
227 (2023) 211929

A
2

Contents lists available at ScienceDirect

Geoenergy Science and Engineering

journal homepage: www.sciencedirect.com/journal/geoenergy-science-and-engineering

Quantifying prior model complexity for subsurface reservoir models
Tanteliniaina N. Mioratina a,b,∗, Dean S. Oliver a

a NORCE Norwegian Research Centre, Norway
b University of Bergen, Norway

A R T I C L E I N F O

Keywords:
Model complexity
Model predictability
Predictive accuracy
Model selection
Prior model
History matching

A B S T R A C T

In Bayesian approaches to history matching for subsurface inference, the prior model specifies the uncertain
model parameters and the joint probability of those parameters before incorporating production-related data.
A good prior model is generally complex enough to capture the future reservoir behavior in the long term,
realistic enough to be plausible, consistent with geologic knowledge, and simple enough to allow calibration
for data matching. Model complexity is often associated with the number of model parameters, thus the focus
on finding the sufficient number of parameters needed for history matching and quantifying future uncertainty.

This work explores model choice based on concepts of complexity and informativeness of models for
subsurface reservoir models. It focuses on the effect of the misspecification of prior models for assimilating flow
data and their predictive accuracy. The concept of the effective number of parameters is used to investigate the
suitability of various types of prior models with different levels of complexity, ranging from a highly simplified
polynomial trend model to a more realistic multipoint statistical model(MPS) and a family of isotropic Gaussian
models and explore the effect of level of model complexity on the robustness of forecasting. The numerical
experiments were performed with different combinations of data type, prior informativeness, forecast type,
and model type to compare the effect of different prior models on the robustness of the results. The effective
number of parameters was computed for each prior model and their accuracy for predicting future reservoir
behavior was analyzed.

The results suggest that effective model dimension is a useful measure of model complexity for history
matching problems, although it is not independent of the data used for model calibration and the number of
effective model parameters is generally much smaller than the number of model parameters. In a data-rich
problem, realism of a model is much less important than the complexity of a model, while for a problem with
few data, realism was beneficial for reliable forecasts.
1. Introduction

The use of the Bayesian paradigm in the field of inverse problems is
well established (Tarantola, 1987; Stuart, 2010) and it has proven its
robustness in various applications, including reservoir history match-
ing (Oliver and Chen, 2011; Oliver et al., 2021; Evensen et al., 2022).
Despite its efficiency, Bayesian history matching inherits the subjective
nature of Bayesian analysis, especially in the specification of prior
uncertainty and prior model selection. The subjective prior refers to
the prior distribution for model parameters based on experts’ prior
knowledge and beliefs. As these may be personal beliefs, each expert
may choose a different prior model and reach different conclusions.
On the other hand, objective prior distributions are designed to be
minimally informative and remove subjectivity. The relative benefits
of objectivity and subjectivity in the specification of prior distribution
remain controversial. Gelman et al. (1995), Gelman and Hennig (2017),
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Berger (1985), Oakley and O’Hagan (2004) and Simpson et al. (2017)
present extended discussions of subjective and objective priors, and
their effects on statistical analysis. The subjective nature of Bayesian
analysis allows considerable flexibility in the choice of the prior model,
but (O’Hagan, 2013) cautions on possible pitfalls in the specification
of subjective prior probability, including the possibility of specifying
logically inconsistent priors. For history matching, the main issue,
however, is probably not the choice of objective versus subjective prior,
as the usefulness of incorporating prior geologic knowledge in history
matching is almost universally accepted; it is the choice of parameters
to include in the uncertainty model. Neglecting essential parameters
often results in biased and overconfident predictions (Gelman et al.,
2014; Vink et al., 2015; Oliver and Alfonzo, 2018).

