
1.  Introduction
Floods and droughts have significant impacts on lives and livelihoods in East Africa (e.g., Conway 
et al., 2005; Haile et al., 2019; Little et al., 2001). The short rains from October to December (OND) show 
substantial interannual variability and extreme impacts from both flooding (e.g., in 2019; Wainwright 
et al., 2021) and drought (e.g., in 2010; Robinson et al., 2019). Numerous studies have demonstrated skill in 
predicting the short rains at seasonal scales (Hastenrath et al., 2004; MacLeod, 2018; Mwangi et al., 2014; 
Ogutu et al., 2017; Philippon et al., 2002; Young & Klingaman, 2020). Most of the skill arises from links be-
tween rainfall and sea-surface temperature (SST) anomalies over the eastern Pacific (the El Niño–Southern 
Oscillation; ENSO), as well as Indian Ocean SST and wind anomalies (Behera et al., 2005; Black, 2005; Funk 
et al., 2018; Hastenrath, 2007; Indeje et al., 2000; Liu et al., 2020; Mutai & Ward, 2000; Mutai et al., 1998; 
Ummenhofer et al., 2009; Zhao & Cook, 2021).

Seasonal and subseasonal forecasts can play complementary roles in planning and preparedness (e.g., Bru-
no Soares et al., 2018; Bazo et al., 2019; Lemos et al., 2012; Nyamekye et al., 2021; Tall et al., 2018), with sea-
sonal forecasts triggering preparedness several months ahead of a season, and subseasonal forecasts allow-
ing targeted interventions within the season. Although seasonal forecasts have been provided at the Greater 
Horn of Africa Regional Climate Outlook Forums (GHACOF) for over a decade (Hansen et al., 2011; Walker 
et al., 2019), subseasonal forecasts that indicate potential anomalies over the upcoming few weeks are not 
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routinely disseminated in East Africa. This means that following the pre-season outlook, the next rainfall 
forecast update is often issued only a few days ahead of the hazard (e.g., Kilavi et al., 2018), limiting the 
potential for risk management.

The lack of subseasonal forecast provision is unfortunate, as compared to most of the globe East Africa is 
a hotspot of forecast skill (de Andrade et al., 2020; Vigaud et al., 2019). The strong predictability arises in 
large part from the Madden-Julian Oscillation (MJO), which shows a strong teleconnection with regional 
rainfall: models with skillful MJO predictions also capture the teleconnection to rainfall over East Africa 
(MacLeod et al., 2021).

An impediment to the uptake of subseasonal forecasts is a lack of robust understanding of model per-
formance in the region. Recent studies are addressing parts of this knowledge gap by demonstrating lev-
els of model skill and evaluating model representation of teleconnections (Hirons & Turner, 2018; King 
et al., 2021; Walker et al., 2019). However, most studies focus on unconditional model errors (e.g., mean 
model biases) rather than conditional model errors, that is, forecast errors associated with particular cli-
mate states (e.g., Kolstad et al., 2020; Matsueda & Palmer, 2018; Minami & Takaya, 2020). Understanding 
of conditional model errors can give two benefits supporting the reliability of operational forecasts. First, it 
can make possible a context-specific a priori error correction: knowing that the model will behave a certain 
way under a certain climate state allows a more intelligent use of model output. Second, it provides targeted 
error feedback to model developers, which can potentially lead to improvement of simulation realism in the 
region and higher model skill.

Here, we study the conditional model error of subseasonal forecasts of the East African short rains. In par-
ticular, we investigate the relationship between the initial state of the Indian Ocean Dipole (IOD; Marchant 
et al., 2007) and subsequent forecast error developments. Our aim is to enhance understanding of model 
performance, which we hope may contribute to raising the level of trust in forecasts on decision-relevant 
time scales.

