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Abstract Autumn phytoplankton blooms represent key periods of production in temperate and
high‐latitude seas. Biogenic silica (bSiO2) production, dissolution, and standing stocks were determined in
the Celtic Sea (United Kingdom) during November 2014. Dissolution rates were in excess of bSiO2

production, indicating a net loss of bSiO2. Estimated diatom bSiO2 contributed ≤10% to total bSiO2, with
detrital bSiO2 supporting rapid Si cycling. Based on the average biomass‐specific dissolution rate (0.2 day−1),
3 weeks would be needed to dissolve 99% of the bSiO2 present. Negative net bSiO2 production was associated
with low‐light conditions (<4 E·m−2·day−1). Our observations imply that dissolution dominates Si cycling
during autumn, with low‐light conditions also likely to influence Si cycling during winter and early spring.

Plain Language Summary Small marine microalgae called diatoms are responsible for
significant levels of primary production in support of marine ecosystems. Diatom cells are formed from
silica dissolved in seawater; however, diatom cells may also readily dissolve in seawater. Observationsof
silica uptake and dissolution during the autumn period of enhanced microalgal productivity in a shelf
seafound a nonliving detrital pool of diatomaceous material, which was dissolving faster than the few
diatomspresent were making new cells. These observations highlight that certain periods of the year may be
associated with rapid rates of dissolution and hence are important for recycling of material prior to the
winter period when nutrient budgets in the water‐column are set for the following year.

1. Introduction

Despite representing <10% of the ocean, shelf seas represent ~30% of primary production (~15 Pg C/year,
Field et al., 1998). Annually, spring blooms, triggered by stratification and optimal growth conditions
(Lindeman & St. John, 2014; Taylor & Ferrari, 2011), dominate production, with weaker rates during the
stratified summer terminated by increased autumn mixing (Findlay et al., 2006; Painter et al., 2016; Perry
et al., 2008; Wihsgott et al., 2018). During summer, phytoplankton adapt to low nutrient conditions in
surface waters and low light at the base of the surface mixed layer (SML), forming a subsurface chlorophyll
maximum (SCM; Hickman et al., 2009). Weakening stratification is associated with a secondary biomass
peak, considered an “autumn bloom,” which may reflect elevated production and/or redistribution of
SCM material (Findlay et al., 2006; Painter et al., 2016; Perry et al., 2008).

Diatoms represent ~44% of marine production, sustain ecosystems, and contribute to deep‐sea export
(Nelson et al., 1995; Tréguer et al., 2018; Tréguer & De La Rocha, 2013). Diatoms dominate the global Si
budget, producing 240 Tmol Si/year of biogenic silica (bSiO2) (Tréguer & De La Rocha, 2013), or ~22 Pg
C/year based on a 7.6‐mol/mol carbon (C) to Si ratio (Brzezinski, 1985; Nelson et al., 1995). Coastal waters
are key for bSiO2 production (Tréguer & De La Rocha, 2013), with ~60% of global bSiO2 production
(equivalent to ~13 Pg C/year or 90% of coastal production) occurring in shelf and upwelling environments.
Diatoms possess several traits supporting their ecological success: a protective silicified cell wall (Hamm
et al., 2003) and high intrinsic growth rates allowing them to proliferate with high nutrients and low grazing
(Tréguer et al., 2018). Silicic acid (Si (OH)4) requirements further define diatom biogeography, especially for
species with high or low cellular bSiO2 (Fragoso et al., 2018; Tréguer et al., 2018).
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Despite the success of diatoms, the ocean is undersaturated with Si(OH)4, and the corrosive basic nature of
seawater pH (Martin‐Jezequel et al., 2000) leads to bSiO2 dissolution if unprotected by the organic compo-
nents of the cell wall (Bidle & Azam, 1999; Van Cappellen et al., 2002). Dissolution of bSiO2 is controlled
by the following: temperature, grazing, bacterial activity, and frustule chemistry (Bidle et al., 2003; Bidle
& Azam, 1999, 2001; Dugdale & Wilkerson, 1998; Natori et al., 2006; Nelson et al., 1995).

