% depending 
on the quality of the DEM data (Hu et al., 2009; Liu et al., 2015; Nalbantis et al., 2017; Shaw et al., 2020; West 
et al., 2018). Therefore, the uncertainty in 𝐴𝐴 𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥) may be significant in some locations, informed by local esti-
mates of σz(x,y). Hu et al. (2009) and Liu et al. (2015) estimated σz(x,y) for LiDAR-based DEMs as a function 
of the diagonal length of the DEM's cell size, denoted by ld, and the local curvature for the DEM's value at this 
cell, denoted by M(x,y). Their estimates suggest significant σz(x,y) either when the DEM resolution is coarse or 
when the DEM's cells represent a topographic area with large curvatures (e.g., riverbanks or urban buildings). 
Furthermore, Hu et al. (2009) estimated σz(x,y) to 𝐴𝐴 |

1

8
𝑀𝑀(𝑥𝑥𝑥 𝑥𝑥)𝑙𝑙2

𝑑𝑑
| using a linear interpolation of point cloud acquired 

by LiDAR sensors, whereas Liu et al. (2015) estimated it to 𝐴𝐴 |
3

8
𝑀𝑀(𝑥𝑥𝑥 𝑥𝑥)𝑙𝑙2

𝑑𝑑
| using an interpolation based on Trian-

gulated Irregular Network. As these estimates for σz(x,y) have different weights for 𝐴𝐴 𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥)𝑙𝑙2
𝑑𝑑
 to analyze distinct 

DEM data types, σz(x,y) is here generally estimated to 𝐴𝐴 |𝑐𝑐 𝑐𝑐(𝑥𝑥𝑥 𝑥𝑥)𝑙𝑙2
𝑑𝑑
| , where c is a user-defined weight identified 

by a DEM-specific sensitivity analysis. For the test cases considered (Section 2.5), the sensitivity analyses (not 
reported) suggest a c around 0.04 to 0.125 for realistic, uneven DEM data, and a higher value of 5 for idealistic, 
smooth DEM data. Note that, the selected choices for c were based on retrieving the target Root Mean Square 
Error of 0.3 m for smooth, semi-flat regions and the upper bound of 10% uncertainty for highly curved regions 
(Liu, 2011; Liu et al., 2015; Shaw et al., 2020; West et al., 2018). After estimating σz(x,y), the uniform ground 
elevation random variable, for ξz varying between [−1,+1], follows:

𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑧𝑧) = 𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥) + 𝜉𝜉𝑧𝑧 𝜎𝜎𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥)� (3)

2.2.  Physical Solver and Quantities of Interest

For a selected UQ method at a fixed Ns, a physical solver should be employed to make a probabilistic run, or 
ensemble of Ns simulations, to propagate the variations in the input variables (Equations 1–3) into output proba-
bility distributions. The first-order finite volume hydrodynamic solver of the LISFLOOD-FP suite was employed, 
using the version parallelized on Graphical Processing Units (GPU), so-called GPU-FV1 (Shaw et al., 2021). At 
the time, GPU-FV1 was the fastest physical solver available to minimize runtime cost per simulation for large 
spatial domains at fine DEM resolutions [that is, with more than half a million computational cells such as with 
two of the test cases investigated (Sections 2.5.2 and 2.5.3). For such simulations, GPU-FV1 is 30 times faster 
than the CPU version (CPU-FV1) on 16 threads (Shaw et al., 2021). Using the less mathematically complex 
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solver–neglecting convective acceleration terms– though a popular choice for UQ analysis (Beevers et al., 2020), 
had only a CPU version i.e., slower to run than GPU-FV1 for a simulation on grids with more than half a million 
cells (Shaw et al., 2021). Hence, GPU-FV1 is a mathematically complete and fast physical solver that can repro-
duce all types of hydrodynamic flow regimes and responses as accurately as second-order finite volume solvers 
for realistic floodplain flow simulations (Ayog et al., 2021; Zhao & Liang, 2022).

The probabilistic run leads to output samples for the water depth, h(x,y,t) and velocity field magnitude, V(x,y,t), 
that are post-processed into the following quantities of interest.

•	 �Flood Extent. It is the sum of the area of the computational cells with non-zero water depth h, that is, total wet 
area. The Flood Extent has often been used in probabilistic flood modeling to analyze Flood Extent frequen-
cies (Bermúdez et al., 2017; Beevers et al., 2020; Aitken et al., 2022).

•	 �Average Hazard Rate (HRave) and Maximum Hazard Rate (HRmax). The flood HR is defined as: 
HR = h × (V + 0.5); and, it has been used to provide more information on velocity impacts to assets including 
structural damage to residential buildings, damages to road infrastructures, and risks to people's life and injury 
(Kreibich et al., 2009; Lumbroso & Davison, 2018; Maranzoni et al., 2022; Ramsbottom et al., 2006; Shirvani 
& Kesserwani, 2021; Shirvani et al., 2021). In this study, HRave and HRmax quantify the average and maximum 
flood HR over the computational area.

•	 �Floodtiming. The quantities Flood Extent, HRave and HRmax are evaluated at the output floodtiming, t, at which 
the maximum Flood Extent is reached. At this time, the variation in the input random variables should have 
propagated complex responses into the output samples that in turn manifest in complex histograms represent-
ing the statistics of these quantities of interest.

A computational load of 5.5 million runs resulted in this study (that is, to compare five different UQ meth-
ods (Section 2.3) with convergence analyses for a range of Ns (Section 2.4) and considering three test cases 
(Section 2.5). This load was distributed across four NVIDIA Tesla V100 GPU cards (maximum) available on 
the Bessemer HPC cluster of the University of Sheffield (https://docs.hpc.shef.ac.uk/en/latest/bessemer/clus-
ter_specs.html#bessemer-specs). On such a GPU card, the lengthiest runtime for a run using GPU-FV1 did not 
exceed 7 min, allowing to make a probabilistic run for a batch of simulations, per UQ method and per Ns, in the 
allowable 7-day window of non-interrupted access to each GPU card. Meeting this limit was not possible with 
CPU-FV1 for grids involving more than half a million cells, where the elapsed runtime for some batches can 
exceed 7 days. Note that, it is possible to use CPU-FV1 to distribute the runs over up to 100 CPUs on the clus-
ter, but distributing the runs of GPU-FV1 on the four GPU cards results in a 20% faster overall runtime (since 
CPU-FV1 is 30 times slower per run).

2.3.  Alternative-To-SMC UQ Methods

In SMC the order of convergence is inversely proportional to 𝐴𝐴 𝐴𝐴
1∕2
𝑠𝑠  , requiring a large Ns to reproduce a true refer-

ence prediction (e.g., known analytical functions (Kucherenko et al., 2015)). Four selected alternative-to-SMC 
UQ methods are compared to potentially reduce Ns while keeping a relative histogram difference below 10% 
against the reference SMC prediction for the most relevant quantity of interest. The alternatives are HWE and 
QMC, from the deterministic realization methods, and ASS and LHS from the random sampling methods.

•	 �HWE. This method describes the quantities of interest Y by expansion coefficients 𝐴𝐴 𝒀𝒀  , projected onto the 

discrete Haar-Wavelet basis ϕ, as 𝐴𝐴 𝒀𝒀 =

𝑁𝑁𝑠𝑠∑

𝑗𝑗=1

𝒀𝒀 𝒋𝒋𝝓𝝓𝒋𝒋
(𝑿𝑿) . In the current implementation of HWE, the realizations 

in the uncertainty space are equidistantly, but sparsely distributed with a spacing of 2 DL where L is the refine-
ment level characteristic of the Haar-Wavelet basis (Shaw et al., 2020). This implies that for the same Ns, HWE 
leads to coarser sampling in the uncertainty space as D is increased. Shaw et al. (2020) assessed HWE for 
diagnostic river-channel flow problems. Here, the potential of HWE is assessed for realistic floodplain flow 
test cases.

•	 �Quasi Monte Carlo (QMC). The QMC method uses Hammersley's space-filling sequences to evenly sample the 
uncertainty space. Since its order of convergence is 𝐴𝐴 (log𝑁𝑁𝑠𝑠)

𝐷𝐷−1
𝑁𝑁

−1
𝑠𝑠  , it has a potential to significantly reduce 

Ns over SMC for uncertainty spaces with moderate dimensionality (Chatzivasileiadis, 2018; Kalagnanam & 
Diwekar, 1997; Wong et al., 1997; Zhang, 2021). This potential for QMC is here specifically investigated for 
probabilistic flood modeling.
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•	 �ASS. ASS is a quite recent UQ method (Pettersson & Krumscheid, 2022), which is here explored for prob-
abilistic flood modeling. ASS is designed to adaptively improve the performance of SMC by sensing the 
local behavior in the variance of a scalar output, which is here selected to be any of the quantities of interest. 
According to the local variance estimates, the uncertainty space is split into disjoint subsets, or strata, where 
each stratum is sub-sampled independently. Among all strata, stratification is adaptively applied to maximize 
variance reduction. Stratification consists of splitting one existing stratum into two in the regions of high 
variance or leaving it intact otherwise. After an iteration of stratification, Nnew sub-samples are added to be 
distributed between strata. With ASS, Nnew and a parameter α must be specified by the user (i.e., to Nnew = 30 
and α = 0.9 following (Pettersson & Krumscheid, 2022). The performance of ASS can only be analyzed for a 
single scalar output and, therefore, may need to be explored with each of the quantities of interest.

•	 �LHS. In LHS, each dimension in the uncertainty space is partitioned into Ns intervals of equal length, and 
one-dimensional pseudo-random samples are generated such that there is exactly one sample in every interval. 
These marginal samples are then randomly combined, one from each dimension, into multivariate samples 
that preserve the space-filling property of the marginal distribution (McKay et al., 1979). LHS is the most 
explored alternative-to-SMC (Pharr et al., 2016; Zhu et al., 2017; Zokagoa et al., 2021) for probabilistic mode-
ling of fluvial floods (Aitken et al., 2022; Beevers et al., 2020). Here, LHS is also explored for rapid floods to 
identify whether any of HWE, QMC or ASS can be a better alternative-to-SMC.