2.  Data and Methods
2.1.  Data

The European Center for Medium-Range Weather Forecasts (ECMWF) monthly forecasts are issued twice 
a week. The model version used here is CY46R1, which has a native horizontal atmospheric grid spacing 
after day 15 of about 32 km, and the ocean model is NEMO3.4.1, with a native 0.25° grid spacing. Although 
the 32 km grid spacing is insufficient for resolving small-scale convective systems, it is sufficient for repro-
ducing the large-scale rainfall characteristics driven by ENSO and the Walker Circulation over the Indian 
Ocean. A set of 11-member hindcasts is produced for each forecast, initialized for the same day and month 
of the previous 20 years. From the S2S database (Vitart et al., 2017), we use the ensemble means of the first 
11 members of the (51-member) forecasts for which all lead times between 15 and 28 days (3–4 weeks) 
occurred between October 1 and December 31, 2019, as well as their associated hindcasts. This comprises 
23 × 21 = 483 model runs. The variables studied are precipitation (hereafter referred to as “rainfall”), zonal 
wind at 850 and 200 hPa, and SST, all interpolated to 1.5° grids, which is how the atmospheric data are stored 
in the S2S database. For the same two-week periods, we also calculate accumulated rainfall from the Cli-
mate hazards infrared precipitation with stations (CHIRPS) data set (Funk et al., 2015), interpolated to the 
1.5° model grid. For the other variables, we use ERA5 reanalysis data (Hersbach et al., 2018a; 2018b; 2020) 
as our reference.

2.2.  Standardization

To account for spatial heterogeneity and model bias, we post-process the rainfall data in several steps. First, 
we standardize the 483 rainfall time series for each grid point from both the forecasts and the CHIRPS 
data by subtracting the datewise climatological mean and dividing by the datewise interannual standard 
deviation. The smooth the climatologies, they are based on data from all (171, on average) dates up to 14 
ordinal days before or after the ordinal day of the reference date. Second, we calculate the area-average of 
the standardized forecast anomalies within our focus region – between 30°E and 52°E and between 10°S 
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and 12°N (see Figure 1a), following Vigaud et al. (2019) – as   i iF w f , where F stands for “Forecast”, the 
sum is performed for all land points, the weight of each grid point value is  cos / cosi i jw   , where i  is 
the latitude of land point i and the sum is performed for all land points, and if  is the standardized forecast 
anomaly in i. Similarly, we calculate the area-averaged CHIRPS rainfall anomalies as   i iO w o  (O for “Ob-
servations”). Third, we define the forecast error as  F O . Note that   is identical to the area-average of 
the forecast error in each grid point, as          i i i i i i iw f o w f w o F O .

2.3.  SST Indices

SST data from ERA5 are used to calculate an IOD index (I  henceforth) in two steps. First, we compute ar-
ea-averaged standardized SST anomalies (using the same climatological smoothing as for the rainfall data) 
in the western (50°E to 70°E and 10°S to 10°N) and eastern (90°E to 110°E and 10°S to 0°) parts of the Indian 
Ocean. Second, we take the difference between the western and eastern time series, and third, we stand-
ardize the resulting time series. Although our main focus is on the IOD index, we also calculate a NINO3.4 
index as area-averaged standardized SST anomalies between 170°W and 120°W and between 5°S and 5°N. 
The boundaries of the SST regions are shown in Figure 2a.

2.4.  Significance Testing

To account for intraseasonal autocorrelation, we use bootstrapping to create sets of 1,000 artificial time 
series to contrast with the actual time series. Each time series consists of data from 23 initial dates per year, 
and in the artificial time series, we replace each set of 23 elements with a set from a random year between 
1999 and 2019 (with replacement). This retains the intraseasonal autocorrelation. The null hypothesis that 
actual correlation or regression coefficients could just as well have resulted from the randomized, artificial 
sets can be rejected at the 5% significance level (which is used throughout) if the actual coefficient falls 
outside the interval between the 2.5th and 97.5th percentiles of the artificial set.

2.5.  Linear Prediction Model

In Section 3.2, we use a linear regression model to predict O based on the predictors F and I :

� (1)

The coefficients are estimated (by minimizing the residual   using ordinary least squares) for each forecast 
time by using F and I  for all the other forecast times (“leave-one-out” cross validation), and we call the best 
estimates ˆFa  and ˆIa , so that the prediction of O can be written as:

    .ˆ ˆ ˆF IO a F a I� (2)

Note that we do not compute out-of-sample climatologies for each element of the time series, as the high 
number of data points these are based on (171, on average) makes the in-sample effect negligible.

3.  Results
3.1.  The Short Rains

We first present an overview of the short rains' relative importance in the annual rainfall cycle, as well as its 
representation by the model. The ratios in Figure 1a were obtained by dividing the average rainfall during 
all the 483 OND forecast periods by the average rainfall during all similar periods throughout the year. The 
OND rainy season is most dominant compared to the rest of the year in Somalia, southern Ethiopia, and 
eastern Kenya, but ratios above 1 also occur in other parts of the study region, including its southwestern 
part.