The global Si cycle is dominated by extensive Si recycling (low riverine influxes, minimal burial; Tréguer
et al., 1995; Tréguer & De La Rocha, 2013), with bSiO2 dissolution a critical mechanism resupplying Si
(Nelson et al., 1995, 1996). Ratios of bSiO2 dissolution (D) to production (P) range from 0.05–5.8, with the
upper‐ocean average 0.5–0.6 (Nelson et al., 1995; Tréguer & De La Rocha, 2013). Low D:P ratios (<0.1) are
typical of diatom blooms, with D:P ratios >0.5 indicating that the majority of bSiO2 produced is recycled
within the upper ocean (Brzezinski et al., 2003; Tréguer & De La Rocha, 2013).

Ratios ofD:P represent the fraction of bSiO2 production supported by upper‐ocean Si‐recycling, or expressed
as 1‐D:P, the fraction of bSiO2 production supported by “new” Si from the deep sea (Brzezinski et al., 2003).
Most studies measuring rates of production and dissolution have occurred during spring and summer, with
coastal studies almost exclusively from upwelling sites (Krause et al., 2010; Tréguer & De La Rocha, 2013).
Despite the importance of Si dissolution in controlling upper‐ocean Si dynamics, and the fate of diatom car-
bon, uncertainty remains of what controls the variability in D:P ratios, or how this impacts the Si cycle
(Beucher et al., 2004, 2004; Tréguer & De La Rocha, 2013).

With this in mind, this study examined bSiO2 production and dissolution, alongside measurements of bSiO2

pool composition and size, during an autumn shelf sea bloom. The specific objectives were to (1) measure
the magnitude of bSiO2 production and examine the composition of the diatom community; (2) examine
rates of bSiO2 dissolution when the water column is “resetting” before winter; and (3) compare ratios of dis-
solution to production (D:P) and the factors driving them in order to provide information on Si recycling.

2. Materials and Methods
2.1. Sampling

Sampling occurred in the Celtic Sea on board the RRS Discovery (cruise DY018, 9 November to 2 December
2014) at two sites; the Central Celtic Sea (CCS; 49°24′N, 8°36′W; 145‐m water depth; n = 4), and the Shelf
Break (CS2; 48°34.26′N, 9°30.58′W; 203 m; n = 2) (Figure 1a). The Celtic Sea was selected as a study site
to examine Si cycling due to its long residence time, minimal coastal influence, and isolation from fronts
or topographic features (see Ruiz‐Castillo et al., 2018). A mooring was deployed at CCS (sited at 49°23′N,
8°35′W) for 17 months (26 March 2014 to 25 July 2015), collecting water column structure, chlorophyll‐a
fluorescence, and meteorological data (Figure 1; see also Wihsgott et al., 2016, 2018, 2019).

During the cruise, water samples were collected from six light depths (60%, 40%, 20%, 10%, 5%, and 1% of
surface irradiance) in 20‐L Niskin bottles (OTE: Ocean Test Equipment) on a CTD rosette sampler deployed
predawn (0200–0600 local time). Depths were determined by back calculation of the vertical attenuation
coefficient (Kd, m

−1) of photosynthetically active radiation (PAR), with the base of the SML at or close to
the depth of the euphotic zone (1% surface irradiance) (Poulton et al., 2018).

Depth of the SML was determined from density profiles, from the ships CTD and mooring time‐series, by
identifying where potential density increased by 0.02 kg m−3 above the 10‐m value (Poulton et al., 2018;
Wihsgott et al., 2019). A 2π PAR irradiance sensor (Skye Instruments, SKE 510) on the RRS Discovery and
a quantum PAR meter (LiCor Inc., USA) on the mooring‐measured incident irradiance (E0). Average SML
irradiance (ĒSML) was determined following Poulton et al. (2018). Mooring fluorescence data were deter-
mined by a Seapoint fluorometer, standardized using fluorescent sulfate microspheres (FluoSpheres,
ThermoFisher Scientific) with nighttime data only to avoid daytime quenching (Wihsgott et al., 2018, 2019).