2.4.  Comparison Approach Using Relative Histograms

Compared to the conventional statistics like the mean or the variance, a histogram can inform on key aspects 
contributing to the overall statistics, such as multimodalities in a frequency of occurrence, which can otherwise 
be missed (i.e., as shown in (Shaw & Kesserwani, 2020)).

For a quantity of interest, among Flood Extent, HRave, and HRmax, the relative histogram predicted by the UQ 
method K for a fixed 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  (K = SMC, QMC, HWE, LHS, and ASS) is compared to the relative histogram of 
the reference prediction–produced using SMC with a Ns that is 2.5-to-320 times larger than 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  , depending on 
the affordability of SMC per test case to make the probabilistic run (i.e., to produce the reference prediction). 
Comparing the difference between these two relative histograms may not be straightforward. On the one hand, a 
relative histogram is sensitive to the number of bins, Nbins, as too wide bins can overlook multimodalities. As a 
rule of thumb, Nbins depends on the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  , which here ranges between 125 and 4,096 (Section 2.5.1). For this range 
of 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  , although Sturge's rule (https://medium.datadriveninvestor.com/how-to-decide-on-the-number-of-bins-of-
a-histogram-3c36dc5b1cd8) calculates 8 ≤ Nbins ≤ 13, a Nbins as large as 40 was reported to analyze Flood Extent 
frequency occurrence (Beevers et al., 2020). Therefore, the three values for Nbins = {10, 20, 40} are considered 
when comparing the difference between these two relative histograms. On the other hand, for a fixed Nbins, 
comparing two relative histograms, can either be bin-wise or via a cross-bin approach (Rubner et al., 2000). The 
bin-wise approach measures the difference bin-by-bin, and the cross-bin approach also incorporates the correla-
tions from the differences at the neighboring bins. Although less sensitive to Nbins, the cross-bin approach tends to 
predict zero differences in regions of uniform frequency distributions (Rubner et al., 2000). Hence, the bin-wise 
approach is used to compare the two histograms, as follows (Stricker & Orengo, 1995):

Relative histogram dif ference (%) = 100 ×

𝑁𝑁bins∑

𝑗𝑗=1

|𝑓𝑓ref𝑗𝑗 − 𝑓𝑓𝑗𝑗|� (4)

In Equation 4, fj and 𝐴𝐴 𝐴𝐴ref𝑗𝑗
 denote the relative frequency (normalized by 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  ) inside the jth bin for the histogram 
predicted by the selected UQ method and for the histogram of the reference prediction, respectively.

The convergence analysis (Section 3.1) for the first test case (Section 2.5.1) uses Equation 4 with varying 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  to 
identify the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  per UQ method that keeps relative histogram differences below the target threshold. The identi-
fied 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  per alternative-to-SMC UQ method K (K = QMC, HWE, LHS and ASS) are then used to quantify the 
reduction in terms of the following relative-to-SMC speedup ratio:

Speedup ratio = 𝑁𝑁
SMC
𝑠𝑠 ∕𝑁𝑁𝐾𝐾

𝑠𝑠 (𝐾𝐾 = QMC,HWE,LHS andASS)� (5)

Note that, the quantified speedup ratios (Equation 5) from the convergence analysis (Section 3.1) are based on the 
relative histogram difference (Equation 4); in other words, not based on the standard errors of the mean and the 
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variance (for example, as in Yu et al. (2001), Smemoe et al. (2007), Fan et al. (2015), Kucherenko et al. (2015), 
Pettersson and Krumscheid (2022)), which lead to greatly larger speedup ratios (i.e., demonstrated in Appendix A 
vs. the results presented in Section 3.1). Worth also noting that a reliable convergence analysis required 60 times 
more runs, or replications, per random sampling method (i.e., SMC, ASS and LHS) to estimate converged differ-
ences for both the results presented in Section 3.1 and Appendix A. This number should be appropriate informed 
by Beevers et al.  (2020) and Shirvani and Kesserwani  (2021), where the authors reported making 10 and 20 
replications to average acceptable differences with SMC and LHS, respectively.

2.5.  Purpose, Definition, and Characteristics of the Test Cases

Three probabilistic flood modeling test cases are designed to assess the alternative-to-SMC UQ methods K 
(K = QMC, HWE, LHS and ASS) to potentially reduce 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  over 𝐴𝐴 𝐴𝐴
SMC
𝑠𝑠  to keep a maximum threshold of 10% for 

the relative histogram difference (Equation 4), while also analyzing the effect of Nbins = {10, 20, 40}.

The first test case is a synthetic “Rapidly propagating flood over a smooth terrain” (Section 2.5.1). It is employed 
to conduct a detailed convergence analysis for each of the quantities Flood Extent, HRave and HRmax, for two 
sub-cases: D = 2 for the two input random variables: Q(t,ξQ) and n(ξn); and, D = 3 for the three input random 
variables: Q(t,ξQ), n(ξn) and z(x,y,ξz). For computational feasibility, the convergence analysis is only carried out 
for this test case to identify the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  that keeps the relative histogram difference (Equation 4) below the target 
threshold for the most uncertain quantity, then accordingly quantify the speedup ratios (Equation 5). Note that, 
making the replications required 4,830,862 probabilistic runs for the range of 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  considered in the first test case 
(Section 2.5.1), for which a run costs 3 s, leading to a total of runtime of 168 days. Making these replications was 
unfeasible for the second (Section 2.5.2) and third (Section 2.5.3) test cases, costing 100 and 400 s per run, which 
would require a runtime cost of 5,600 and 22,400 days, respectively.

The second test case is a more realistic “Torrential flooding over a rough river valley” (Section  2.5.2), also 
explored for the two sub-cases with D = 2 and 3. It is aimed to further validate the identified choices for 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  
to keep the average target threshold of 7.5% (Section 3.1). The validation re-measures the relative histogram 
difference (Equation 4) against the test-specific reference prediction, to consider a UQ method valid if it keeps 
this difference below the maximum target threshold of 10%. Accordingly, the best alternative-to-SMC from the 
deterministic realization methods (QMC and HWE) and from the random sampling methods (LHS and ASS) 
is selected for further validation over a real case study of a fluvial flooding. The third test case assesses the 
validity of the two selected candidates (QMC and ASS) for probabilistic modeling of the “Carlisle 2005 flood-
ing” (Section  2.5.3). This test case is featured by a D  =  5 including three input random discharge variables 
(Section 2.1), 𝐴𝐴 𝐴𝐴𝑝𝑝

(
𝑡𝑡𝑡 𝑡𝑡𝑄𝑄𝑝𝑝

)

𝑝𝑝=1,2,3
 , as well as the input random variables for the Manning coefficient and the ground 

elevation, n(ξn) and z(x,y,ξz). The assessment considers two choices for 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  (i.e., justified in Sections 3.1 and 3.2) 
to further validate QMC and ASS against the test-specific reference prediction.

2.5.1.  Rapidly Propagating Flood Over a Smooth Terrain

This synthetic test case (Neelz & Pender,  2013) has been used to benchmark physical solvers for a rapidly 
propagating flow occurring over a short runtime (Ayog et  al.,  2021; Cea Gómez et  al., 2020; De Luna-Cruz 
et al., 2019). The mean inflow discharge, 𝐴𝐴 𝑄𝑄(𝑡𝑡) , is 65.5 m 3 s −1 and its variation Q(t,ξQ) is shown in Figure 2a. The 
inflow discharge variable Q(t,ξQ) enters from the left boundary into a small domain area of 0.3 km × 0.1 km that 
has a mean Manning coefficient 𝐴𝐴 𝑛𝑛  = 0.01 with a variation of n(ξQ). The mean ground elevation variable 𝐴𝐴 𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥) is 
taken from a pseudo-two-dimensional DEM at 2 m resolution (finest available) and its variation z(x,y,ξz) is based 
on estimates for σz(x,y) using c = 5 (Section 2.1). In Figure 2b, the variation in z(x,y,ξz) is detectable at the points 
of strong topographic curvature. The flood timing is 193 s, when a simulation stops for analysis of Flood Extent, 
HRave and HRmax. Using 7,500 computational cells, a single simulation took 3 s and the probabilistic SMC run 
used Ns = 40,000 to produce the reference prediction.

From the reference prediction, D-dimensional response surfaces for each of Flood Extent, HRave and HRmax can be 
produced to analyze how the variations in the input variables (from their mean values) propagate into each of the 
quantities of interest. Note that, a response surface is a metamodel created via the “response surface methodology” 
using numerical experiments (i.e., the SMC simulations) to understand the non-smoothness level in the response 
behavior to the random variables within the uncertainty space. Qualitatively, the response surface projections 
inform on which are the uncertain variables that the quantities of interest are more sensitive to (Sections 2.5), 

 19447973, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034011 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

HAJIHASSANPOUR ET AL.

10.1029/2022WR034011

9 of 33

and therefore should retrieve the conclusions from other studies that quantitatively assess the sensitivity of flood 
model outputs including Sobol indices (for example, Alipour et al., 2022; Savage et al., 2016).

Figure 3 shows the plots of the centerline projections of the response surfaces of each random variable for the 
sub-cases with D = 2 (solid lines) and with D = 3 (dotted lines). With D = 2, larger variations are seen due to 
the inflow discharge variable compared to variations due to the Manning coefficient variable. For Flood Extent, 
the  variations due to these two variables are few, flat states connected by steep jumps, that are more frequent 
for the inflow discharge variable. For HRave, the variations are quite linear; but the variation due to the inflow 
discharge variable is steeper and far more deviates from the close-to-flat variation due to the Manning coefficient 
variable. For HRmax, though the variations have a lower range of variability, they display non-smooth waviness 
compared to HRave. Its lower range of variability arise from the fact that Floodtiming (Section 2.2) is closer to the 
time when the maximum of HRave is reached, than to the time when HRmax reaches its maximum; this explains 
why HRmax is less sensitive than HRave to the variations in the input random variables.