     .F IO a F a I 
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Figure 1b shows that the anomaly correlation between the forecasts and the regridded CHIRPS rainfall is 
significant in most of the whole study region. The minimum, maximum and median correlation coefficients 
within the region are –0.01, 0.61, and 0.31, respectively. On the spatially aggregated scale, the (significant) 
correlation between F and O is 0.55 (Figure 1c). This is substantially higher than the median of the grid 
point correlations, and it means that the ensemble mean forecast explains 30% of the rainfall variability 
3–4 weeks in advance on the aggregated scale. The best fit line is less steep than the identity line (i.e., where 
x y), indicating that F needs calibration. Figure 1d shows a scatter plot of I  versus O. The correlation is 

0.51, which is lower than the correlation between F and O. In 2019, the high I  values are associated with a 
wide range of O values from about zero to the five largest values in the study period. There is clearly infor-
mation in I  not captured by F, suggesting that a prediction model based on combining F and I  might be 
worthwhile to test (see Section 3.2).

Although not shown, we note here that the correlation between O and the initial NINO3.4 index is only 0.23. 
As a result, our focus hereafter is on the IOD index.

3.2.  Linking Initial SSTs and Rainfall Forecast Errors

While it is well-known that East African OND rainfall is correlated with both ENSO and the IOD, Figure 2a 
demonstrates that the forecast error   is also lag-correlated with initial tropical SSTs. This means that the 
ECMWF model has a systematic bias conditional on the initial state, and it also suggests that initial SSTs can 
potentially be used to correct the model forecasts a priori.

To test whether the forecasts can be corrected based on I , we assess the performance of Ô, the linear pre-
diction of O based on F and I  (see Section 2.5). A scatter plot O versus Ô is shown in Figure 2b. The corre-
lation between O and Ô is 0.58, which is significantly higher than the correlation between O and F (0.55; 
see Figure 1c) according to a bootstrapping test (Section 2.4). This means that including I  as a predictor in 
combination with F is indeed worthwhile.

As the correlation between I  and   is relatively high (0.24) and significant (see also Figure 2a), we were 
curious about why Ô does not represent an even larger improvement with respect to F. It could be related 
to nonlinear aspects of the relationship between   and I . Figure  2c shows boxplots (e.g., Krzywinski & 
Altman, 2014) of   for four bins organized by ascending I  values (the leftmost bin is based on the forecasts 
initialized when I  was in its lower quartile, and so on). The linear part of the relationship between I  and   is 
reflected by the increasing median values from left to right, but it is also clear that the variance of   within 
each bin is large (as each boxplot spans a large range of negative and positive values), and more important: 
the variance of   is larger for positive than negative I  values. This suggests that a linear model might be 
unable to capture the whole gamut of the complex and nonlinear relationships between O, F, and I .
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Figure 1.  (a) Ratio of October to December rainfall to normal rainfall, with white dots indicating ratios above 1 and the black rectangle showing the 
boundaries of the focus region. Country borders are shown in orange. (b) Anomaly correlation between the ECMWF forecasts and CHIRPS rainfall, averaged 
for 3–4 weeks of lead time. Significant coefficients are indicated with dots. (c) Scatter plot of O on the x-axis versus F on the y-axis. The unit is standard 
deviations (SD), the identity line is solid, and the dashed line shows the best linear fit. The colors are unique for each year, as indicated by the legend below. (d) 
As (c), but for I  instead of F on the y-axis.
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We also tried including the initial NINO3.4 index as a predictor of O, alongside F and I , but its regression 
coefficient was nonsignificant. This is commensurate with the low correlation between O and the NINO3.4 
index (Section 3.1).

3.3.  Drivers of Rainfall Forecast Errors

To better understand the dynamics behind the rainfall forecast errors, we show in Figure 3a the correlation 
between   and concurrent SST forecast errors. The significant, positive correlations in the northern part of 
the Indian Ocean demonstrate that the forecast SSTs there are too warm when the model predicts too much 
rainfall in East Africa (  0 ) and too cold when the rainfall forecasts are too dry (  0 ).

