Renewable Energy 216 (2023) 119061

Contents lists available at ScienceDirect
Renewable Energy

AN INTERNATIONAL JOURNAL

et soeris Klogirou

Renewable Energy

journal homepage: www.elsevier.com/locate/renene

Check for
updates

Offshore wind farm layout optimization using ensemble methods

Kjersti Solberg Eikrem **, Rolf Johan Lorentzen ?, Ricardo Faria®, Andreas Stgrksen Stordal ?,
Alexandre Godard ¢

4 NORCE Norwegian Research Centre AS, Postboks 22 Nygdrdstangen, 5838 Bergen, Norway

b ARDITI, Oceanic Observatory of Madeira, Agéncia Regional para o Desenvolvimento da Investigagdo Tecnologia e Inovagdo, Edif. Madeira Tecnopolo, Piso 2,
Caminho da Penteada, 9020-105 Funchal, Portugal

¢ Wunderocean, Rua Dr Calado, 26. Figueira da Foz, Portugal

ARTICLE INFO ABSTRACT

Keywords:

Wind farm layout optimization

Ensemble optimization (EnOpt and EPF-EnOpt)
Constrained optimization

Levelized cost of energy (LCOE)

Floating offshore wind

When planning wind farms it is important to optimize the layout to increase production and reduce costs. In
this paper we minimize the levelized cost of energy (LCOE) for a floating wind farm using wind data in an area
around Porto Santo in Portugal. We use ensemble based optimization (EnOpt), which is frequently applied in
the geophysical community to find optimal controls of oil reservoirs. EnOpt is usually used for unconstrained
optimization problems or for problems with simple constraints, for example upper and lower bounds on the
optimization variables. Here we consider a layout problem with many constraints on the distances between
turbines. To handle the constraints, we use an extension of EnOpt called EPF-EnOpt, in which the constrained
problem is replaced by a series of unconstrained problems with increasing penalty terms. We compare the
performance of this method with EnOpt with a fixed penalty term, and with a deterministic gradient method.
All the tested methods reduce the LCOE, but EPF-EnOpt gives better results than both a single run of EnOpt
with a fixed penalty term and the deterministic gradient method, and at a lower computational cost than using
the gradient method. We also consider the problem of maximizing the annual energy production without taking
into account any costs. EPF-EnOpt performs the best also for this problem.

1. Introduction community for optimizing control of reservoirs and planning wells,
but only recently has been applied to wind farm optimization prob-
lems. EnOpt is a stochastic optimization method where an ensemble
of controls is used to calculate an approximate gradient. It was first
introduced in Lorentzen et al. [21] to optimize water flooding in an oil
reservoir. It has been further developed in Chen et al. [22],Chen and
Oliver [23],Fonseca et al. [24],Stordal et al. [25],Fonseca et al. [26].
A major benefit of EnOpt is that the number of forward simulations

is independent of the number of parameters, and typically 100 (or

With the worlds increasing energy demand and the problems caused
by CO, emissions and climate change, there is a great need for sus-
tainable energy production. Wind energy could constitute an important
contribution for solving these problems, and the production is expected
to increase in coming years, in particular for offshore wind. To make
the most of the wind farms, it is beneficial to consider both the lifetime
energy production and the lifetime cost of the wind farm when planning
the layout. Often the levelized cost of energy (LCOE) is used to evaluate

a layout, and optimization can be performed to make it as low as
possible.

Wind farm layout optimization (WFLO) is a complex and com-
putationally demanding problem, and several optimization methods
have been studied over the last decades. Genetic algorithms have been
used by many authors [1-6]. Other methods include particle swarm
optimization (PSO) [7-10], greedy algorithms [4,11], mathematical
programming [12] and hybrid methods [13]. We refer to several review
papers for an overview of the existing literature [14-20].