With D = 3, the variations in both dimensions of the inflow discharge variable and the Manning coefficient 
remain quite unchanged for all the quantities of interest. In the ground elevation variable, the variations for Flood 
Extent and HRave are close to zero, thus relatively insignificant, which is in contrast with the variation for HRmax 
that is noticeably large, significantly adding up to the overall HRmax variation. Overall, the analysis of Figure 3 
indicates that HRmax is the most uncertain quantity of interest in this test, in which the responses for Flood Extent 
and HRave are similar for both sub-cases (with D = 2 and 3).

A range of choices for 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  per UQ method is needed to conduct the convergence analysis, including 500 samples 
per uncertain input variable as recommended in Beevers et al.  (2020). For HWE, the range of 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠   = {64, 

Figure 2.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). Variation in (a) the mean inflow discharge 
variable and (b) the mean ground elevation variable.

Figure 3.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). Centerline plots of the projections from the D-dimensional response surfaces for Flood 
Extent, HRave and HRmax, showing their variations in each uncertainty dimension for the case with D = 2 (solid lines) and the case with D = 3 (dotted lines).
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256,1,024, 4,096} is used with D = 2 (i.e., refinement levels of L = {3, 4, 5, 6}) and of 𝐴𝐴 𝐴𝐴
HWE
𝑠𝑠   = {64, 512, 4,096} 

with D = 3 (i.e., refinement levels of L = {2, 3, 4}) (Shaw et al., 2020). The other UQ methods (SMC, LHS, 
ASS and QMC) can be given the same range of 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠 = {125, 250, 500, 1,000, 2000, 4,000}. In Section 3.1, the 
identified 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  that keep the relative histogram difference below the average threshold of 7.5% are discussed, 
together with quantifications of their relative-to-SMC speedup ratios and analysis of their sampling patterns in 
the uncertainty space and ability to reproduce different shapes of relative histograms.

2.5.2.  Torrential Flooding Over a Rough River Valley

This is another rapidly propagating flood test case (Neelz & Pender, 2013), often used to assess physical solvers 
but for a more realistic mean ground elevation variable 𝐴𝐴 𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥) and a rougher mean Manning coefficient of 𝐴𝐴 𝑛𝑛  = 0.04 
(Ayog et al., 2021; Shaw et al., 2021). From a breach located southwest of a down-sloping 17.0 km × 0.8 km area, 
floodwater flows from a mean inflow discharge variable 𝐴𝐴 𝑄𝑄(𝑡𝑡)  = 3,000 m 3 s −1 and its variation σz(x,y) is shown in 
Figure 4a. The mean ground elevation variable, 𝐴𝐴 𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥) , is generated from the DEM data at 10 m resolution (finest 
available), with a variation z(x,y,ξz) based on estimates for σz(x,y) with c = 0.125. The flood timing is 4.35 hr, 
when a simulation stops to analyze Flood Extent, HRave, and HRmax. A simulation with 1.7 million cells costs 
100 s to run and the reference prediction is produced via a probabilistic SMC run with Ns = 40,000.

Again, D-dimensional response surfaces for Flood Extent, HRave, and HRmax are produced from the reference 
prediction, to analyze how the variations in the input random variables (from their mean values) propagate into 
each of these quantities of interest. Figure  5 includes the plots of the centerline projections of the response 
surfaces of each random variable for the sub-cases with D  =  2 (solid lines) and with D  =  3 (dotted lines). 
With D = 2, larger variations are observed for all the quantities of interest due to the inflow discharge variable 

Figure 4.  Torrential flooding over a rough river valley (Section 2.5.2). Variation in (a) the mean inflow discharge variable 
and (b) the mean ground elevation variable.

Figure 5.  Torrential flooding over a rough river valley (Section 2.5.2). Centerline plots of the projections from the D-dimensional response surfaces for Flood Extent, 
HRave, and HRmax, showing their variations in each uncertainty dimension for the case with D = 2 (solid lines) and the case with D = 3 (dotted lines).
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compared to the Manning coefficient. For Flood Extent, the variation is nonlinear due to the inflow discharge 
variable but is quite flat for the Manning coefficient variable. Comparatively, the variations for HRave are larger 
and quite linear; but the variation due to the inflow discharge variable is steeper compared to the variation due 
to the Manning coefficient variable. Compared to the variations for Flood Extent and HRave, the variations for 
HRmax due to both random variables have a lower range of variability, remaining close to each other, and show 
smooth linear patterns.

With D = 3, the variations for any quantity of interest due to the ground elevation variable remain somewhat 
flat, thus relatively insignificant compared to the variations due to the other two variables: no difference in the 
variations for HRave is detected (compare with D = 2) but the variations for Flood Extent and HRmax become 
non-smooth, showing noisy patterns (not seen with D = 2). Overall, the analysis of Figure 5 indicates that Flood 
Extent is the most uncertain quantity of interest in this test, together with HRave for the sub-case with D = 2 or 
alternatively with HRmax for the sub-case with D = 3. In Section 3.2, the UQ method K (K = SMC, QMC, HWE, 
LHS, and ASS) is validated for the identified 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  for reproducing different shapes of relative histograms for the 
quantities of interest.

2.5.3.  Carlisle 2005 Flooding

This test case (Fewtrell et al., 2011; Horritt et al., 2010; Kabir et al., 2020; Kesserwani & Sharifian, 2023), is 
also adjusted to become probabilistically impacted by five input random variables. The fluvial flooding is driven 
by three given mean inflow discharge variables, 𝐴𝐴 𝑄𝑄𝑝𝑝(𝑡𝑡)𝑝𝑝=1,2,3 , originating from rivers Eden, Caldew and Petteril, 
with the variations of their random variables, 𝐴𝐴 𝐴𝐴𝑝𝑝

(
𝑡𝑡𝑡 𝑡𝑡𝑄𝑄𝑝𝑝

)

𝑝𝑝=1,2,3
 , shown in Figures 6a–6c. The inflow drivers lead 

to a flood propagation over a 14.5 km 2 area in the city of Carlisle, where the mean Manning coefficient is often 

Figure 6.  Carlisle 2005 flooding (Section 2.5.3). (a–c) show the variation in inflow discharge originating from rivers Eden, Caldew, and Petteril, respectively; (d) 
shows the variation from the mean ground elevation variable; and subfigure (e) shows the centerline plots of the projections from the 5-dimensional response surface 
into each uncertainty dimension.
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considered to be a constant of 𝐴𝐴 𝑛𝑛  = 0.055, based on which the random input variable n(ξn) is introduced. The mean 
ground elevation variable, 𝐴𝐴 𝑧𝑧(𝑥𝑥𝑥 𝑥𝑥) , is based on a 5 m resolution DEM (finest available), and its random input 
variable z(x,y,ξz) was based on estimates for σz(x,y) using c = 0.04, taking the values shown in Figure 6d. A single 
simulation used 581,061 cells and was stopped at the flood time of 40 hr, costing a runtime of 400 s. This results 
in a large, elapsed, runtime to make a probabilistic SMC run, limiting the reference prediction to Ns = 10,000.

Informed by the analysis of the response surfaces projections in Section 2.5.2, Flood Extent is the most uncertain 
quantity of interest to investigate, as is usually the case with such a slowly propagating flood over rough and real-
istic terrains (Aitken et al., 2022; Beevers et al., 2020; Bermúdez et al., 2017). Therefore, only the 5-dimensional 
response surface for Flood Extent is produced from the reference prediction to analyze its variation due to each 
of the five random variables—again via the plots of centerline projections included in Figure 6e. As opposed 
to the previous test cases (Sections 2.5.1 and 2.5.2), the strongest, largest and widest range of variation in the 
response surface arises due to the Manning coefficient variable. The range of variation due to each of three inflow 
discharge variables is comparatively weaker, but their cumulative variations is expected to lead to an overall 
stronger variation than that due to the Manning coefficient variable. For any of these four random variables, 
the type of variation for Flood Extent is quite similar, exhibiting semi-flat states in some regions or non-smooth 
patterns in other regions, which are connected by steep jumps. Comparatively, a flat variation is observed due 
to the ground elevation variable, suggesting that this variation would insignificantly influence the predictions 
compared to any other variation. This finding is in line with that in Section 2.5.2, seeming to suggest giving 
less importance to the variation in the ground elevation variable for probabilistic modeling over real and highly 
rough topologies. In Section 3.3, only ASS and QMC are compared using 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠   = 2000 and 4,000 (i.e., justified in 
Sections 3.1 and 3.2), with validation to reproducing the relative histogram for the Flood Extent quantity.

3.  Results and Discussion
3.1.  Rapidly Propagating Flood Over a Smooth Terrain (Section 2.5.1)

3.1.1.  Sub-Case With D = 2

Figure 7 displays the order of convergence per UQ method based on the relative histogram difference (Equa-
tion 4) calculated for each of the quantities of interest (shown in the upper, medium and lower panels for Flood 
Extent, HRave, and HRmax, respectively), for Nbins = {10, 20, 40} (from left to right). Each UQ method preserves its 
order of convergence, that is, the decay rate for the relative histogram difference with increased Ns. The determin-
istic realization methods (QMC and HWE) show generally faster decay rates than the random sampling methods 
(LHS, ASS and SMC). QMC and HWE yield lower order of error magnitudes that tend to become close to the 
orders of error magnitudes obtained for LHS, ASS, and SMC with increased complexity in the responses for the 
quantity of interest (Figure 3) and with increased Nbins—thus becoming the closest to each other for HRmax and 
using Nbins = 40 (Figure 7, lower-right panel).