2.2. Silica Cycling

Micromolar (μmol/kg) concentrations of nitrate + nitrite (NOx) and silicic acid (Si (OH)4) were measured
with a Bran and Luebbe segmented flow colorimetric autoanalyzer following Woodward and Rees (2001).
Samples were taken in acid‐cleaned, aged, HDPE bottles, and clean sample handing procedures followed.
All samples were analyzed within 1–2 hr of collection. Certified reference materials were used daily
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(KANSO, Japan), and analytical procedures followed International GO‐SHIP recommendations (Hydes
et al., 2010). The typical uncertainty of the analytical results were between 2% and 3%, and the limits of detec-
tion for nitrate and phosphate were 0.02 μmol L−1, while Si(OH)4 was always higher than the detection lim-
its. Measurements of particulate silica concentrations (bSiO2; μmol Si kg−1) were made on 0.5‐L samples
filtered onto 0.8‐μm polycarbonate filters, digested in 0.2 M·NaOH at 85 °C for 1 hr and neutralized with
0.2 M·HCl (Ragueaneau & Tréguer, 1994). Sample analysis was with a SEAL QuAAtro autoanalyzer
(Poulton et al., 2006) using standard techniques.

Figure 1. Map of sampling sites, Central Celtic Sea (CCS) mooring, and time series of surface mixed layer (SML)
properties. (a) Map of sampling and mooring sites CCS and Shelf Edge (CS2), (b) mooring‐derived time series of SML
depth (ZSML, m) and SML integrated chlorophyll (Chl, mg m−2), and (c) average SML irradiance (ĒSML, E·m

−2·day−1).
Dashed lines on (b) and (c) indicate cruise period (9 November 2014 to 2 December 2014) and arrows indicate start date
(6 October 2014) and end date (20 November 2014) of the autumn bloom at CCS as defined by Wihsgott et al. (2018).

10.1029/2019GL083558Geophysical Research Letters

POULTON ET AL. 6767

 19448007, 2019, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2019G

L
083558 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [23/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Daily measurements of gross bSiO2 production (ρP) and net bSiO2 production (ρN) were made at the six
depths, and followed Krause et al. (2010) (see also Poulton et al., 2006). Duplicate water samples were spiked
with 0.03‐μCi high specific activity (2.06 μCi/mL) 32Si‐labeled Si (OH)4 and incubated for 24 hr in 70‐mL
polycarbonate bottles (CorningTM). Incubations were filtered onto 25‐mm 0.8‐μm polycarbonate
(Whatman NucleoporeTM) filters under gentle vacuum. Filters were digested with 0.2‐M NaOH in 20‐mL
plastic scintillation vials (PerkinElmer UK), at 85 °C for 1 hr. After cooling, 0.2‐M HCl was added and
15 mL of UltimaGoldTM liquid scintillation cocktail. Activity on the filters was determined on a 1220
QuantulusTM ultralow level liquid scintillation counter (Wallac, Finland) after >100 days, allowing
secular equilibrium.

Daily ρP and biomass‐normalized specific uptake (VP) were calculated after Krause et al. (2010). Triplicate
unspiked samples, collected alongside samples for ρP determination were incubated in parallel for 24 hr,
with differences between initial and end bSiO2 concentrations considered as net bSiO2 production (ρN), with
dissolution defined by the difference between ρP and ρN (Krause et al., 2010). Biomass‐normalized specific
dissolution (VD) was calculated after Krause et al. (2010).

Incubations under different daily light doses followed Poulton et al. (2018) in a modified refrigeration con-
tainer, with temperatures ±1–2 °C of those in situ. Irradiance was provided by one to three daylight simu-
lated LED panels (Powerpax, UK), combined with neutral density filters (Lee FiltersTM, UK), to achieve
target irradiance for each light level (sampling depth). These were 5.4 E·m−2·day−1 (60% incident irradiance
light depth), 4.8 E·m−2·day−1 (40%), 2.3 E·m−2·day−1 (20%), 0.8 E·m−2·day−1 (10%), 0.5 E·m−2·day−1 (5%),
and 0.2 E·m−2·day−1 (1%). Daily light doses reflected the November seasonal and depth‐specific irradiance,
based on analysis of 10 years of MODIS Aqua data (see Poulton et al., 2018, for further details). Cruise
average daily integral E0 was a good match (9.6 E·m−2·day−1, range 7.7–12.1 E·m−2·day−1) to that from
long‐term satellite data (average E0 for CCS (2003–2013), 9.4 E·m−2·day−1).