In this paper we will use a variant of ensemble-based optimization
(EnOpt), a method that has been used extensively in the geophysical
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less) simulations are used to compute an approximate gradient. Our
application of EnOpt is motivated by this fact, and although a relatively
simple and fast wake model is used in this study, we aim at developing
a workflow that is applicable to a wide range of model fidelities and
complexities. EnOpt is a fast alternative to global methods and deter-
ministic gradient methods, in particular if there are many variables to
optimize or the model computations are costly. EnOpt often performs
better than deterministic gradient methods on problems with many
local minima, as these methods can easily get stuck in the closest local
minimum, while EnOpt is able to jump over some local minima since
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it approximates the gradient using samples in a larger region. Another
benefit of EnOpt is the potential of investigating robust optimization,
e.g., to include uncertainty in the wind profiles for a specific site by
representing the wind by an ensemble of realizations. The procedure
for robust optimization is well documented in the references above, and
the extension does not require additional computation time, contrary to
many other optimization algorithms. To the best of our knowledge, the
only applications of EnOpt to wind farm layout optimization are [27,
28]. The current work differs from these in the way the constraints are
handled and by having a larger number of parameters to optimize as
the turbines can move freely.

EnOpt is usually used for unconstrained optimization problems or
for problems with simple constraints, for example upper and lower
bounds on the optimization variables. In the wind farm optimization
problem considered here, there are many constraints that are not simple
bounds. The turbines are allowed to take any position in a designated
area, but with a lower limit on the distances between the turbines, and
for N turbines, this gives N * (N —1)/2 constraints. The standard EnOpt
method will not be able to fulfill the constraints when there are many
turbines. Therefore, we will use a method called EPF-EnOpt, which
is an extension of EnOpt designed to solve constrained optimization
problems. It combines EnOpt with the exterior penalty function method
(EPF) [29]. EPF-EnOpt was introduced in Oguntola and Lorentzen
[30] to optimize the production in an oil reservoir. In EPF-EnOpt, the
constrained problem is replaced by a series of unconstrained problems
with increasing penalty terms. The penalty term is zero in the regions
where the constraints are not violated, and nonzero if they are violated.

We apply the method to a test case north of the island Porto Santo
in Portugal using realistic data based on reanalysis of historical wind
speed measurements. The methodology used to generate the wind data
consists of a long-term data analysis for the atmosphere and for the
ocean, to constitute a Typical Meteorological Year (TMY). A TMY is
composed by the 12 more representative months from different years
over a certain (long-term) period of observational data. To obtain a
TMY that characterizes the distribution and variability associated with
the islands, hourly wind data was necessary.

For the numerical experiments a floating wind farm is considered,
and costs related to floating offshore wind is used in the calculation
of the LCOE. The performance of EPF-EnOpt is compared with a deter-
ministic gradient method from Scipy [31] and with EnOpt with a fixed
penalty term. We also consider the problem of maximizing the annual
energy production (AEP) without considering any costs.

The paper is organized as follows. In Section 2 we present the
EnOpt algorithms. In Section 3 the wind data and the optimization
problem is presented. The results follow in Section 4 and conclusion
in Section 5. More details of the wind data simulations are presented
in the appendix.

2. Ensemble-based optimization
2.1. Constrained optimization problem

A common problem in science and engineering is to minimize
or maximize a function while satisfying some constraints. A general
minimization problem can be described by an objective function J
which depends on a vector of control variables u € RN«. The goal is
to find u that minimizes J while respecting the constraints, i.e.

min J(u) (@)

ueRMNu
subject to: g;(u) >0, Viel (2)
hij(w)=0, Vj€E, 3

where g; and h; are constraint functions from RN« to R and I and E are
indexing sets.

In our application, we will minimize the LCOE for a wind farm
by finding the optimal position of the turbines. Our focus is on
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EnOpt algorithms, but for comparison we also test another constrained
optimization method from the SciPy python package [31],
scipy.optimize.minimize with method ’trust-constr’. In the next subsec-
tion we describe unconstrained optimization with EnOpt, and then the
constrained optimization with EPF-EnOpt.

2.2. Ensemble optimization (EnOpt)

The original formulation of EnOpt was derived in Chen et al. [22] as
an approximation to the preconditioned steepest ascent method [32],
and it was used to maximize the net present value for the production
of an oil reservoir. In the following we describe it as a minimization
method as our main goal is to minimize the LCOE. The preconditioned
steepest descent is described by

w, =u -4 CVI), V=12, 4

where VJ is the gradient of the objective function J, C is a precon-
ditioning or smoothing matrix, / is the iteration number and g is the
step length. In EnOpt, the control variable u is considered a random
variable with covariance matrix C,. This covariance is used as the
preconditioner in (4). The covariance matrix can also change with
iterations [24,25], and we denote it Ci. In each iteration of EnOpt,
an ensemble of N controls is drawn from a Gaussian distribution with
mean u, and standard deviation C’