In the context of reservoir modeling, the prior describes the confi-
dence in the model parameters based on prior information and general
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scientific knowledge. Prior models are usually defined without refer-
ence to data before history matching; the choice of model parameters
used is subject to practitioners’ best knowledge and beliefs. This results
in many possible prior scenarios and considerable uncertainty in geo-
logical interpretations. Specification of prior models involves, among
other things, constraints on model parameters and joint constraints
on the spatial distribution of parameter values, reflecting the need
for geological realism and consistency. The model parameterizations
for history matching are often selected based on their simplicity and
parsimony (Dake, 2001; Williams et al., 2004). However, this approach
runs the risk of underestimating uncertainty in parameters that could
be relevant in understanding future reservoir behavior but might not
necessarily be required to match historical data (Hunt et al., 2007). On
the other hand, geologists typically value realism in their subsurface
characterization. Some estimates of the reservoir parameters might
not be acceptable if they do not fit into their notion of what the
true subsurface should be like. The concept of realism in geological
modeling is reviewed by Linde et al. (2015) and discussed by Heße
et al. (2019). Realistic models tend to be computationally expensive to
simulate and difficult to fit into consistent probability models. Reality
is complex, however, so model complexity appears to be needed to
accurately represent all the aspects of reality (Oreskes, 2003). Draper
(1995) suggests the model should be ‘‘as big as a house’’; that is, it
should incorporate all the parameters needed so that model will be
consistent with observations, will remain consistent with future data,
and be able to forecast future behavior.

The complexity of a model can be characterized in many ways,
including the interpretability of parameters (Okiria et al., 2022), com-
putational time or cost of model simulation, the ability to be condi-
tioned to observed data, the entropy (or differential entropy) of the
model, and the types of physical processes that are included in the
forward simulation. In statistical literature, the complexity of a model is
sometimes defined by the effective number of parameters or degrees of
freedom. In this case, the complexity of the prior model is a function of
the data that must be assimilated. Parameters of the prior model that
do not influence the value of predicted data are not relevant to this
definition of complexity. A more complex model has greater flexibility
and generally results in a better fit to data.

Hansen (2021) developed a methodology for efficiently computing
the entropy of a prior model using products of sequential simulation.
The approach provides a measure of the effective number of parameters
that can be used for calibration to point measurements of the parameter
field but does not provide an estimate of the effective number of param-
eters that are available for the calibration of non-local data. Although
entropy provides a measure of complexity, entropy may not be useful to
quantify the complexity of models for history matching because entropy
fails to account for the type of data that must be assimilated. The
complexity of a model, when defined in terms of the number of degrees
of freedom, might be different for the assimilation of flow data or well-
log data. Thus, measuring the model’s complexity should consider both
the observations and the prior information (Spiegelhalter et al., 2002).

One of the main reasons that the complexity of a model is of interest
in history matching and reservoir data assimilation is that it affects
predictability. If the complexity of the model is taken to be the number
of degrees of freedom available for history matching, one might worry
that too many adjustable parameters would result in overfitting and
poor predictability of the model. On the other hand, too few adjustable
parameters would result in underfitting and, again, poor predictability.

The concept of predictability is central to the investigation of com-
plexity. The goal is not necessarily to provide an objective approach
to choosing the best prior model but rather to provide guidance on the
types of prior models that will have high predictability for various types
and amounts of data. It is expected that the choice of types of models
will depend on a number of factors, including the quantity of data that
is available and the quantity that is to be predicted. In history matching,
2

the quality of a prior model is often characterized by its ability to t
assimilate available production data. However, while the quality of the
match to available data is important as a predictor of the quality of the
match to unseen data, it is almost always optimistic as a measure of
predictability.

This paper is organized as follows: Section 2 presents an overview
of the metrics used to evaluate the predictability and complexity of
a given model. Log pointwise predictive accuracy is used to measure
the ability of the model to predict data that were used to history
match the model. A probabilistic scoring function is used to compare
probabilistic future forecasts. The deviance information criterion (DIC)
and the effective number of parameters are applied to quantify model
complexity and serve as metrics to compare candidate models.