2.3. Chlorophyll‐a, Primary Production and Diatom Biomass

Chlorophyll‐a (Chl) concentrations (mg m−3) were measured on 0.2‐L water samples filtered onto 25‐mm
Whatman GF/F filters, and extracted in 6‐mL 90% acetone (Sigma‐Aldrich, UK) at 4 °C for 18–24 hr. Chl
fluorescence was measured on a Turner Designs TrilogyTM fluorometer using a nonacidification module
calibrated with solid and pure Chl standards (Sigma‐Aldrich, UK). Daily net primary production (NPP) rates
were determined following Poulton et al. (2018). Four samples in 70‐mL polycarbonate bottles from each
depth were spiked with 1,258–1,628 kBq of 14C‐labeled sodium bicarbonate (PerkinElmer, UK), with 1‐
mL of borate‐buffered formaldehyde (~2% final solution) added to one bottle as a formalin‐killed blank.
Samples were incubated in parallel to ρP and terminated by filtering onto 25‐mm 0.45‐μm Whatman
NucleoporeTM polycarbonate filters, with extensive rinsing to remove unfixed isotope. Organic (NPP) carbon
fixation was determined using the microdiffusion technique (as in Poulton et al., 2018) with 1‐mL of 1%
orthophosphoric acid added to remove 14C‐particulate inorganic carbon and 10‐mL of UltimaGoldTM

(PerkinElmer, UK) liquid scintillation cocktail. Filter activity was determined on‐board a Tri‐Carb
3100TR (Perkin‐Elmer) liquid scintillation counter.

Diatom cell counts were analyzed from each sampling depth by light microscopy of samples in 250‐mL
brown glass bottles, preserved in acidic Lugol's solution (2% final solution), and analyzed with a Leica
DMI4000B inverted microscope (Widdicombe et al., 2010). Diatom bSiO2 was estimated by applying the
average cell Si content (8.14 pmol Si cell−1) from Brzezinski (1985) to the diatom cell counts.

3. Results
3.1. Celtic Sea Hydrography

At CCS, ocean cooling commenced in early October, steadily deepening the SML until the end of December,
primarily by wind‐induced mixing (Figure 1b; Wihsgott et al., 2019). Integrated Chl (Figure 1b) increased
parallel to SML deepening, up until 12 November, when there was an increase to 93 mg m−2, followed by
a decline and little variation until the end of December. Average SML irradiance (ĒSML) calculated from
the CCS mooring data declined rapidly from 6 E·m−2·day−1 to <4 E·m−‐2·dat−1 from 24 October
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(Figure 1c). ĒSML then declined slowly until mid‐December, with values <3 E·m−2·day−1 from 24 October,
and <2 E·m−2·day−1 from 25 November.

Ship measurements showed similar trends to the mooring data (Table 1; Figures 1b and 1c). Deeper SML
occurred at CS2 than CCS, with SML temperatures warmer (~0.5 °C) at CS2 than CCS. Chl integrals from
the cruise (Table 1) were similar in magnitude to the mooring data, due to similarity in SML and euphotic
zone depths (Poulton et al., 2018). Chl ranged from 37–71 mg m−2, with lower integrals at CS2 than CCS,
and an increase of 10–30 mg m−2 between early and late November (Table 1). Incidental irradiance varied
from 7.7–12.1 E·m−2·day−1 over November (average 9.6 E m−2 day−1; Table 1). Little difference between
CS2 and CCS was seen in terms of ĒSML, with an average of 1.9 E·m−2·day−1 (20% of E0; Table 1), broadly
similar to the mooring data (Figure 1b).