u ~N@,Ch, j=1,2,....N.
A common way to calculate CiVJ (u,) in (4) is to approximate it by the
cross covariance [26]

u,

N
C = % Yt — (T, - Iw)). (5)
=1

Then the update is calculated as
U =4 — ﬂ/cfu(u) ©

We will instead estimate VJ(u;) using linear regression on the points
{w,; —w} and {J(u;;) — J(u))}. In many scenarios, there are fewer
ensemble members than variables to optimize, hence the regression is
not unique, but the Moore-Penrose pseudoinverse can be used to get
the minimum norm solution. Define the N x N, matrix U = [u,; -
w ou, -y wy -wl” and J = [Ju) - J) Ju,) -
Ju) ... Jy)-Ju)]" and estimate

[VJ(u); b] ~ [U1TFJ, %)

where + denotes the pseudoinverse, b is the offset in the linear regres-
sion and 1 is a vector of ones with length N that is appended to U. (U
is scaled before this is done to be of the same order of magnitude as 1
for numerical reasons.) The estimate of VJ(u,) from (7) is then used,
without preconditioning, to update

Uy = = fVI(w). ®)

The step length p; is calculated by a backtracking line search [29]. We
got better results by using (8) instead of (6).

In Chen et al. [22] the covariance C, was kept the same in all
iterations, but it has been shown that better results can be obtained
by updating it [24,25]. We update it using the following formula

N
C''=c -y % Yy - @) (-, -u)’ -C), (9
j=1

where y is the step size. For more information on how to derive the
covariance adaption, see Stordal et al. [25]. To make sure this matrix
is positive definite we force all negative eigenvalues to a small positive
number. If the step length g, is reduced because of backtracking, we
reduce y;, with the same factor.

If a number of backtracking iterations have been tested without
finding an accepted step, we perform a resampling of the ensemble
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Run EnOpt with
objective function Py
until convergence

Starting
values u, C
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Set r,, =cry for c>1.
Let k=k+1.
Use last u as starting point
for next EnOpt run.

Fig. 1. Flow diagram for EPF-EnOpt. The starting value for u can be selected manually or be the result of an initial run of unconstrained EnOpt.

with the original covariance matrix and calculate a new gradient. If
it is again unsuccessful, we resample in a smaller area by dividing all
elements of the original covariance matrix by four, (i.e., the standard
deviation is halved) and calculate the gradient again. The algorithm
continues until a maximum number of consecutive resamplings have
been performed.

2.3. Constrained ensemble optimization (EPF-EnOpt)

To handle more complex constraints in EnOpt, EPF-EnOpt was
introduced in Oguntola and Lorentzen [30]. This extension of EnOpt
is based on the exterior penalty function (EPF) method [29], in which
a constrained optimization problem is replaced by a series of uncon-
strained problems with increasing penalty terms. When the penalties
are the squares of the constraint violations it is also denoted quadratic
penalty method. In each subproblem, the objective function is modified
by adding extra terms for equality and inequality constraints multiplied
with a weight r;

P, r) = T + (Y min{g,@, 002 + Y 1h,@?). 10
i€l Jj€E
If the constraints are fulfilled, i.e. g;(u) > 0 and A;(u) = O for all j
in the index sets, the penalty terms are zero. The sequence {r,}$?, is
increasing with lim,_ r, = o. A standard construction is to choose
positive constants r, > 0 and ¢ > 1 and letting r;,| = cr,. The updating
is done as in (8), but VJ(u,) is calculated by a linear regression on
{w;; —w;} and {P,(u;;, 7)) — Pc(u;, rp)}. The algorithm stops when the
improvement in a run of EnOpt is less than a predefined number ¢, and
the constraint violation is small enough, i.e.

[P (g, ry) — P(u, )] < g an
and

D (min{g;(,0)% + Y i, < €. a2
iel JEE

A small modification compared to Oguntola and Lorentzen [30] is
implemented here by running unconstrained EnOpt as the first iteration
in EPF-EnOpt, and then the remaining iterations are performed with
increasing penalty terms as described above. This modification resulted
in lower LCOE at the cost of more iterations. Another difference is
that we decreased the initial covariance matrix C2 with a predefined
factor each time a new EnOpt run with higher penalty was initiated.
This variance reduction was implemented to avoid many samples in
the highly penalized regions and resulted in fewer resampling steps.
Fig. 1 shows a flow diagram for EPF-EnOpt.