Section 3 illustrates key concepts of model complexity with two
numerical examples. The first example is a 1D Gauss-linear inverse
problem, where an extensive comparison of various measures of model
complexity and predictability is presented. Undertaking such a com-
prehensive comparison is feasible with this test case as it is not limited
by computational expense. The second numerical example investigates
the effect of model complexity on the ability to assimilate production
data and provide usable forecasts with a 2-dimensional, 2-phase porous
media flow study, where the effect of the misspecification of prior
models in a history-matching exercise is examined. This investigation
is performed with three different prior models: a simple polynomial
model, a family of weakly informative Gaussian models with different
correlation lengths, and a more geologically ‘‘realistic’’ multi-point
statistics (MPS) model (Guardiano and Srivastava, 1993; Strebelle,
2002; Mariethoz et al., 2010). In this study, an MPS model defined by a
training image (TI) is used to portray the high-connectivity channel fea-
tures that are present in the data-generating model. Furthermore, this
example uses a combination of data sets of varying lengths with short
and long periods of historical production data to give an insight into the
impact of the data availability in forecasting. Each competing model’s
complexity is assessed numerically, and their predictive accuracy in the
immediate future and in long-term forecasts are evaluated.

This paper uses two history-matching techniques to obtain poste-
rior samples. Levenberg–Marquard iterative ensemble smoother (LM-
IES) (Chen and Oliver, 2013) is applied to history match the polynomial
trend and Gaussian processes models. History matching an MPS model
is not feasible with the IES method, a Markov chain Monte Carlo
(McMC) extended Metropolis algorithm (Hansen et al., 2013) is used to
match the MPS model. The overall findings are presented in Section 5,
followed by discussion and concluding remarks.

2. Methodology

2.1. Quantifying model predictability

History matching aims not to estimate the model’s parameters but to
predict future reservoir behavior or reservoir behavior with a different
set of controls. The methodologies for quantifying the quality of a
probabilistic forecast are briefly presented in the following section.

2.2. Ability to match unseen data

Let 𝑦 denote the data used for history matching. For predictability
of an unseen dataset �̃�𝑖 after history matching, the posterior predic-
tive distribution 𝑝(�̃�𝑖|𝑦) should be as close to the distribution for the
true data-generating process 𝑝𝑡(�̃�𝑖) as possible. The Kullback–Leibler
divergence is a useful measure of the difference between those two
distributions

𝐷𝐾𝐿(𝑝𝑡∥𝑝) = ∫ 𝑝𝑡(�̃�𝑖) log
𝑝𝑡(�̃�𝑖)
𝑝(�̃�𝑖|𝑦)

𝑑�̃�𝑖

= ∫ 𝑝𝑡(�̃�𝑖) log 𝑝𝑡(�̃�𝑖) 𝑑�̃�𝑖 − ∫ 𝑝𝑡(�̃�𝑖) log 𝑝(�̃�𝑖|𝑦) 𝑑�̃�𝑖.
(1)

The KL-divergence will be minimized when 𝑝(�̃�𝑖|𝑦) = 𝑝𝑡(�̃�𝑖). The first
erm on the right side of (1) can be ignored as it only involves the true
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distribution and is thus the same for all models. Consequently, using the
terminology of Vehtari et al. (2017), the expected log pointwise predictive
density for a new dataset, is

elpd =
𝑛
∑

𝑖=1
∫ 𝑝𝑡(�̃�𝑖) log 𝑝(�̃�𝑖|𝑦) 𝑑�̃�𝑖 (2)

here 𝑝𝑡(�̃�𝑖) is the distribution representing the true data-generating
rocess for �̃�𝑖. Unfortunately, while log 𝑝(�̃�𝑖|𝑦) can be relatively eas-
ly evaluated from the posterior ensemble of reservoir models (𝜃)
onditioned to data 𝑦, i.e.