Surface nutrient concentrations (NOx, Si (OH)4) showed variability between CS2 and CCS, with concentra-
tions slightly higher at CS2 than CCS (Table 1). Ratios of Si (OH)4:NOx (mol/mol) ranged from 0.4–0.6, indi-
cating shelf waters were depleted in Si (OH)4 relative to NOx, with no obvious difference between CS2 and
CCS. Integrated NPP showed a similar pattern to Chl with values ranging from 18.5–46.9mmol C·m−2·day−1

at CCS and from 22.5–26.4 mmol C·m−2·day−1 at CS2 (Table 1).

3.2. Silica Stocks and Rates

Vertical SML profiles of Si (OH)4 were uniform, apart from at CCS on 12 November when concentrations
increased at the base of the SML (Figure 2a). In contrast, SML bSiO2 was variable, though concentrations
were 5–7 times lower than those of Si (OH)4, ranging from 100–300 nmol Si L−1 (Figure 2b). Integrated Si
(OH)4 and bSiO2 ranged from 24.4–90.6 mmol Si m−2 and 9.2–15.6 mmol Si m−2, respectively (Table 1).

Diatom cell counts ranged from 1.2–12.8 cells ml−1, with up to 22 taxa present. Numerically dominant dia-
toms included Pseudo‐nitzschia, Dactyliosolen and Chaetoceros, whereas Rhizosolenia, Dactyliosolen, and
Guinardia dominated carbon biomass (Widdicombe and Poulton, pers. obs.). No freshwater or estuarine‐
associated diatom taxa were identified. Diatom‐specific bSiO2 estimates were 10 times lower than total
bSiO2 and showed no consistent profile (Figure 2c). Apart from CS2 on 18 November, which had diatom‐

specific bSiO2 concentrations of 30–60 nmol Si/L, all other sampling stations had diatom‐specific bSiO2 <

Table 1
Hydrography and Euphotic Zone Integrals for Si Stocks and Si Cycling for Celtic Sea Sampling Sites in November 2014

Site

CCS CCS CS2 CS2 CCS CCS

Date

Variables 10 Nov 12 Nov 18 Nov 20 Nov 22 Nov 25 Nov Mean Units

SML depth 44 32 58 58 54 52 50 (m)
SML temperature 13.7 13.6 13.9 14.1 13.1 12.8 13.5 (°C)
Surface NOx 2.1 2.1 3.5 2.6 1.8 2.5 2.4 (μmol N L−1)
Surface Si (OH)4 0.9 0.8 1.4 1.3 1.1 1.1 1.1 (μmol Si L−1)
Incidental irradiance 8.4 11.9 7.7 9.3 8.1 12.1 9.6 (E·m−2·day−1)
SML average irradiance 1.6 2.3 1.8 1.9 1.4 2.5 1.9 (E·m−2·day−1)
Chlorophyll a 59.7 37.4 54.4 57.6 68.7 70.8 58.1 (mg Chl m−2)
Net primary production 37.0 18.5 22.5 26.3 42.9 46.9 31.3 (mmol·C·m−2·day−1)

Euphotic Si (OH)4 37.1 24.4 90.6 69.2 45.1 52.2 53.1 (mmol Si m−2)
Total bSiO2 ND 9.3 15.6 12.1 9.2 11.6 11.6 (mmol Si m−2)
Diatom bSiO2 1.8 0.9 3.0 1.0 0.6 0.6 1.3 (mmol Si m−2)
Gross bSiO2 production (ρP) ND 0.5 (0.1) 2.2 (0.3) 1.4 (0.1) 0.3 (0.0) 0.7 (0.1) 1.0 (mmol·Si·m−2·day−1)
Net bSiO2 production (ρN) ND −2.6 (0.4) 0.4 (0.1) −2.2 (0.1) −1.4 (0.2) −0.6 (0.1) −1.3 (mmol·Si·m−2·day−1)
Dissolution rate (D) ND 3.1 (0.6) 1.8 (0.3) 3.6 (0.2) 1.6 (0.3) 1.3 (0.3) 2.3 (mmol·Si·m−2·day−1)
bSiO2‐specific dissolution rate (VD) ND 0.3 0.1 0.3 0.2 0.1 0.2 (day−1)
Ratio of dissolution (D) to production (P) ND 6.2 0.8 2.6 5.3 1.9 3.4