For Flood Extent, the relative histogram difference is insensitive to Nbins and remains one order of error magnitude 
smaller compared to the relative histogram difference for HRave and HRmax. This can be expected as the responses 
for Flood Extent consist of a few flat states (Figure 3), that are smaller in number than the smallest Nbins = 10. 
In contrast, the responses for HRave are non-flat states arising from larger continuous variations, further exhib-
iting waviness for HRmax (Figure 3). Therefore, the representation of the HRave and HRmax states are expected 
to become more detailed with increasingly finer bins, leading to increasingly larger order of error magnitudes 
(Figure 7, medium and lower panels: left-to-right). Still, the order of error magnitudes reached by the determin-
istic realization methods (QMC and HWE) remain lower than those reached by the random sampling methods 
(LHS and ASS). This indicates that QMC and HWE offer more reduction in Ns compared to LHS and ASS, but 
this reduction tends to decrease with increased non-flat variations in the responses of the quantity of interest and 
with the refinement of Nbins.

Consequently, for the target threshold of relative histogram difference, the 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  identified would be larger for 
HRave and HRmax as compared to the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified for Flood Extent, and as Nbins is increased. Moreover, the 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  
identified for the random sampling methods (LHS and ASS) would be larger compared to the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified for 
the deterministic realization methods (QMC and HWE). Figure 8 shows the identified 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  and relative-to-SMC 
speedup ratios 𝐴𝐴 𝐴𝐴

SMC
𝑠𝑠  /𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  to keep the target threshold for Nbins = {10, 20, 40}.
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All the UQ methods achieve speedup ratios greater than one, thus lead to identifying 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  that offer a reduction 
over 𝐴𝐴 𝐴𝐴

SMC
𝑠𝑠  . However, the reduction differs depending on the quantity of interest. Flood Extent, since it has few 

flat variations in its responses, leads to the smallest 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  alongside the highest speedup ratios and irrespective of 
Nbins. The identified 𝐴𝐴 𝐴𝐴

LHS
𝑠𝑠  and 𝐴𝐴 𝐴𝐴

ASS
𝑠𝑠  are at least one order of magnitude larger than 𝐴𝐴 𝐴𝐴

QMC
𝑠𝑠  and 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠  , yielding 

speedup ratios that range between 1.1 and 1.8 for LHS and ASS and between 5 and 25 for QMC and HWE. For 
HRave and HRmax, the identified 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  are expectedly larger, up to one order of magnitude with the largest Nbins = 40. 
This leads to a drop in the lower bound of the speedup ratios for QMC and HWE from around 5 to around 1.1. 
However, this drop occurs due to the overly large 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠 = 4096 identified for HRave. With the lower 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠 = 

1,024, the relative histogram difference for Flood Extent and HRmax are 1.3% and 6.4%, respectively; however, the 
difference for HRave becomes 8.1%, which is not below the average target difference of 7.5%. The only next possi-
ble choice for an 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠  that is larger than 1,024, is 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠 = 4096 , given the inflexibility of HWE in the selection 

of 𝐴𝐴 𝐴𝐴
HWE
𝑠𝑠  , which is four-times larger leading to a difference of 3.8% for HRave that is below the target average 

Figure 7.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). Order of convergence per uncertainty quantification method K (K = standard Monte Carlo, 
QMC, Haar-wavelet expansion, Latin hypercube sampling and adaptive stratified sampling) for the relative histogram difference (Equation 4) calculated for: Flood 
Extent (upper panel), HRave (middle panel), and HRmax (lower panel), using Nbins = {10, 20, 40} (left to right).
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difference of 7.5%. Therefore, QMC is a better alternative since its lower bound remains around four-times higher 
than 1.1. The speedup ratios for LHS and ASS remain similar to the ratios identified for Flood Extent, subject to 
a slightly lower upper bound, of 1.30.

Figure 9 illustrates the sampling patterns in the uncertainty space with D = 2 for each UQ method for the largest 
𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified to meet the average threshold difference of 7.5% for all the quantities of interest with Nbins = 40. 
The sampling with SMC shows disadvantages caused by the presence of clumps, resulting in the largest Ns (

𝐴𝐴 𝐴𝐴
SMC
𝑠𝑠 = 4,675). A more efficient sampling is achieved by LHS, with 937 fewer samples (𝐴𝐴 𝐴𝐴

LHS
𝑠𝑠 = 3,738). ASS 

performs similar to LHS, needing slightly more samples (𝐴𝐴 𝐴𝐴
ASS
𝑠𝑠 = 3,790), though its sampling is different per 

quantity of interest. More strata and samples emerge for Flood Extent in the regions showing strong jumps in its 
responses (Figure 3), but no strata refinement is seen for HRave and HRmax that have non-flat variations (Figure 3). 
This suggests that ASS may be a more suited alternative-to-SMC to reproduce the relative histogram for a quan-
tity of interest with responses exhibiting close-to-flat states connected by jumps (for example, for the “Carlisle 
2005 flooding” (Section 2.5.3) as can be seen in Figure 6e). HWE leads to overtly refined sampling with D = 2 
(𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠 = 4,096), caused by its aforementioned inflexibility to allow a choice for 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠  somewhere in-between 

1,024 and 4,096. QMC achieves the highest reduction (𝐴𝐴 𝐴𝐴
QMC
𝑠𝑠 = 1,359) compared to any other alternative-to-SMC, 

which suggests that it provides the most efficient sampling of the uncertainty space with D = 2.

Figure 10 shows the plots of the relative histograms for Flood Extent, HRave, and HRmax, extracted per UQ method 
for the identified 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  based on Nbins = 40 (shown in Figure 9), and in which the coarser relative histograms using 
Nbins = {10, 20} are based on the same 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  . For Flood Extent, the relative histograms exhibit a discrete distribu-
tion for Nbins = {20, 40}, which tends to look like a left-skewed unimodal distribution with the coarsest Nbins = 10, 
suggesting that larger Nbins is still needed despite the few discrete states in this quantity of interest. For HRave, the 
relative histograms follow an almost symmetric distribution that becomes more complex with larger Nbins. The 
relative histograms seen for HRmax are the most complex overall, in particular as Nbins is enlarged to 40 leading to 
a quite irregular distribution. Among the histogram distributions, the discrete one is the most accurately captured 
by all the UQ methods. The symmetric distribution seems to be more challenging to capture, though it is better 
reproduced with the deterministic realization methods (QMC and HWE) than with the random sampling methods 

Figure 8.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). The 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  and relative-to-SMC speedup ratio (Equation 5) to meet the target difference of 
7.5% ± 2.5% for Flood Extent (upper panel), HRave (middle panel), and HRmax (lower panel), using Nbins = {10, 20, 40} (left to right).
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(SMC, LHS and ASS). The distribution for HRmax, involving multimodalities, is the most challenging to capture 
for which all the UQ methods reach the average threshold difference of 7.5%.

3.1.2.  Sub-Case With D = 3

Here, the analysis is restricted to HRmax as it is the only quantity of interest that changes drastically as D is 
increased to 3—compared to Flood Extent and HRave that retain similar responses to as with D = 2 (Figure 3). 
Figure  11a displays the order of convergence per UQ method based on the relative histogram difference 

Figure 9.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). Sampling patterns for each uncertainty quantification method for the largest 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  identified 
(Figure 8) to meet the target average difference of 7.5% for all the quantities of interest.
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(Equation 4) calculated for HRmax (left-to-right); while Figure 11b shows the 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  identified per UQ method and 
their relative-to-SMC speedup ratios 𝐴𝐴 𝐴𝐴

SMC
𝑠𝑠  /𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  to keep the target threshold difference with Nbin = {10, 20, 40}. 
With larger Nbins, the orders of convergence among the UQ methods become similar, reaching maximum similar-
ity with the slightly higher error magnitudes with Ns < 2,000 for Nbins = 40 (Figure 11a). This suggests that all 
UQ methods tend to have a similar decay rate for 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠   < 2,000; and, as Nbins is refined, the choice among them is 
not as significant with D = 3 compared to with D = 2. This observation also arises from the fact that HRmax is the 
most relevant quantity of interest under consideration (Figure 3), which would require larger 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  (with all the UQ 
methods K) than any other quantity of interest, to reproduce refined relative histograms using Nbins = 40. As Ns 
exceeds 4,000, the deterministic realization methods (HWE and QMC) show lower relative histogram differences 

Figure 10.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). Relative histogram plot per uncertainty quantification method for the 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑆𝑆
 shown in 

Figure 9 based on Nbins = 40. The plots for the coarser relative histograms using Nbins = {10, 20} are based on the same 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  , thus are downscaled from the relative 
histograms using Nbins = 40.
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than the random sampling methods (SMC, LHS and ASS), but these differences become less significant as Nbins 
is refined to 40 compared to with Nbins = {10, 20}.

Consequently, with D = 3, the identified 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  would be larger than with D = 2 along with larger Nbins, and larger 
𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  should be expected with the random sampling methods (LHS and ASS) compared with the deterministic 
realization methods (QMC and HWE). As can be observed from Figure 11b, there is no notable reduction in the 
identified 𝐴𝐴 𝐴𝐴

LHS
𝑠𝑠  and 𝐴𝐴 𝐴𝐴

ASS
𝑠𝑠  since they lead to a speedup ratio range close to 1. The identified 𝐴𝐴 𝐴𝐴

QMC
𝑠𝑠  and 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠  yield 

a speedup ratio range of around 0.5-to-2.0. These upper and lower bounds are, however, fluctuations reached 
by HWE, which leads to an average speedup ratio that is lower than the average speedup ratio of 1.6, which is 
consistently preserved by QMC. This suggests that QMC is a better choice to meet the average threshold differ-
ence of 7.5% while having Ns somewhere between 2,000 and 4,000.