(�̃�𝑖|𝑦) = ∫ 𝑝(�̃�𝑖|𝜃)𝑝(𝜃|𝑦) 𝑑𝜃

the distribution of the true unseen data 𝑝𝑡(�̃�𝑖) is unknown.
Something that can be computed is the ability of the model to

predict the data that were used to history match the model. In this case,
the measure of predictability is derived from the posterior distribution
of model parameters conditioned to data, 𝑝(𝜃|𝑦). For a problem with
independent observations errors, the log pointwise predictive density (Gel-
man et al., 2014) of the history-matched model to the data that were
used for history matching is

lppd = log
𝑛
∏

𝑖=1
𝑝(𝑦𝑖|𝑦)

=
𝑛
∑

𝑖=1
log∫ 𝑝(𝑦𝑖|𝜃)𝑝(𝜃|𝑦) 𝑑𝜃

(3)

which can be estimated easily using draws from the posterior distribu-
tion, 𝑝(𝜃|𝑦),

l̂ppd =
𝑛
∑

𝑖=1
log

(

1
𝑆

𝑆
∑

𝑠=1
𝑝(𝑦𝑖|𝜃𝑠)

)

. (4)

The log pointwise predictive density (4) does not always provide
a reasonable estimate of predictability of data that were not used for
history matching (2) because its ability to match data generally be-
comes better as more degrees of freedom are added. On the other hand,
the predictability for unseen data may decrease when the complexity
of the model becomes higher than optimal. The difference between
the estimate of predictability based on lppd (4) and an estimate based
on elpd (2) is sometimes called the optimism in the machine learning
literature (Hastie et al., 2009).

If lppd (3) is used as a measure of the predictability of out-of-
sample data, then it needs to be corrected for the optimism. The goal
is to estimate the expected log pointwise predictive density (elpd) for
a new dataset. Various methods of approximating this quantity are
evaluated in this study and the differences are used to quantify the
effective number of parameters in the model. Of course, the model
may have many times more uncertain parameters (millions in many
reservoir models), but the magnitude of most parameters will generally
be determined by the prior model distribution (Spiegelhalter et al.,
2002). The approach taken is to identify 𝑝 as the difference between
the computation of lppd for observed data and an estimate of the
elppd for unseen data (Gelman et al., 2014). Several potential methods
for approximating elppd are investigated here. Note, however, that
all of the methods considered are only capable of approximating the
predictability of unseen data that is similar to data that has been used
for history matching. The most straightforward approach to estimating
the predictability of unseen data is through cross-validation, which
allows one to evaluate directly the predictability of data that were not
used for calibration by using subsets of the data for training and for
validation. In the leave-one-out (loo) formulation of cross-validation,
the data set is repeatedly partitioned into a training set that consists
of all data points except the 𝑖th, and the held-out data 𝑦𝑖 which is then
used to evaluate predictability. The sum of the individual log pointwise
predictive densities provides an estimate of the elpd (Gelman et al.,
2014; Vehtari et al., 2017; Gronau and Wagenmakers, 2019):

lppdloo−cv =
𝑛
∑

log 𝑝(𝑦𝑖|𝑦(−𝑖)), (5)
3

𝑖=1
calculated as
𝑛
∑

𝑖=1
log

(

1
𝑆

𝑆
∑

𝑠=1
𝑝(𝑦𝑖|𝜃𝑖𝑠)

)

(6)

where 𝜃𝑖𝑠 denotes the 𝑠 realization of the posterior, trained without the
𝑖th observation.

Burman (1989) points out that the predictive fit from standard
loo cross-validation is biased because the lppd (4) is computed for
calibration to 𝑛 data while the lppd for unseen data (5) is computed
from calibration to 𝑛−1 data. The difference is negligible for large 𝑛, but
a correction might be justified for small 𝑛 (or when using k-fold cross-
validation). Using a first-order bias correction the following estimate is
obtained

lppd−𝑖 =
1
𝑛

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
log 𝑝(𝑦𝑗 |𝑦(−𝑖)),

which is calculated as

1
𝑛

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
log

(

1
𝑆

𝑆
∑

𝑠=1
𝑝(𝑦𝑗 |𝜃𝑖𝑠)

)

. (7)

The bias correction is rarely used as it is usually small, but it is
included in the computations of numerical results for completeness.
To make comparisons to other methods, an estimate of the effective
number of parameters based on leave-one-out cross-validation is

𝑝loo−cv = lppd−𝑖 − lppdloo−cv. (8)

where lppd−𝑖 is computed from (7) and lppdloo−cv is computed using (6).
As an estimator of the predictability of unseen data, loo cross-validation
is robust but too expensive to use for large-scale, expensive data
assimilation problems as it requires the model to be recalibrated 𝑁𝑑
times. Consequently, several approximations to loo-cv are evaluated,
including 𝑝DIC (Spiegelhalter et al., 2002), 𝑝psis−loo (Vehtari et al., 2017)
and the effective dimension (Agapiou et al., 2017).