Figure 3b reveals significant negative correlations between   and zonal wind forecast errors at 850 hPa 
over the ocean and positive correlations over land. Each of these influences is consistent with too-strong 
low-level convergence over East Africa when  0  and too-weak convergence when  0 . Figure 3c shows 
negative correlations between zonal wind errors at 200 hPa over the continent and off the East African 
coast, and positive correlations over the eastern Indian ocean. This is an indicator of a surplus of divergence 
aloft in the western part of the Indian Ocean, which is linked to too strong (weak) convection below 200 hPa 
in the model when   is positive (negative).

We now investigate the relationship between I  and the SST and zonal wind forecast errors by comparing the 
correlations shown in the bottom row of Figure 3 with the correlations in the top row. We emphasize that 
  does not enter into the calculations of the correlations in the bottom row. Still, the correlation between 
the SST errors and I  (Figure 3d) in the northern Indian Ocean agrees well with the correlations between 
the same SST errors and   (Figure 3a). For 850-hPa zonal wind, shown in Figure 3e, there is also good 

KOLSTAD ET AL.

10.1029/2021GL093292

5 of 10

Figure 2.  (a) Correlation between inital sea-surface temperature anomalies and  , with significant values marked with dots. The rectangles indicate the regions 
used to calculate the NINO3.4 and Indian Ocean Dipole indices. (b) O (x-axis) versus Ô (y-axis), following the scheme in Figures 1c and 1d. (c) Boxplots for four 
bins arranged from left to right by increasing I  values, with the distribution of   along the y-axis (see text for details). The standard deviation of   in each bin is 
printed below the x-axis, along with the mean value of I.
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correspondence with Figure 3b over the Indian Ocean, where the correlations are both negative, as well 
as into the continent from the west, where they are positive. However, the strong north–south oriented 
positive correlations over the western part of East Africa found in Figure 3b are not replicated in Figure 3e. 
Similarly, although the correlation of the 200-hPa zonal wind error with both   (Figure 3c) and I  (Figure 3f) 
is strong over the Indian Ocean, the magnitude of the negative correlation with   over land is not repro-
duced for I  aloft. This indicates that model errors in representing the variability of the convergence and 
divergence over the African continent are a determinant of subseasonal forecast errors over East Africa, and 
that the origin of these errors is only weakly related to the initial state of the IOD.

3.4.  Seasonal Means

The aforementioned intraseasonal autocorrelation of forecast errors (e.g., Figure 1c), in combination with 
a significant link between the initial IOD index and  , suggest a possibility for a priori correction of subsea-
sonal forecast error at the start of the season (or even before, given skillful long-lead SST forecasts). Although 
based on only 21 seasons, the correlation between the seasonal means of   and I , shown in Figure 4a, is 0.54 
and significant. The seasons with the largest mean   values on both ends of the scale, 2015 and 2016, also 
have large I  anomalies that match the sign of the mean of  . Furthermore, the years with the largest positive 
and negative I  values, 2019 and 2010, respectively, also have relatively large mean   anomalies with match-
ing sign. For these two years the corresponding seasonal mean SST and zonal wind errors are shown in the 
maps in Figure 4. The spatial patterns are consistent with the correlations in Figure 3, with the high IOD year 
of 2019 exhibiting positive SST errors in the Indian Ocean (Figure 4b), negative and positive 850-hPa zonal 
wind errors over the Indian Ocean and Congo basin, respectively (Figure 4c), and positive and negative 200-
hPa zonal wind errors over the Indian Ocean and over the continent, respectively (Figure 4d). Qualitatively 
speaking, similar responses with opposite signs occur in the lowest IOD year of 2010 (Figures 4e–4g).