For comparison, we also consider a simpler version of EPF-EnOpt,
where we fix a weight r and run a single optimization with this penalty.
This requires careful selection of the penalty, since choosing it too large
will result in nonoptimal positions as too much weight is put on the
constraint. But choosing it too small will result in positions that do not
fulfill the constraints.

40

30

20

Distance (km)

10

0 10 20 30 40
Distance (km)

Fig. 2. The yellow area is the area considered for the wind farm, and the white is the
island Porto Santo. This area is from AREAM Agéncia Regional da Energia e Ambiente
da Regido Auténoma da Madeira [33]. It is resampled on the same grid as the wind
data.

3. Wind farm layout problem
3.1. Wind resources

For the numerical experiments we use wind data in an area around
Porto Santo in Portugal. The wind data are generated for a larger
area around the Madeira Islands, and the generation of these data is
described in the appendix. The area we consider for the wind farm is
shown in Fig. 2. The average wind speed and the wind rose for the area
are shown in Fig. 3. We calculate the speed v, at hub height A, from
the formula

Uy = U; % M, 13)
In(hy/zy)

where z, is the surface roughness set to 0.002, 4, is 80 m and v, is

outputted from the wind simulations described in the appendix. The

wind data is hourly data for one year. The wind data are given by

hourly wind speeds and directions for one year.
3.2. Problem description

The goal is to minimize the LCOE for a fixed number of turbines
in the area shown in Fig. 2. We use 15 MW turbines from NREL
Wind Turbine Power Curve Archive [34] with a hub height of 150 m
and a rotor diameter of 240 m. In order to simulate the wake effects
and calculate the produced energy we use PyWake [35] with the
Bastankhah Gaussian wake model [36]. The computational speed is
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(a) Mean wind at 80 m above sealevel (b) Mean wind rose showing the distribution

around Porto Santo. of the wind speeds and directions for the se-

lected area in Figure 2.

Fig. 3. Wind resources. The area with wind data is approximately latitude 33.21487 to 32.89658 and longitude —16.17131 to —16.54167.

fast, and it takes less than a second to calculate the annual energy
production for 50 turbines on a desktop computer. The wind data are
used to calculate a probability of each wind direction and speed, which
was used as input for the wake model. Bins of 1 m/s and 1 degree
were used for the wind speed and angle of direction, respectively. We
calculated an average probability for the whole area in Fig. 2, but
scaled the wind speeds for each grid block with the average speed in
that grid block divided by the average for the whole area. (We could
not find any documentation on whether it is possible to have different
probabilities for each gridblock in this software.)

The constraints are that turbines are required to be inside the
selected area, and that all turbines are at least 5 rotor diameters apart
(1200 m). The constraints on the distance between turbines can be
described by functions which are negative when the distance is too
small and O when it is fulfilled. We use the distance in kilometer minus
the minimum distance as constraint functions, and if this is positive it
is set to 0. In our case we do not need the equality constraints (3). For
N turbines, the number of constraints on distances between pairs of
turbines is N « (N — 1)/2.

The levelized cost of energy can be calculated as

ZT 1,+M,
1=0 (1+r)
T _E
=0 (1+r)

LCOE =

where I, is the investment cost in year ¢, M, is the maintenance cost,
E, is the produced energy, r is the discount rate and T is the number
of years considered. Table 1 presents the costs applied in this study.
The costs of turbines, balance of system, soft costs and maintenance
are from Beiter et al. [37]. The cost of balance of system includes
e.g. substructure and foundation, assembly and installation, develop-
ment and engineering management, and the soft costs include insur-
ance during construction, decommissioning, construction financing and
contingency.

In order to find the shortest cable layout connecting all the turbines,
we use a minimum spanning tree algorithm [39]. We also add two times
the depth of the water column to the length of the cable for each turbine
position assuming that the cable will be on the sea bottom. (This is a
small simplification since some turbines are connected to more than

Bathymetry
40 300
35 -
30 250
E x| :
o 200 —=
e
&2 201 =
=%
8 a
%] p
a1 150
10
100
5 E
0 ; T T
0 10 20 30 40
Distance (km)
Fig. 4. Water depth in the selected area.
Table 1

Costs used in LCOE optimization. The four first costs are from [37].
We have subtracted the costs of electrical infrastructure in the second
cost (balance of plant) since we are considering these costs separately.
The costs of the cables are based on [38] (but we have not included
all details). We use an exchange rate of 1 €/$ and 1.15 €/£, and a
discount rate of 6%.