Instead of using the expensive loo-cv approach to estimating the
predictability of unseen data, one could use an importance sampling
approach to estimating lppdloo−cv. Gelfand et al. (1992) noted that (5)
can be written, without approximation, as

∫ 𝑝(𝑦𝑖|𝜃) 𝑝(𝜃|𝑦−𝑖) 𝑑𝜃 = ∫ 𝑝(𝑦𝑖|𝜃)
𝑝(𝜃|𝑦−𝑖)
𝑝(𝜃|𝑦)

𝑝(𝜃|𝑦) 𝑑𝜃

and that the importance weight on a sample 𝜃𝑠 from 𝑝(𝜃|𝑦) is

𝑠
𝑖 =

𝑝(𝜃|𝑦−𝑖)
𝑝(𝜃|𝑦)

= 1
𝑝(𝑦𝑖|𝜃)

(9)

which is the same as (6) in Vehtari et al. (2017). The importance
sampling approximation of the predicted data at the 𝑖th location given
the data at all other locations using the Monte Carlo approximation is
thus

𝑝(�̃�𝑖|𝑦−𝑖) ≈
∑𝑆

𝑠=1 𝑤
𝑠
𝑖 𝑝(�̃�𝑖|𝜃

𝑠)
∑𝑆

𝑠=1 𝑤
𝑠
𝑖

.

If this expression is evaluated at locations of observed data, �̃�𝑖 = 𝑦𝑖,
then 𝑤𝑠

𝑖 𝑝(𝑦𝑖|𝜃
𝑠) = 1 can be simplified and consequently an importance

sampling estimate is obtained,

lppdis−loo =
∑𝑆

𝑠=1 1
∑𝑆

𝑠=1
1

𝑝(𝑦𝑖|𝜃𝑠)

= 1
1
𝑆
∑𝑆

𝑠=1
1

𝑝(𝑦𝑖|𝜃𝑠)

. (10)

Vehtari et al. (2017) point out that the importance sampling estimate
(10) is often sensitive to the magnitude of weights on a few samples.
They suggest that the loo estimate can be improved using Pareto
smoothing of the smallest weights. For the computation of Pareto
smoothed importance sampling weights, the ‘psisloo’ routine (Vehtari,
2018) is used, which takes as input the ensemble of log-likelihood val-
ues for each of the data. It then fits the Pareto distribution and outputs
revised weights. A measure of the effective number of parameters for
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the problem can then be obtained as the difference between lppd (3)
and lppdpsis−loo:

psis−loo = lppd − lppdpsis−loo (11)

The Pareto smoothed importance sampling approach is relatively in-
expensive as it only requires the posteriori ensemble from a single
calibration to all data. The approach’s applicability is limited, however,
by the magnitude of the variability of the log-likelihood for a single
datum. The method works best with highly informative priors.

2.3. Ability to extrapolate (scoring)

Using a scoring rule is the best way to evaluate the quality of
the predictive performance of a model. This paper focuses on the
Logarithmic score (Good, 1952), which is defined by (12) to compare
the predictability of different models,

LogS(𝐹 , 𝑦𝑜) = − log(𝑓 (𝑦𝑜)) (12)

where 𝑓 is the estimated probability density function pdf of the fore-
cast, which is modeled as a Gaussian distribution, and 𝑦𝑜 is the observed
forecast.