Figure  12 illustrates the sampling patterns in the three-dimensional uncertainty space for QMC and HWE, 
using the 𝐴𝐴 𝐴𝐴

QMC
𝑠𝑠  and 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠  identified to keep the average threshold difference of 7.5% for the finest Nbins = 40 

(Figure  11). The sample distributions for the random sampling methods (K  =  SMC, LHS and ASS) are not 
included, to save space, as they lead to more or less similar 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  with similar distribution patterns. Cross-sections 
of a two-dimensional projection are included to distinguish between the sampling abilities more clearly, among 
HWE and QMC. Contrasting the sampling patterns between the cross-sections, QMC achieves more efficient 
filling of samples (𝐴𝐴 𝐴𝐴

QMC
𝑠𝑠 = 2407) compared to HWE that achieves a relatively sparse sampling even with about 

twice the number of samples (𝐴𝐴 𝐴𝐴
HWE
𝑠𝑠 = 4,096). Note that, this 𝐴𝐴 𝐴𝐴

HWE
𝑠𝑠  was identified for HWE with D = 2, where 

the sampling patterns were not as sparse (Figure 9), thus demonstrating how HWE becomes less practical in its 
sampling with increased dimensionality, D, of the uncertainty space.

Figure 13 includes the plots of the relative histograms for HRmax, shown for each UQ method for the identified 
𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  to meet the average threshold difference of 7.5%, based on Nbins = 40 (Figure 11). The relative histograms 

Figure 11.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). Panel (a) displays the order of convergence per uncertainty quantification (UQ) method 
K (K = standard Monte Carlo, QMC, Haar-wavelet expansion, Latin hypercube sampling and adaptive stratified sampling) based on the relative histogram difference 
(Equation 4) calculated for HRmax, and using Nbin = {10, 20, 40} (left to right); and panel (b) shows the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified with each UQ method K to keep the target relative 
histogram difference of 7.5% ± 2.5% alongside the relative-to-SMC speedup ratios 𝐴𝐴 𝐴𝐴

SMC
𝑠𝑠  /𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  .
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follow a triangular distribution that displays sharper details as Nbins is enlarged, making it even more challenging 
to capture by the UQ methods K with a 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  between around 2,000 and 4,000 (K = SMC, LHS, ASS, and QMC). 
QMC again outperforms the other methods with a relatively smaller 𝐴𝐴 𝐴𝐴

QMC
𝑠𝑠   = 2,400, that is closer to the lower 

bound of 2,000, compared to any other UQ method K that yield a 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  that is closer to the upper bound of 4,000.

Figure 12.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). The upper panel shows the sampling inside the three-dimensional uncertainty space using 
the largest 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified (for QMC and Haar-wavelet expansion) to keep the target average difference of 7.5%. The lower panel displays a two-dimensional projection to 
distinguish between the sampling abilities more clearly.

Figure 13.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). Relative histogram plot per uncertainty 
quantification method for the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑆𝑆
 identified to keep the target average difference of 7.5% based on Nbins = 40. The plots 

for the coarser relative histograms using Nbins = {10, 20} are based on the same 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  , thus are downscaled from the relative 
histograms using Nbins = 40.
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These analyses have quantified the range of the speedup ratio for the UQ methods targeting a relative histogram 
difference below the (average) threshold to 7.5%. Remarkably, targeting a difference based on the relative histo-
gram metric yields a range with 4 and 175 times smaller lower and upper bounds, respectively, as compared to 
targeting the difference based on the standard errors of the mean and the variance (Appendix A). Consequently, 
the metric of the relative histogram difference provides more informative estimates of the relative-to-SMC 
speedup ratios for the UQ methods to capture the frequency of occurrence for the flood-related quantities of 
interest.

3.2.  Torrential Flooding Over a Rough River Valley (Section 2.5.2)

3.2.1.  Sub-Case With D = 2

Figure 14 includes the plots of the relative histograms for Flood Extent, HRave, and HRmax per UQ method K 
for the identified 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  with Nbins = 40 (Section 3.1.1); note that the coarser relative histograms with Nbins = {10, 
20} are not shown hereafter, but their relative differences are quantified (Table 1). As may be expected from the 
behavior of the response surfaces (Figure 5), the relative histograms for Flood Extent and HRave follow almost 
bimodal distributions, but the distribution for HRave is weaker and more akin to have an inflexion; whereas the 

Figure 14.  Torrential flooding over a rough river valley (Section 2.5.2). Relative histograms with Nbins = 40 for Flood 
Extent (left), HRave (middle) and HRmax (right) per uncertainty quantification method K (K = standard Monte Carlo, QMC, 
Haar-wavelet expansion, Latin hypercube sampling, and adaptive stratified sampling) for the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified for the sub-case 
with D = 2 (Section 3.1.1).

Nbins Quantity of interest

Relative histogram difference (%)

𝐴𝐴 𝐴𝐴
SMC

𝑆𝑆
= 4675 𝐴𝐴 𝐴𝐴

LHS

𝑆𝑆
= 3738 𝐴𝐴 𝐴𝐴

ASS

𝑆𝑆
= 3790 𝐴𝐴 𝐴𝐴

QMC

𝑆𝑆
= 1359 𝐴𝐴 𝐴𝐴

HWE

𝑆𝑆
= 4096 

10 Flood Extent 3.7 3.5 2.4 1.6 0.8

HRave 3.6 3.5 3.1 1.6 1.4

HRmax 3.8 3.5 3.8 1.5 1.2

20 Flood Extent 5.1 3.7 5.0 3.6 1.7

HRave 5.2 5.1 4.6 2.7 2.1

HRmax 4.8 4.6 6.0 4.3 2.0

40 Flood Extent 8.8 5.3 8.6 5.7 2.6

HRave 7.1 7.4 7.8 5.3 3.1

HRmax 6.9 7.7 9.3 6.2 3.3

Note. Relative histogram differences (via Equation  4) against the test-specific reference prediction (Section  2.5.2) for 
Nbins = {10, 20, 40} for the UQ methods K (K = SMC, QMC, HWE, LHS, and ASS) considering the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified for the 
sub-case with D = 2 (Section 3.1.1).

Table 1 
Torrential Flooding Over a Rough River Valley (Section 2.5.2)
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relative histogram for HRmax follows a triangular distribution. These distributions are captured by the UQ meth-
ods with a maximum difference below 10%. This indicates that the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  quantified previously (Section 3.1.1) are 
still valid for the more realistic setting of the second test case (Section 2.5.2).

However, the capture of the relative histogram become harder for the UQ methods with larger Nbins. Table 1 
includes the relative histogram differences against the test-specific reference prediction (Section 2.5.2) for all the 
UQ methods and the quantities of interests for Nbins = {10, 20, 40}. As expected, the larger the Nbins, the larger 
the difference, which averages for all the UQ methods and the quantities of interests, to 6.3% for Nbins = 40, to 4% 
for Nbins = 20 and to 2.6% for Nbins = 10. Moreover, this difference for the random sampling methods (SMC, LHS 
and ASS) tends to have a faster growth rate compared to the differences for the deterministic realization methods 
(QMC and HWE). The largest differences occur with Nbins = 40, varying between 5.3% and 9.3% for SMC, LHS 
and ASS and between 2.6% and 6.2% for QMC and HWE, considering all the quantities of interest. LHS and ASS 
lead to a difference up to 7.7% and 9.3%, respectively, which is very close to that of SMC, being around 7.0% but 
using about 900 fewer samples. HWE attains a difference of 3.3% that is lower than the 6.2% difference attained 
by QMC with three times fewer samples. This suggests that QMC is the most efficient alternative-to-SMC to 
reduce Ns and keep the threshold difference of 7.5%.

3.2.2.  Sub-Case With D = 3

Figure 15 shows the plots of the relative histograms for Flood Extent and HRmax per UQ method for the identified 
𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  with Nbins = 40 (Section 3.1.2); the relative histogram for HRave is not included as it is very similar to the one 
shown in Figure 14, also informed by the behavior of the response surfaces (Figure 5). Now, the relative histo-
gram predicted for Flood Extent exhibits a weaker bimodality within its distribution and that predicted for HRmax 
becomes a unimodal distribution with an upper tail. The predicted reference distributions are well-captured by all 
the UQ methods leading to a maximum difference below 10%, thus indicating that the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  quantified previously 
with D = 3 (Section 3.1.2) remain valid.

Table 2 includes the relative histogram differences against the test-specific reference prediction (Section 2.5.2) 
for all the UQ methods for Nbins = {10, 20, 40}, considering the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified for the sub-case with D = 3 
(Section 3.1.2). Again, the larger the Nbins the bigger the relative histogram differences for all the UQ methods, 
suggesting that the capturing of the relative histogram is more demanding with larger Nbins = 40. In this case, the 
difference for Flood Extent varies between 4.6% and 9.3% and that for HRmax between 4.0% and 8.8%, suggesting 
that the bimodal Flood Extent distribution is slightly more difficult to capture compared to the almost unimodal 
HRmax distribution. In doing so, the deterministic realization methods (QMC and HWE) outperform, leading to a 
difference between 4.6% and 7.0%, compared to the difference between 7.5% and 9.3% achieved by the random 
sampling methods. For Flood Extent, ASS achieves a difference of 7.7% that is lower than the 9.3% difference 
obtained by LHS, suggesting that ASS may become a better option as D is increased from 2 to 3 and as the quan-
tity of interest exhibits non-smooth variations in the response surfaces (Figure 5). HWE achieves a difference of 

Figure 15.  Torrential flooding over a rough river valley (Section 2.5.2). Relative histograms with Nbins = 40 for Flood Extent 
(left) and HRmax (right) per uncertainty quantification method K (K = Standard Monte Carlo, QMC, Haar-wavelet expansion, 
Latin hypercube sampling, and adaptive stratified sampling) for the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified for the sub-case with D = 3 (Section 3.1.2).
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4.6% while QMC achieves a difference of 7.0% by employing 1,689 less samples. However, as D is increased 
from 2 to 3, the difference for HWE increased by a higher rate, of 1.3%, compared to that with QMC, of 0.8%, 
which introduced a further reduction of 789 samples compared to HWE. For HRmax, the differences are slightly 
lower than for Flood Extent, except for ASS that is designed to be better suited to capture responses with local, 
non-flat variations (Section 3.1).