Costs Value
Turbines (per kW) $1301
Balance of plant (per kW) $2258
Soft costs (per kW) $790
Maintenance (per kW) $130
Internal cables (per km) fle6
Cable to shore (per km) £1.1e6
Other electrical infrastructure £100e6

two other turbines, and some only to one.) The bathymetry data is
shown in Fig. 4. We assume that a substation is positioned close to the
turbine that is closest to the shore, and the length of the cable from the
substation to the shore is included in the cable cost.
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50 turbines, LCOE (€/MWh): 132.40
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(c) EPF-EnOpt
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50 turbines, LCOE (€/MWh): 132.00
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(b) EnOpt with fixed penalty term

50 turbines, LCOE (€/MWh): 131.05
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(d) Scipy ’trust-constr’

Fig. 5. Manually selected start positions and final layout after optimization with three different methods. The gray triangles show the island and the colored background in the

wind farm area shows the mean wind speed.

LCOE
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131 3 I
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Start values Enopt w/penalty EPF-EnOpt

Trust-;:onstr

Fig. 6. Start values and final objective functions (LCOE) for 10 runs with random
starting positions for different methods. The red dots show the means of the 10 runs.

4. Results

We consider 50 turbines in the allowed area, which means we have
100 variables to optimize, as we must determine the x- and y-positions.
Both manually selected starting positions and random starting positions
were tested. For few turbines, for example 5, the unconstrained EnOpt
method often finds a solution that fulfills the distance requirement. But
for 50 turbines, optimizing with unconstrained EnOpt gives solutions
that do not fulfill the constraints, hence we need to consider other
methods. We optimize the positions using EPF-EnOpt, the trust region

Table 2

EnOpt and EPF-EnOpt parameters used in the LCOE optimization. The parameters above
the dashed line are for EnOpt, and below are for EPF-EnOpt, except the last which is
for EnOpt with fixed penalty.

Parameter Value

Number of ensemble members (N) 25

Initial variance (values on diagonal of C!) 1000%

Initial step size f 2000/|VJ (u)|| o
Initial step size for covariance adaptation y 0.01

Maximum number of backtracking iterations 6

Maximum number of resamplings 4

Difference between EnOpt runs in EPF-EnOpt (e, in Eq. (11)) 0.1

Maximum constraint violation (e, in Eq. (12)) 0.001
Variance reduction factor in each EnOpt run 0.8

Initial r, EPF-EnOpt J(u,)/1500
Increase factor for r, in EPF-EnOpt 2

Initial r, EnOpt with fixed penalty J(u,)/60

method from Scipy and EnOpt with a fixed penalty term. For EnOpt
and EPF-Enopt an ensemble of size 25 is used. For the weights in
the objective function (10) we used r, equal to the starting objective
value divided by 1500 and increased it with a factor 2 for each outer
iteration. The number 1500 was selected based on a few experiments
with different values, and seemed to be a good trade-off between
accuracy and speed. High starting penalty (dividing by a low number)
gives faster convergence, but less good result, and vice versa. The other
parameters used in the ensemble algorithms are specified in Table 2.
The results with manually selected starting positions are shown in
Fig. 5 and in Table 3. As can be seen from the figures, the LCOE
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50 turbines, LCOE (€/MWh): 131.42
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(b) EnOpt with fixed penalty term

50 turbines, final LCOE (€/MWh): 131.04
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(d) Scipy ’trust-constr’

Fig. 7. Random start positions and final layout after optimization of LCOE. Figure (b), (c) and (d) show the best final layout of the 10 runs performed with each method and (a)
shows the starting positions. (All methods obtained the best results from this starting layout.)

Table 3
The table shows initial value and results for minimization of the LCOE for manually
selected start positions.

LCOE (€/MWh) Function evaluations

Start 132.40
EnOpt w/penalty 132.00 1355
EPF-EnOpt 130.45 9113

Scipy trust-constr 131.05 19392

is reduced after optimization for all methods. The best results are
obtained with EPF-EnOpt with an improvement of 1,5%.