Note. ND indicates not determined. Values in parenthesis for bSiO2 production and dissolution indicate standard errors.
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30 nmol Si/L. Integrated diatom‐specific bSiO2 ranged from 0.6–3.0 mmol Si m−2 (Table 1). Ratios of diatom‐

specific bSiO2 relative to total bSiO2 ranged from 0.05–0.19 (average 0.10), indicating that ~10% of total bSiO2

was associated with living diatom cells, suggesting a significant detrital fraction.

Vertical ρP profiles were uniform across the SML and for most stations were <20 nmol Si·L−1·day−1

(Figure 2d). Rates of ρP were higher at CS2 on 18 November (range 25–50 nmol Si·L−1·day−1) in association
with high bSiO2 concentrations (Figures 2b and 2d). Euphotic zone integrated ρP ranged from 0.28–2.14
mmol Si·m−2·day−1, with an average of 0.78 mmol Si·m−2·day−1 and no differences between sites or time
(Table 1). The ratio of NPP to ρP (mol C: mol Si) for integrals, ranged from 11–153 with an average of 69,
9 times higher than the average diatom cellular ratio of C:Si (7.6, Brzezinski, 1985), and implies a low diatom
contribution to NPP

Rates of ρN were either slightly positive or strongly negative across the water column (Figure 2e), with ρN
ranging from 68 to −215 nmol·L−1·day−1 and an average of −29 nmol·L−1·day−1. Negative ρN implies net
dissolution rather than net production (positive ρN), with inferred ρD rates well above ρP. Rates of ρD normal-
ized to total bSiO2 ranged from−0.3 to 0.5 day‐1 (Figure 2f), with an average of 0.2 day‐1 (Table 1). Integrated
ρD rates were generally in excess of ρP for most sampling sites (Table 1), apart from CS2 on 18 November.
High VD reflects the strongly negative ρN and high bSiO2 concentrations observed at all sampling sites.
Ratios of D:Pwas strongly negative for all sampling sites (apart from CS2 on 18 November; Table 1), indicat-
ing that Si production could be fully supported by recycled Si (OH)4.

4. Discussion

High NPP and Chl (Table 1 and Figure 1b; Poulton et al., 2018), prior to the wintertime breakdown of stra-
tification, are indicative of the autumn bloom (Wihsgott et al., 2019). Based on SML and critical depth

Figure 2. Vertical profiles of Si pool concentrations (nmol Si L−1) and bSiO2 dynamics. (a) silicic acid concentrations (Si (OH)4), (b) total bSiO2 concentration
(bSiO2total), (c) diatom bSiO2 concentration (bSiO2diatom), (d) gross bSiO2 production (ρP, nmol Si·L−1·day−1), (e) net bSiO2 production (ρN, nmol Si·L−1·day−1),
and (f) biomass‐specific dissolution rate (VD, day

−1). Diatom bSiO2 was estimated by applying the average cell Si content from Brzezinski (1985) to the diatom
cell counts. Different sampling dates and locations are given as symbols (see Table 1 for dates and locations). Error bars are from triplicate measurements for
each sampling depth.
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(where growth equals losses), Wihsgott et al. (2019) determined that the autumn bloom started on 6 October
(see Figure 1b), terminating 50 days later (20 November) when the SML deepened below the critical depth.
Our observations characterize elevated carbon fixation and biomass during the late stages of this period.

Though the shelf edge (CS2) showed similar Chl and NPP to CCS, on 18 November it exhibited higher nutri-
ent levels, bSiO2 and Si‐uptake, positive net bSiO2 production, with a D:P ratio (0.8) indicative of “new” Si
supporting 20% of bSiO2 production. The Celtic Sea has an energetic internal wave field (Green et al.,
2008; Vlasenko et al., 2014), with breaking waves at the shelf edge enhancing nutrient supplies (Sharples
et al., 2009). During November 2014, stratification supported an internal tide (Wihsgott, 2018), with warm
water at the shelf break from internal tidal mixing redistributing heat vertically (see Figure 2 in Ruiz‐
Castillo et al., 2018). Our observations indicate that this autumn diapycnal nutrient transfer supports
bSiO2 production; however, the limited nature of our observations means that the remainder of this paper
will only consider the Si dynamics at CCS.