Overall, the alternative-to-SMC UQ methods with the identified 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  (Section 3.1) leads to predictions that are 
close to the average threshold difference of 7.5% without exceeding the maximum threshold of 10%. Among 
these methods, QMC and ASS keep the relative histogram prediction for Flood Extent close to 7.5% and tend to 
perform better as D is increased, with 𝐴𝐴 𝐴𝐴

ASS
𝑠𝑠  and 𝐴𝐴 𝐴𝐴

QMC
𝑠𝑠  remaining within 2,000 and 4,000. Therefore, ASS and 

SMC are investigated further for a real case study involving five input random variables (D = 5) to analyze their 
Flood Extent histograms (Section 3.3), predicted using 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠   = {2,000, 4,000}.

3.3.  Carlisle 2005 Flooding (Section 2.5.3)

In Figure 16, the relative Flood Extent histograms predicted by QMC and ASS are compared to the reference 
prediction for 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠   = 2,000 (Figure 16, left) and 4,000 (Figure 16, right). The histograms follow a symmetric 
distribution that seems to be better captured by QMC compared to ASS. Table 3 includes the relative histo-
gram differences against the test-specific reference prediction (Section 2.5.3) for QMC and ASS considering 
Nbins = {10, 20, 40} and 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠   = {2,000, 4,000}. For 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠   = 2000, the relative histogram difference increases with 
both QMC and ASS with larger Nbins, but the difference with ASS increases at faster rate than the difference 

Nbins Quantity of interest

Relative histogram difference (%)

𝐴𝐴 𝐴𝐴
SMC

𝑆𝑆
= 3, 823 𝐴𝐴 𝐴𝐴

LHS

𝑆𝑆
= 3, 821 𝐴𝐴 𝐴𝐴

ASS

𝑆𝑆
= 3, 766 𝐴𝐴 𝐴𝐴

QMC

𝑆𝑆
= 2, 407 𝐴𝐴 𝐴𝐴

HWE

𝑆𝑆
= 4, 096 

10 Flood Extent 4.3 2.6 2.7 2.3 1.7

HRmax 2.7 4.4 3.4 1.5 1.5

20 Flood Extent 6.6 5.5 4.7 4.0 2.4

HRmax 4.6 5.7 6.5 2.9 1.9

40 Flood Extent 7.5 9.3 7.7 7.0 4.6

HRmax 7.5 8.2 8.8 5.4 4.0

Note. Relative histogram differences (via Equation  4) against the test-specific reference prediction (Section  2.5.2) for 
Nbins = {10, 20, 40} for the UQ methods K (K = SMC, QMC, HWE, LHS, and ASS) considering the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified for the 
sub-case with D = 3 (Section 3.1.2).

Table 2 
Torrential Flooding Over a Rough River Valley (Section 2.5.2)

Figure 16.  Carlisle 2005 flooding (Section 2.5.3). Relative Flood Extent histograms (using Nbins = 40) per uncertainty 
quantification method K (K = QMC and adaptive stratified sampling) for 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠   = 2,000 (left) and 4,000 (right).
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with QMC, leading to differences around 8.6% and 12.5% for the largest 
Nbins = 40, respectively. This suggests favoring QMC over ASS when using 
a 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  that is close to 2000. For 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠   = 4,000, the relative histogram differ-
ence with ASS is lower than that with QMC for Nbins = 10, almost identical 
for Nbins = 20 but slightly higher for Nbins = 40, suggesting that the increase 
in Nbins may be of less influence as 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  is close to 4,000. Overall, QMC 
leads to a difference that is closer to the average threshold difference of 7.5%, 
with both 𝐴𝐴 𝐴𝐴

QMC
𝑠𝑠   = 2,000 and 4,000, and irrespective of Nbins; whereas ASS 

only meets this criterion with 𝐴𝐴 𝐴𝐴
ASS
𝑠𝑠   = 4,000. This means that to keep the 

relative histogram difference below the maximum threshold of 10%, using 
𝐴𝐴 𝐴𝐴

QMC
𝑠𝑠   = 2,000 is feasible to achieve a relative-to-SMC speedup ratio of 5 

with QMC, for this test case, whereas only a speedup ratio of 2.5 can be 
achieved with ASS by using 𝐴𝐴 𝐴𝐴

ASS
𝑠𝑠   = 4,000.

Among the two selected UQ candidates, QMC seems able to maximize both 
the predictive accuracy in the capture of relative histograms and the speedup 

ratio to gain efficiency over SMC. Given its simplicity compared to ASS and its outperformance on efficiency 
in the other two test cases involving rapid floods over smooth and rough terrains (Sections 3.1 and 3.2), it can 
be concluded that QMC is a compelling alternative-to-SMC UQ method for complex, probabilistic modeling of 
real-world floods with multiple uncertain inputs.

4.  Limitations and General Applicability
The performance analysis of the alternative-to-SMC UQ methods for probabilistic flood modeling is limited 
to: using the GPU-FV1 physical solver of LISFLOOD-FP, making simulation runs for moderately sized spatial 
domains (≤15 km 2), having an input uncertainty space with a dimension 2 ≤ D ≤ 5 in which the variations in the 
input random variables are all represented by uniform probability distribution, and splitting the load of parallel 
probabilistic runs on four NVIDIA Tesla V100 GPU cards. The applicability of the analysis beyond any of these 
limitations is discussed in the following.

4.1.  Non-Uniform Distributions for the Uncertain Input Variables

The present UQ analysis framework can be reproduced using a Gaussian or any other probability distribution per 
input random variable. In fact, such non-uniform distributions can be generated from the cumulative distribution 
functions of the uniform distributions (Equations 1–3) by means of the Inverse Transform Sampling (Steinbrecher 
& Shaw, 2008) or the Box-Muller algorithm (Box & Muller, 1958). However, these non-uniform distributions 
would have the same data means and standard deviations, and thus may not significantly change the findings 
of this study (Haan et al., 1998). Rather, there is an impending need for producing well-characterized uncer-
tainty with statistically rigorous estimation of the potential underlying correlations in their domain of variations, 
followed by model-based reduction of the uncertainty space (Stefanescu et al., 2012).

4.2.  Choice of the Physical Solver

The present GPU-FV1 physical solver on LISFLOOD-FP is best suited for probabilistic modeling of rapid flood 
types. At present, it runs on a single GPU card and is thus limited to case studies with spatial domain size to DEM 
resolution leading to a number of cells that fits within the GPU card's memory capacity. Simulations over large-
size domains require deploying another GPU-FV1 solver that can effectively utilize hundreds of GPUs across 
thousands of CPUs in a heterogeneous computing architecture (for example, Morales-Hernández et al., 2021), to 
also perform the batches of probabilistic runs more efficiently.

For probabilistic modeling of slowly propagating fluvial/pluvial floods over large catchments, a less complex 
(mathematically and numerically) physical solver may be more appropriate to expedite runtimes, such as the 
reduced acceleration solver on LISFLOOD-FP (Beevers et  al.,  2020), which has a version for the GPU with 
grid-resolution adaptivity to maximize runtime efficiency (Sharifian et al., 2023). Alternatively, physical solvers 
based on distributed hydrological modeling can be used for multi-physics modeling such as to incorporate the 

Nbins

Relative histogram difference (%)

Ns = 2,000 Ns = 4,000

ASS QMC ASS QMC

10 4.1 2.6 2.4 4.4

20 8.7 5.1 6.1 6.2

40 12.5 8.6 8.5 7.7

Note. Relative histogram differences (via Equation 4) for Flood Extent against 
the test-specific reference prediction (Section 2.5.3) considering Nbins = {10, 
20, 40} for the UQ methods K (K = QMC and ASS) each considered with 
Ns = 2,000 and 4,000.

Table 3 
Carlisle 2005 Flooding (Section 2.5.3)
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feedbacks between groundwater and land surface processes (for example, Baroni et al., 2019). In the latter case, a 
relatively large input uncertainty space would be expected, with D > 5, (for example, Merz et al., 2020), requiring 
further measures to address the curse of dimensionality that will affect all the UQ methods.

4.3.  Measures to Address the Curse of Dimensionality (D > 5)

As identified in this study, the higher the D the higher the Ns required by any of the UQ methods, making them 
not affordable with physical solvers for probabilistic hydraulic and/or hydrological simulations with D >> 5 at 
the catchment scale and beyond. In such a case, one measure would be to use a data-driven emulator to reduce 
the number of evaluations of the physical solver to just train a sub-sample of Ns to produce the data set from 
which the emulator produces the predictions. This type of modeling has been explored for flood modeling using 
physical solvers, including LISFLOOD-FP, to train and validate different types of emulators (for example, Chu 
et al., 2020; Donnelly et al., 2022; Kabir et al., 2020). Still, this study provides strong evidence to prefer using 
QMC with any type of emulators since it offers a higher reduction in Ns compared to the other UQ methods as 
D is increased.

4.4.  Assumption of Fixed and Correct Input Uncertainty

This work has assumed fixed and correct input uncertainty assumptions with no attempt to gain knowledge about 
the input uncertainty from observation such as using Bayesian analysis, like in GLUE (Beven & Binley, 1992). 
The work can be considered usefully applicable for real-world flood modeling problems where detailed data sets 
(i.e., water depth and/or velocity time series) are unavailable to acquire a characterization of the input uncer-
tainty as is too often the case (Boelee et al., 2019). Still, it highlights a potential for deploying QMC in general 
uncertainty analysis framework for flood modeling to estimate Bayesian inference more efficiently (Buchholz & 
Chopin, 2019), such as within GLUE and Bluecat (Koutsoyiannis & Montanari, 2022).