To further test the methods, we perform the optimization 10 times
with randomly selected starting positions. We select starting positions
by drawing the turbine positions one by one, and check that they are
within the right area and satisfy the distance constraints. If not, we
draw a new one. (We could have started with a layout that did not
fulfill the distance requirement as well, since the increasing penalty in
EPF-EnOpt will make the distances large enough in the final layout,
but this was not tested here.) The objective functions of the 10 runs
are shown in Fig. 6 and in Table 4, and the best layouts obtained for
each of the three methods are shown in Fig. 7. Also for the random
starting positions EPF-EnOpt performs the best, and at a smaller cost
than the trust region method. The average reduction in LCOE is 3,9%
with EPF-EnOpt. The results for EPF-EnOpt are equally good with
random starting positions as with the manually selected starting posi-
tions. EnOpt with a fixed penalty term is the computationally fastest
method, but results in significantly higher LCOE then EPF-EnOpt. A
fixed penalty term also requires tuning of r, for a balanced weight

between the objective function and the penalty term in order to satisfy
the constraints.

We also test the methods on another problem, where we maximize
the annual energy production (AEP) without considering any costs. The
results are shown in Fig. 8 and Table 5. Also here EPF-EnOpt performs
the best, and the increase in AEP is on average 4,0% with this method.

5. Conclusion

We have introduced and demonstrated ensemble based methodol-
ogy to find the optimal layout of wind farms that minimizes levelized
cost of energy (LCOE) or maximizes annual energy production (AEP).
We have seen that EPF-EnOpt provides better optimization results at
a lower computational cost than the constrained trust region method
from the Scipy python package. Both with manually selected starting
positions and randomly placed turbines EPF-EnOpt consistently ob-
tained good results and fulfilled the distance constraints. The results
of EPF-EnOpt were also better than using a single run of EnOpt with
a fixed penalty term. The gradual increase of the penalty seems to
be beneficial in order to find good layouts. The reduction in LCOE
with EPF-EnOpt was around 1,5% compared to a manually se-
lected starting layout and on average 3,9% with randomly placed
turbines. The increase in AEP was on average 4,0% for EPF-EnOpt
with random starting positions.

In this work we have used a fast method for calculating the wakes
(PyWake), but if one wants to apply more advanced wake models,
the computational cost will be much larger, and ensemble methods
could provide an affordable way of optimizing the layout. We note
that gradient-free methods will be very time consuming when ad-
vanced wake models are used. With EPF-EnOpt, a large part of the
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Fig. 8. Random start positions and final layout after optimization of annual energy production. Figure (b), (¢) and (d) show the best final layout of the 10 runs performed with
each method. Figure (a) shows one of the random starting layouts (corresponding to the final layout obtained with EPF-EnOpt).

Table 4

The table shows results for minimization of the LCOE. We run 10 experiments with random starting positions. The number

of function evaluations is an average over the 10 runs.

Mean LCOE (€/MWh) Std.dev. Best run Function evaluations
Start 135.94 0.64 - -
EnOpt w/penalty 132.05 0.347 131.42 2769
EPF-EnOpt 130.65 0.273 130.29 11166
Scipy trust-constr 131.51 0.279 131.04 30209

improvement in the objective function is obtained in the first iterations,
and it could be possible to reduce the number of iterations further
if needed. Another advantage of ensemble methods that we have not
utilized here, is the possibility of including uncertainty in the wind
resources. Ensemble methods are frequently used in climate modeling
and weather predictions, where the uncertainty is represented by an
ensemble, as in Swamy et al. [27], and we will include this in future
work. EPF-EnOpt could also potentially be combined with a heuristic
global method to obtain a good starting position for EPF-EnOpt.