In contrast to NPP, integrated bSiO2 production rates at CCS (Table 1) were similar to rates observed in the
low‐latitude Atlantic (<1 mmol·Si·m−2·day−1, Poulton et al., 2006, Krause et al., 2010) rather than diatom
blooms in, for example, the subpolar Atlantic (6–167 mmol·Si·m−2·day−1, Brown et al., 2003), or
Monterey Bay (5–108 mmol·Si·m−2·day−1, Brzezinski et al., 2003). High NPP and low bSiO2 production,
with C:Si ratios 9 times higher than diatom cells, imply that diatoms had limited impact in autumn.
Diatom‐specific NPP estimates (see Poulton et al., 2006), indicate that diatoms contributed an average of
12% to NPP. Unlike bSiO2 production, standing stocks of bSiO2 (Table 1) were relatively moderate, higher
than the low‐latitude Atlantic (<1 mmol Si m−2, Poulton et al., 2006; 2.2–19.8 mmol Si m−2, Krause et al.,
2010), but lower than the subpolar Atlantic (10–148 mmol Si m−2, Brown et al., 2003), or Monterey Bay
(16–175 mmol Si m−2, Brzezinski et al., 2003). Thus, the late autumn bloom at CCS was characterized by
low bSiO2 production, low diatom NPP contributions, but comparatively moderate levels of bSiO2.

However, consideration of only ρP (gross production) fails to recognize the significant rates of bSiO2

dissolution. Rates of bSiO2 dissolution (Table 1) are similar to other studies, for example, in the Sargasso
Sea (0.1–1.3 mmol Si m−2 day−1, Krause et al., 2010) and Monterey Bay (0.6–6.5 mmol Si m−2 day−1,
Brzezinski et al., 2003). In these cases, however, bSiO2 production was higher than bSiO2 dissolution so that
net production was positive (Brzezinski et al., 2003; Krause et al., 2010). At CCS in autumn, dissolution rates
were higher than ρP, so D:P ratios were >1 (Table 1), and ρN (net production) was negative (Figure 2e). In
effect, new bSiO2 material was produced as fast as it was dissolved, although the two pools were not neces-
sarily the same. The level of detrital bSiO2 not associated with diatoms cells was estimated to be high at CCS
(>90%), and rapid dissolution of dead diatoms has also been observed in the Bay of Brest and Southern
Ocean (Beucher, Treguer, Corvaisier, Hapette, & Elskens, 2004; Beucher, Treguer, Corvaisier, Hapette,
Pichon, & Metzl, 2004).

Ratios of D:P > 1, indicative of dissolution rates exceeding production rates, are thought to be possible only
over short timescales or in limited localities (Tréguer & De La Rocha, 2013). High ratios have been observed
in the Bay of Brest and Southern Ocean, and like the Celtic Sea, these are linked to high proportions of det-
rital bSiO2 from grazing and cell death following blooms (Beucher, Treguer, Corvaisier, Hapette, & Elskens,
2004; Beucher, Treguer, Corvaisier, Hapette, Pichon, & Metzl, 2004). Applying the average biomass‐specific
dissolution rate (VD ~0.2 day−1; Table 1) implies an exponential decline in bSiO2 that would take 22 days to
reduce bSiO2 levels to <1% of initial levels. If these biomass‐specific dissolution rates continued during win-
ter, this would support the upper‐ocean dissolution of the autumn bSiO2 pool prior to the spring bloom.