5.  Summary and Conclusions
Four UQ methods were assessed to find alternatives to the SMC method for reproducing flood-related histograms, 
efficiently at a reduced sample size: two based on random sampling, which are LHS and ASS, and two based on 
deterministic realization, which are Quasi Monte Carlo (QMC) and HWE. The reproduced flood-related histo-
grams were evaluated for three quantities of interest, the Flood Extent and the average and maximum HR (HRave 
and HRmax). These quantities stemmed from the probabilistic modeling of torrential and fluvial floodplain flows, 
impacted by uncertainty from at least two input random variables amongst the inflow discharge(s), the Manning 
coefficient and the ground elevation. The relative histograms predicted by each of the four alternative-to-SMC 
methods were validated against the reference SMC prediction achieved by brute-force probabilistic runs using a 
much larger sample size.

First, the four methods were exhaustively compared for a synthetic rapidly propagating flood over a smooth 
terrain to include diagnostic analyses of their orders of converge for two sub-cases: one with two input random 
variables for the inflow discharge and the Manning coefficient; and, the other with three input random varia-
bles, further incorporating the input random variable for the ground elevation. The analyses identified a sample 
size between 2,000 and 4,000 for the four methods to keep the relative histogram difference below an average 
threshold around 7.5% with respect to the reference prediction. The identified sample sizes were mostly based 
on HRmax, since it is the most uncertain quantity of interest, exhibiting the highest non-smoothness level in the 
responses, and on the largest number of bins, of 40, since using fewer bins led to better sample size reductions. 
With two input random variables, the sample size for LHS was slightly smaller than that for ASS, both yielding 
about 900 samples less than the sample size predicted for SMC, or a relative-to-SMC speedup ratio in the range 
of 1.2-to-1.8. However, LHS and ASS yielded no considerable speedup ratios with three input random variables; 
despite this, the sample size for ASS became smaller than that of LHS, suggesting a tendency for ASS to poten-
tially outperform if the number of input random variables is increased beyond three. QMC and HWE yield higher 
speedup ratios, in range of 1.1-to-25, with two input random variables; the lower bound of 1.1 was caused by the 
inflexibility of HWE to use any sample size between 1,024 and 4,096, as opposed to QMC that had a four-times 
higher lower bound. With three input random variables, the speedup ratios for QMC and HWE dropped, to a 
range of 0.5-to-2.0, though QMC preserved an average speed up ratio of 1.6; again, the lower and upper bounds 
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were fluctuations arising from the (aforementioned) inflexibility of HWE. Common to both sub-cases, QMC 
entailed a sample size closer to 2000, compared to the sample size for LHS, ASS and HWE that were closer to 
4,000.

Second, the two sub-cases were reconsidered for a torrential flooding over a rough river valley to validate the 
identified sample sizes against the test-specific reference prediction. Flood Extent was the most uncertain quan-
tity of interest, exhibiting the highest non-smooth responses level. ASS captured the bimodality in the Flood 
Extent histogram with a difference of 7.7%, as the number of input random variables increased to three, which is 
in contrast to LHS that achieved a higher difference, of 9.3%. In both sub-cases, QMC outperformed, predicting 
the histogram with a difference of 7%, while using a sample size that is three times smaller than that of HWE.

Finally, therefore, ASS and QMC were validated using sample sizes of 2,000 and 4,000 to reproduce the refer-
ence prediction for the Flood Extent histogram of a real-world fluvial flooding scenario with five input random 
variables. For the sample size of 2,000, both ASS and QMC capture the reference Flood Extent histogram, with 
a difference below the maximum threshold of 10%, with low number of bins, of 10 and 20; however, ASS failed 
to meet this threshold when the number of bins is enlarged to 40. For the larger sample size of 4,000, ASS and 
QMC predicted relative histogram differences that meet the maximum threshold, irrespective of the number of 
bins, suggesting that they are both valid choices for sample sizes as large as 4,000 to get a speedup ratio of 2.5. 
However, only QMC could meet this threshold to further reduce the sample size somewhere close to 2,000 and 
boost the speedup ratio to 5.

Overall, the comparative analyses in this study identify QMC to be the simplest and most efficient 
alternative-to-SMC for probabilistic flood modeling applications, including rapid and slow flows, driven by more 
than one input random variable but not exceeding five. The speedup ratio for QMC is in the range of 1.6-to-5. 
However, this ratio has been quantified for suboptimal conditions (i.e., for the relative histogram metric in order 
to capture the full details of the probability distributions, for the most uncertain flood-related quantity of interest 
and the largest number of bins); thus should be larger when using less sensitive metrics (e.g., the standard errors 
of the mean and variance) or when targeting a flood-related quantity with low and/or smooth variations in its 
responses. Despite the limitations of this study, its findings still provide useful insights into the potential utility of 
QMC to speedup probabilistic modeling of more sophisticated water resource problems including more than five 
random variables such as, for example, to use QMC with a multi-physics solver to support a data-driven model to 
minimize the number of sub-samples of the training data set.

Appendix A
The convergence analyses, presented in Section 3.1, are re-explored using a threshold difference, with respect 
to the reference prediction, that is based on the standard errors of the mean, 𝐴𝐴 𝑌𝑌  , and the variance, S 2. Table A1 
summarizes how 𝐴𝐴 𝑌𝑌  and S 2 have been calculated per UQ method K (K = SMC, LHS, ASS, QMC, HWE), noting 
that with ASS the weighted sum over all strata should be performed first, wherein the weight of the kth stratum 
is its relative volume pk (Owen, 2013).

The convergence analyses are conducted for the same range of 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  (Section 2.5.1), to identify the 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  per UQ 
method K (K = SMC, QMC, HWE, LHS, and ASS) that keep a threshold difference of 0.0075% ± 0.0025% and 

UQ method 𝐴𝐴 𝑌𝑌   S 2

SMC
LHS
QMC

𝐴𝐴
1

𝑁𝑁𝑠𝑠

𝑁𝑁𝑠𝑠∑

𝑗𝑗=1

𝑌𝑌𝑗𝑗  𝐴𝐴
1

𝑁𝑁𝑠𝑠

𝑁𝑁𝑠𝑠∑

𝑗𝑗=1

(

𝑌𝑌𝑗𝑗 − 𝑌𝑌

)2

 

ASS
𝐴𝐴

Number of strata∑

𝑘𝑘=1

𝑝𝑝𝑘𝑘𝑌𝑌 𝑘𝑘  𝐴𝐴

Number of strata∑

𝑘𝑘=1

𝑝𝑝𝑘𝑘𝑆𝑆
2
𝑘𝑘
+ 𝑝𝑝𝑘𝑘

(

𝑌𝑌 𝑘𝑘 − 𝑌𝑌

)2

 

HWE 𝐴𝐴 𝑌𝑌0 
𝐴𝐴

1

2𝐷𝐷𝐷𝐷

𝑁𝑁𝑠𝑠∑

𝑗𝑗=2

𝑁𝑁𝑠𝑠∑

𝑚𝑚=1

𝑌𝑌
2
𝑗𝑗
𝜙𝜙
2
𝑗𝑗
(𝑋𝑋𝑚𝑚) 

Table A1 
Formulas to Calculate the Mean, 𝐴𝐴 𝑌𝑌  , and the Variance, S 2, for the Different Uncertainty Quantification Methods
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of 0.3% ± 0.1% for 𝐴𝐴 𝑌𝑌  and S 2, respectively. From the identified 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  per UQ method K (K = QMC, HWE, LHS, 
and ASS), the relative-to-SMC speedup ratios (Equation 5) are quantified.

A1.  Sub-Case With D = 2

Figure A1 shows the order of convergence using the difference for the mean (upper panel) and variance (lower 
panel) with increased Ns, for each of the three quantities of interest with all the UQ methods. Based on the 
difference for the mean (Figure A1, upper panel), the order of error magnitudes are about three levels lower 
compared to the order of error magnitudes based on the relative histogram difference (compare with Figure 7). 
This shows that, for any selected Ns, the UQ methods better preserve the threshold difference for the mean 
as compared  to  the  threshold relative histogram difference. Even with the smallest Ns, the differences for the 
mean are less than 1%, irrespective of the quantity of interest, which suggests that any UQ method is useable to 
accurately preserve the threshold difference for the mean for a small Ns. With larger Ns, any alternative-to-SMC 
UQ method has increasingly lower order of error magnitudes than that of SMC, thus become a better choice. 
The deterministic realization methods (HWE and QMC) outperform the random sampling methods (LHS and 
ASS) since they lead to lower order of error magnitudes. Among the former and latter methods, HWE and LHS 
have lower order-of-magnitudes than QMC and LHS, respectively, suggesting that they are slightly better options 
when considering the threshold mean difference.

Based on the difference for the variance (Figure A1, lower panel), the order of error magnitudes are about two 
levels bigger than the order of error magnitudes seen with the threshold mean difference (compare with Figure A1, 
upper panel), but still one level lower than the order of error magnitude seen with the threshold relative histogram 
difference (compare with Figure 7). Therefore, the UQ methods can still offer better reduction in Ns compared 
to the relative histogram difference even when targeting a difference for the variance–that is more sensitive in 
variability than the mean. For the smallest Ns, the order of error magnitudes are very close to each other, far 
below 10%, indicating any UQ method is useable to accurately to keep the target difference for the variance for a 
small Ns. As Ns is increased, the alternative-to-SMC outperform: the deterministic realization methods (HWE and 

Figure A1.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). Order of convergence per uncertainty quantification method K (K = standard Monte Carlo, 
QMC, Haar-wavelet expansion, Latin hypercube sampling, and adaptive stratified sampling) calculated for Flood Extent, HRave, and HRmax based on the difference in 
the mean (upper panel) and variance (lower panel).
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QMC) show lower order of error magnitudes compared the random sampling methods (SMC, LHS, and ASS), 
thus can deliver a lower difference for the variance for a fixed Ns leading to more reductions. Among QMC and 
HWE there is no clear winner, and LHS outperforms ASS given its lower order-of-magnitudes.