We have done some simplifications in the calculation of the costs,
since our main goal of this paper is not to get the most accurate price,
but to demonstrate new methodology. For example, we used the same
cable between all turbines independently of the amount of electricity it
will transfer. One can also include more detailed costs and account for
loss in the cables. In future work these simplifications can be removed.
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Appendix. Wind data

A.1. Long-term analysis

The methodology used to generate the wind data in this study
consists of a long-term data analysis for the atmosphere and for the
ocean, to constitute a Typical Meteorological Year (TMY). To predict
the potential of any energetic system, it depends on a local well-
established and extensive climatic data base. This analysis must be
done with the support of at least 10 years of quality measured data;
when this type of data is not available reanalysis data can be used,
but with several limitations when compared to in-situ/observational
data. Long-term analysis can be performed through really long simu-
lations periods, but the computational cost and time for completing
all the calculations increases. However, interannual climatic variability
is important for this study to represent mid and long-term signature,
that can be represented by one TMY. A TMY is composed by the 12
more representative months from different years over a certain (long-
term) period of observational data. Each month of the calendar year it
is calculated as the smallest weighted sum of the Finkelstein Schafer
(FS) considering 10 years of observational data [40]. Data from all
meteorological masts are concatenated into one single dataset, this
approach allows the consideration of the local and surrounding climatic
features over a larger (or small) regions. After the TMY analysis is
completed, we can represent one year considering different ’typical
months’ considering 10 years of observational data. Then the obtained
period from TMY is downloaded to force the regional numerical model’s
boundary conditions.

A.2. Climatic data sources

For the TMY analysis, initially 30 years climatology data was consid-
ered for wind and waves using reanalysis from ERA-Interim, provided
by Dee et al. [41]. However, ERA-Interim spatial and temporal resolu-
tion of 0.75° and 6 h are not representative of the local island processes,
namely small and short-term events, and variations. To obtain a TMY
that characterizes the distribution and variability associated with the
islands, wind hourly data was necessary. The data was obtained from
“Instituto Portugués do Mar e da Atmosfera” (IPMA). IPMA has good
coverage of meteorological stations in Madeira and Porto Santo Island
as represented in Fig. A.9. They cover the period of 10 years of
consecutive data with a 10 min timestep. For oceanographic conditions,
OSCAR [42] is used. Founded by ESA Data User Element (ESA 2015),
OSCAR uses advanced processing tools and models that incorporate
satellite and in-situ data to calculate global ocean circulation patterns.
It has a coverage period from 1993 to 2016 with a spatial resolution of
0.25°, producing daily outputs.

Table 5
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Fig. A.9. Madeira topography with IPMA meteorological stations numbered.
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Fig. A.10. COAWST domains configuration. WRF has 3 domains presented in black,
ROMS 2 domains in red and WW3 the inner domain in blue.

A.3. COAWST configuration

Hereafter, we focus on the description of the configuration of the
Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling Sys-
tem (COAWST) numerical framework and its components. Weather
Research and Forecast (WRF) has 3 domains centered in Madeira, an
outer Atlantic domain with 9 km grid-spacing, nested onto 3 and sub-
sequently 1 km grid-spacing sub-domains (Fig. A.10). The geographic
location of the two grids used in the Regional Ocean Modeling System
(ROMS) are almost identical to the two inner grids used in WRF and

The table shows results for maximization of the annual energy production (AEP). We run 10 experiments with random starting
positions. The number of function evaluations is an average over the 10 runs.

Mean AEP (GWh) Std.dev. Best run Function evaluations
Start 2599.19 18.53 - -
EnOpt w/penalty 2682.10 7.422 2692.75 3140
EPF-EnOpt 2704.15 8.134 2711.70 10435
Scipy trust-constr 2691.18 4.709 2698.86 24765
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WAVEWATCH III (WW3) is almost identical to the inner domain. To
account for the minor differences among grid cell’s locations between
models, COAWST uses the Spherical Coordinate Remapping and Inter-
polation Package (SCRIP) [43] that generates the interpolated weights
used to remap the data exchanged between the different grids. All
grids use a Mercator projection. To allow data exchange between
models, COAWST uses the Model Coupling Toolkit (MCT) [44,45].
In our configuration, data is transferred every 30 min between the
models, to provide an accurate simulation of ocean-atmosphere fluxes.
Simulations done in this article are based on our previous studies
based on fully two-way coupled simulations with the Coupled Ocean—
Atmosphere Mesoscale Prediction System (COAMPS) or using COAWST
in Madeira Archipelago, and the reader is referred to Pullen et al.
[46,47],Alves et al. [48],Azevedo et al. [49] for further information.
Also, Fig. A.10 shows the geographic limit of each computational
domain in relation to the location of Madeira Island, in the North
Atlantic at 900 km SW of Iberian Peninsula and 700 km to the west
of the Northwestern African coast.
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