The source of the autumn bSiO2 detrital pool also needs to be considered. Due to limited coastal influence at
CCS (see Ruiz‐Castillo et al., 2018) and an absence of estuarine diatoms, a terrestrial source for the material
is unlikely. The depth (145 m) and persistent thermocline would also limit any potential sedimentary bSiO2.
In fact, the bSiO2 pool represents only 3% of the estimated total water column inventory of Si (406 mmol Si
m−2, based on a 145‐mwater column and winter Si (OH)4 ~2.8 μM, see Hydes et al., 2001), or 20% of the SML
inventory of Si (55 mmol Si m−2; Table 1). The total autumn bSiO2 pool is also equivalent to only 10% of esti-
mated Celtic Sea spring bloom bSiO2 production (115mmol Si m−2), based on the Si (OH)4 decline fromwin-
ter (2.8 μM) to summer (0.5 μM; see Hydes et al., 2001). Taking the average diatom cell Si content from
Brzezinski (1985) (8.14 pmol Si cell−1), the total autumn bSiO2 pool is roughly equivalent to only 30 cells
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ml−1. Though the detrital bSiO2 is important for autumn Si cycling, con-
textually it is a small proportion of the total Si pool (re)cycled annually.

Diatoms are common features of shelf sea SCM (Barnett et al., 2019;
Hickman et al., 2009). The summertime SCM at CCS contained 2.1 mg
Chl m−3, whilE the SML had 0.3 mg Chl m−3 (Wihsgott et al., 2019).
When stratification broke down in early October (Figure 1b), nutrients
and Chl were redistributed across the SML, with SML Chl increasing to
2.2 mg Chl m−3, indicating that resupply of replenished nutrients by
SML deepening was the driver of the autumn bloom (Wihsgott et al.,
2019). Diatoms and bSiO2 from the SCMmay have been redistributed into
the SML in early October, with (net) bSiO2 production of only 0.3 mmol
Si·m−2·day−1 (30% of measured production rates) needed to acquire the
November bSiO2 pool. Hence, November bSiO2 is actually not high and
low contribution to the total Si inventories, high detrital composition,
and rapid dissolution rates imply that during the late autumn bloom dia-
tom Si dynamics are limited by factors other than nutrient availability.

Light‐limitation of the Celtic Sea autumn bloom has been described in
terms of low growth rates (Poulton et al., 2018), and interactions between
the SML and critical depth (Wihsgott et al., 2019). In the context of Si

dynamics, vertical ρN profiles show little pattern, with both positive and negative ρN relative to depth
(Figure 2e). If ρN are averaged for each incubation light‐dose (Figure 3), then a vertical pattern is observed,
with less negative ρN at higher irradiance levels (>4.8 E·m−2·day−1) and negative ones at lower levels (<2.3
E·m−2·day−1). This implies positive (net) bSiO2 production at irradiance levels >4 E·m−2·day−1, higher than
the compensation irradiances of Wihsgott et al. (2019) for net growth (1.2 and 3.0 E·m−2·day−1), or the ĒSML

for late October to mid‐December (Figure 1c and Table 1). This indicates that positive net bSiO2 production
was light‐limited during the latter stages of the autumn bloom and dissolution‐dominated water column Si
dynamics; while our incubations encouraged positive (net) production by alleviating light limitation.

Fundamental different mechanisms between blooms in spring (increasing stratification and irradiance) and
autumn (declining stratification and irradiance; Figure 1b) may lead to differences in Si cycling. Spring dia-
tom growth is encouraged by alleviation from light limitation and terminated by Si limitation as Si (OH)4 is
converted to bSiO2 and exported, so (net) bSiO2 production and export dominate Si‐cycling. In contrast, our
autumn observations imply that a large fraction of detrital bSiO2, combined with suboptimal light condi-
tions, limit net bSiO2 production, with bSiO2 dissolving, so that (net) bSiO2 dissolution dominates.

In an ecosystem with a large bSiO2 pool, the fraction of this pool that is living or detrital will determine
whether continued production or dissolution dominates Si cycling. This balance between production or loss
may also occur during the early stages of the spring bloom, as weak stratification establishes itself, but is
eroded via mixing events until it overcomes these conditions (e.g., Daniels et al., 2015; Taylor & Ferrari,
2011). Attention should focus on determining the bSiO2 pool composition and its growth dynamics in terms
of living and detrital components to better understand surface ocean Si cycling.
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