Figure A2 shows the 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  identified for each uncertainty quantification (UQ) method K and the relative-to-SMC 
speedup ratios 𝐴𝐴 𝐴𝐴

SMC
𝑠𝑠  /𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  to keep the threshold difference of 0.0075% ± 0.0025% for the mean 𝐴𝐴 𝑌𝑌  (Figure A2, 
upper panel), and of 0.3% ± 0.1% for the variance S 2 (Figure A2, lower panel). For the threshold mean difference, 
a speedup ratio range of 6-to-4334 is achieved by the UQ methods. This is much higher than the range of 1.1-to-25 
identified using the relative histogram difference (compare with Figure 8). The deterministic realization meth-
ods (QMC and Haar-wavelet expansion (HWE)) achieve a range of 12-to-4334 whereas the random sampling 
methods (Latin hypercube sampling (LHS) and adaptive stratified sampling) have a comparatively lower range 
of 6-to-474. Among the former methods, HWE outperform leading to higher lower and upper bounds, of 39 and 
4,334, compared to those reached by QMC, of 12 and 2,538, respectively. Whereas LHS outperforms among the 
latter methods leading to higher upper and lower bounds, of 14 and 474, compared to those reached by ASS, of 
6 and 116, respectively.

For the threshold variance difference, the speedup ratios achieved by the UQ methods are a bit lower than the 
ratio identified for the threshold mean difference (compare Figure A1, lower vs. upper panels), and has a range of 
4-to-3174. This range is much higher than that the range identified for the relative histogram difference (compared 
with Figure 8). This shows that the variance is a slightly more demanding on the NS for a UQ method compared to 
the mean, which may be expected, but none of these conventional statistical metrics are as challenging compared 
to when considering the relative histogram metric. Here, the deterministic realization methods (QMC and HWE) 
again outperform the random sampling methods (LHS and ASS) with a speedup ratio range of 18-to-3174 for 
the former methods that is higher than that of 4-to-74 for the latter methods. The highest speedup ratio of 3,174 
is obtained by QMC, suggesting that it is likely to be the best performer overall to reduce NS when capturing 
sensitive responses such as the variance for HRmax.

Figure A2.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). The 𝐴𝐴 𝐴𝐴
𝐾𝐾

𝑠𝑠  and relative-to-SMC speedup ratio for Flood Extent, HRave, and HRmax to meet the 
target difference: (a) of 0.0075% ± 0.0025% based on the standard error of the mean (upper panel), and (b) of 0.3% ± 0.1% based on the standard error of the variance 
(lower panel).
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A2.  Sub-Case With D = 3

Figure A3(a) shows the order of convergence for the threshold mean difference (left) and for the threshold variance 
difference (right) for HRmax. Increasing the uncertainty space to D = 3 makes the choice among the UQ methods 
become more competitive, especially among LHS, QMC, and HWE that now have smaller order of error magni-
tudes than SMC and ASS. The order of error magnitudes of LHS lies between HWE and QMC. For the threshold 
mean difference, HWE leads to the lowest order of error magnitudes, while the lowest order of error magnitudes 
for the variance are attained by QMC. Therefore, the deterministic realization methods (QMC and HWE) are a 
better choice than the sampling methods (LHS and ASS). Figure A3(b) shows the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  identified per UQ method 
K and the relative-to-SMC speedup ratios 𝐴𝐴 𝐴𝐴

SMC
𝑠𝑠  /𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  to keep the threshold difference of 0.0075% ± 0.0025% for 
𝐴𝐴 𝑌𝑌  (left), and of 0.3% ± 0.1% for S 2 (right). The speedup ratio has a range of 12-to-4,431, which is much greater 

than the range of 1-to-2 seen for the relative histogram difference (compared with Figure 11b). HWE and QMC 
deliver the highest range for the speedup ratio, with higher upper and lower bounds identified with HWE based 
on the threshold mean difference and with QMC based on the threshold variance difference. Hence, QMC is 
better suited to attain the most reduction in Ns when analyzing a complex quantity of interest using a sensitive 
statistical metric.

Figure A3.  Rapidly propagating flood over a smooth terrain (Section 2.5.1). Panel (a) shows the order of convergence per 
UQ method K (K = SMC, QMC, HWE, LHS, and ASS) calculated for 𝐴𝐴 HRmax based on the difference in the standard errors 
of the mean (left) and the variance (right); and, panel (b) shows the 𝐴𝐴 𝐴𝐴

𝐾𝐾

𝑠𝑠  and relative-to-SMC speedup ratio for 𝐴𝐴 HRmax to meet 
the target difference: of 0.0075% ± 0.0025% based on the standard error of the mean (left), and of 0.3% ± 0.1% based on the 
standard error of the variance (right).
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Appendix B
Matlab source codes are openly available (Hajihassanpour et al., 2022) to run the UQ analysis framework. The 
codes are separated into two parts: (i) sampling and realization and (ii) statistics and difference (error) study. 
Part (i) contains the codes to generate samples for a selected UQ method and to then calls the GPU-FV1 phys-
ical solver of LISFLOOD-FP (Shaw et al., 2021) to perform realizations at each sample, to finally post-process 
the realizations into the three quantities of interest. The parameters listed in Table B1 need to be defined in the 
script file main. m. The files needed to run LISFLOOD-FP (i.e., with extensions of “.par,” “.bci,” 
“.dby,” and “.dem”) should be placed in the same directory as main. m. Running main. m will produce the 
following output files in .mat format.

Parameters Description

SamplingMethod Set to “Pseudorandom” to run SMC

Set to “LHS” to run LHS

Set to “Hammersley” to run QMC

Set to “HaarQuadrature” to run HWE
RefinementLevel Only used with HWE, and is the refinement level. It takes a positive integer value
NumSamples Number of samples with LHS, QMC and SMC
UncertaintyTypes The type of uncertain input variables for the three test cases in Section 3:

Rapidly propagating flood over a smooth terrain (Sections 2.5.1 and 3.1)

[“Manning,” “Topography”] for the case with D = 2

[“Discharges,” “Manning,” “Topography”] for the case with D = 3

Torrential flooding over a rough river valley (Sections 2.5.2 and 3.2)

[“Manning,” “Topography”] for the case with D = 2

[“Discharges,” “Manning,” “Topography”] for the case with D = 3

Carlisle 2005 flooding (Sections 2.5.3 and 3.3)

[“Discharges,” “Discharges,” “Discharges,” “Manning,” 
“Topography”] for the case with D = 5

Table B1 
Part (i) Input Parameters to Generate Samples and to Perform Simulations Using LISFLOOD-FP 8.0

rand.mat Samples in the uncertainty space generated by a UQ method
UI.mat The information of the uncertain input variables including their original 

values, perturbation parameters, perturbed values, etc.
stratum.mat Only needs to be activated with ASS to record the stratification information 

such as the location of each stratum in the uncertainty space, the position 
of samples in each stratum, the mean value, the variance value, etc.

FloodExtent.mat Flood Extent quantity evaluated at the samples
HR_ave.mat HRave quantity evaluated at the samples
HR_max.mat HRmax quantity evaluated at the samples
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Part (ii) utilizes outputs of part (i) to evaluate the difference against the reference prediction and the 
relative-to-SMC speedup ratio considering: the relative histogram difference as a metric (Sections 3.1–3.3), 
or the statistical metrics of the mean and the variance (Appendix A). Part (ii) includes three Matlab source 
codes.

•	 �ErrorStudyWithReplications.m to evaluate the difference against the reference prediction 
(Sections 3.1 and Appendix A);

•	 �ComparingMethodsHistogram.m to qualitatively and quantitatively compare a relative histogram per 
UQ method against the reference relative histogram (Sections 3.1–3.3);

•	 �PostProcessing.m to plot the uncertain input variables along with associated response surfaces, and the 
sampling patterns in the uncertainty space (Sections 2.5 and 3.1).

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
Some or all data, models, or code generated or used during the study are available in a repository or online in 
accordance with funder data retention policies. The GPU-FV1 code is openly available on LISFLOOD-FP 8.0 
with https://doi.org/10.5281/zenodo.4073011, with instructions on how to download, set-up and run the code 
available on: https://www.seamlesswave.com/LISFLOOD8.0. The codes to reproduce the comparative analysis 
for the five UQ methods are openly available on: https://doi.org/10.5281/zenodo.7050213, with the instructions 
for running them detailed in Appendix B.

Parameters Description

UncertaintyTypesValues The total amount of uncertainty for each uncertain variable defined in 
UncertaintyTypes. For example, the inflow discharge variable has ±8% 
uncertainty, which means 16% in total

Rapidly propagating flood over a smooth terrain (Sections 2.5.1 and 3.1)

[16.0, 10.0] for the case with D = 2

[16.0, 10.0, 10.0] for the case with D = 3

Torrential flooding over a rough river valley (Sections 2.5.2 and 3.2)

[16.0, 10.0] for the case with D = 2

[16.0, 10.0, 0.25] for the case with D = 3

Carlisle 2005 flooding (Sections 2.5.3 and 3.3)

[16.0, 16.0, 16.0, 10.0, 0.08] for the case with D = 5
TimesToEvalFloodAndHR The time when Flood Extent, HRave or HRmax evaluate.

193 for the Rapidly propagating flood over a smooth terrain test case (Sections 2.5.1)

15,660 for the Torrential flooding over a rough river valley test case (Sections 2.5.2)

144,000> for the Carlisle 2005 flooding test case (Sections 2.5.3)
FileExeAddress The address of the location of the physical solver (LISFLOOD-FP 8.0) executable file
ParameterFileName The file name with the extension.par needed for running LISFLOOD-FP 8.0
QuantOfInter Only for ASS, and indicates the quantity of interest that can be any of “Flood 

Extent,” “HR_ave” or “HR_max”

Table B1 
Continued
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