4.  Summary and Discussion
We have demonstrated a robust link between subseasonal rainfall forecast errors over East Africa, tropi-
cal SSTs, and the atmospheric circulation. A symmetry has been identified, where positive (negative) IOD 
states in the initial conditions are associated with too-strong positive (negative) rainfall anomalies over East 
Africa in the model after 3–4 weeks.
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Figure 3.  Top row: Correlation between   and concurrent forecast errors of sea-surface temperature (SST) (a), zonal wind at 850 hPa (b), and zonal wind at 
200 hPa (c). Bottom row: Correlation between I  and the forecast errors at lead times of 3–4 weeks of SST (d), zonal wind at 850 hPa (e), and zonal wind at 
200 hPa (f). Significant coefficients are indicated with dots.
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A linear correlation approach was used to link the rainfall forecast errors to forecast errors of oceanic and 
atmospheric drivers (see Figure 3, top row). Focusing on the too-wet forecasts (the too-dry forecasts mainly 
show “opposite” behavior), these were found to be associated with concurrent model errors in the western 
Indian Ocean region, specifically in the form of positive SST errors, coupled with too strong divergence 
aloft and too strong easterly zonal wind anomalies at low levels. Furthermore, we found that the too-wet 
forecasts are associated with positive low-level zonal wind errors stretching into East Africa from the west. 
Previous studies have repeatedly demonstrated an association between easterlies over the Indian Ocean 
and enhanced rainfall and flooding in East Africa (Black et al., 2003; Hastenrath, 2007; Nicholson, 2017). 
However, the results presented here are unique by linking this state not to rainfall totals, but to errors in the 
rainfall forecast.

Another key finding is that the correlations between the errors in the forecasts of SSTs and zonal winds and 
the rainfall forecast error exhibit many similarities to the correlations between the initial IOD index and 
same variables' forecast errors (Figure 3, bottom row). This suggests oceanic and atmospheric pathways 
linking the initial IOD index with subsequent rainfall forecast errors. The forecast errors during the two 
OND seasons with the highest (in 2019) and lowest (in 2010) mean IOD index in the study period confirmed 
a linkage between the IOD index, rainfall forecast errors and forecast errors of SSTs and zonal winds on the 
seasonal scale.
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Figure 4.  (a) Seasonal means of   (black line) and I  (blue circles), sorted from left to right by ascending   values. The remaining panels show the seasonal 
mean standardized forecast errors of sea-surface temperature, zonal wind at 850 hPa, and zonal wind at 200 hPa, in 2019 (b–d) and 2010 (e–g).

Too-dry forecasts Too-wet forecasts
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These results have two important consequences. The first is that they suggest an opportunity to make a 
state-dependent correction to the forecasts. This could be done in a systematic way whereby forecasts ini-
tialized in anomalous SST states are calibrated, with a correction to the ensemble mean rainfall forecast. As 
a proof-of-concept exercise, this was done here with a linear adjustment of the forecast based on the initial 
IOD index in Section 3.2, and the corrected forecast had significantly higher skill than the uncorrected fore-
cast. We emphasize that our intention is to demonstrate the potential for using initial SSTs to create a hybrid 
empirical/dynamical forecast model, and not to optimize such a model. Thus, we did not attempt to correct 
the rainfall forecasts on the local scale (see skill in Figure 1b), but the promising results for the aggregated 
geographical scale suggest that it might be possible. But even without a systematic calibration, knowledge 
of the systematic relationship between initial SSTs and rainfall forecast errors is likely to be useful to expe-
rienced forecasters, who may incorporate this into their subjective interpretation when developing forecast 
products.

The second main consequence is that our results provide modelers with a point of entry for addressing 
systematic model errors, which would offer hope of improved simulation realism and downstream delivery 
of more societally relevant model forecasts in the region. An investigation might proceed by evaluating 
the presence of the error in previous model versions to see if any recent developments have improved (or 
exacerbated) the issue. Contrasting with the performance of other models may also offer insight. Follow-
ing this a smaller test case could be identified, such as the forecasts for the particular seasons discussed 
here. Reforecast experiments could be run to test the impact of changes in model setup, such as resolution, 
convective parameterization or atmosphere–ocean coupling parameters. Alongside this a close inspection 
of the day-to-day evolution of the ocean-atmosphere state during particularly extreme errors may provide 
insight into their origin.

Data Availability Statement
The CHIRPS data (Funk et al., 2015) are available from the Climate Hazards Center at the University of 
Santa Barbara, USA at https://www.chc.ucsb.edu/data/chirps. The ERA5 data are available from the Co-
pernicus Climate Data Store (Hersbach et al., 2018a; 2018b). This work is based on S2S data. S2S is a joint 
initiative of the World Weather Research Programme (WWRP) and the World Climate Research Programme 
(WCRP). The original S2S database (Vitart et al., 2017) is hosted at ECMWF as an extension of the TIGGE 
database at https://apps.ecmwf.int/datasets/
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