The steps to compute a score for the quantity of interest 𝑥 are
defined as follows

- Generate the ensemble of forecasted values.
- Fit a Gaussian pdf to the ensemble of predicted values from the

mean 𝜇 and the standard deviation 𝜎 of the QoI, 𝑥 from the
ensemble:

𝑝(𝑥|𝑑,𝐻) = 1

𝜎
√

2𝜋
exp

(

−1
2
(𝑥 − 𝜇)2

𝜎2

)

- Compute the logarithmic score for the true QoI, 𝑥𝑡𝑟:

score(𝑥𝑡𝑟, 𝑑,𝐻) = − log(𝜎
√

2𝜋) − 1
2
(𝑥𝑡𝑟 − 𝜇)2

𝜎2

Given different forecaster models, the models with the higher score
ver multiple forecasts have higher predictive performance. The score
s affected by both the quality of the calibration (the second term) and
he sharpness of the prediction (the first term). Hence for two predic-
ions with the same calibration quality, the one with the narrower pdf
btains the higher score.

.4. Quantifying model complexity

Providing a general definition of model complexity is a challenge
ince the complexity of a model can be described and assessed in many
ifferent ways. This study is aligned with Van der Linde (2012) in
efining model complexity as the ability of the parameters to explain
he observations and the ability of the observations to determine the
arameters. Therefore, measuring model complexity implies measuring
he dependence between the observations and parameters.

A measure of the effective number of parameters in a model can
e derived based on information theoretic arguments. The measure
efined by Spiegelhalter et al. (2002) is particularly useful in data
ssimilation as it is easy to compute from an ensemble of posterior
ealizations. Because this measure is used in the DIC to penalize model
omplexity, it will be referred as pDIC. It is obtained from (2 times) the
ifference between the log-likelihood evaluated at the mean posterior
odel and the mean of the log-likelihoods evaluated at the ensemble

f draws from the posterior.

DIC = 2
(

log 𝑝(𝑦|𝐸post𝜃) − 𝐸post log 𝑝(𝑦|𝜃)
)

, (13)

where the expectations are with respect to the posterior distribution of
𝜃. The Monte Carlo computation of pDIC uses simulations 𝜃𝑠, 𝑠 = 1,… , 𝑆
from the posterior as,

𝑝DIC = 2

(

log 𝑝(𝑦|�̂�post ) −
1

𝑆
∑

log 𝑝(𝑦|𝜃𝑠)

)

. (14)
4

𝑆 𝑠=1
Although 𝑝DIC is relatively stable, negative estimates can be produced
when the posterior mean is far from the mode.

When the posterior distribution is Gaussian, the effective number of
parameters can be computed directly from the sensitivity, 𝐺, of data to
model parameters, the observation error covariance matrix 𝐶𝑑 and the
posterior covariance for model parameters 𝐶𝑚′ :

𝑝𝐷𝐼𝐶−𝐺 = Tr(𝐺T𝐶𝑑
−1𝐺𝐶𝑚′ )

= Tr(𝐶1∕2
𝑚′ 𝐺T𝐶𝑑

−1𝐺𝐶1∕2
𝑚′ )

(15)

Agapiou et al. (2017) derives an equivalent measure which they in-
terpret as the effective dimension of the Bayesian linear model. In
an ensemble Kalman approach to data assimilation, 𝑝𝐷𝐼𝐶−𝐺 is trivial
o approximate from the ensemble of updated predicted data. This
uantity will be referred to as the effective dimension (efd), although
t is identical to 𝑝𝐷𝐼𝐶−𝐺,

fd = Tr(𝐶𝑑
−1𝛥𝑑(𝛥𝑑)T∕(𝑛𝑒 − 1)). (16)

lthough the dimension of 𝐶𝑑 is often large in geoscience inverse
roblems, the efd can be efficiently computed from the singular val-
es of 𝐶−1∕2

𝑑 𝛥𝑑∕
√

𝑛𝑒 − 1 where 𝛥𝑑 is the matrix whose columns are
realizations of predicted data after subtraction of the ensemble means.

3. Numerical example: 1D Gauss-linear inverse problem

In this example, a Gaussian random variable is defined on a one-
dimensional lattice of length 1 that has been discretized into 150
segments. The data are generated from a Gaussian process with a
Gaussian (squared exponential) covariance with a practical range of
0.2. Observations are generated by adding independent zero-mean
noise with a standard deviation 0.2 to the true data. Fig. 1 shows
the data-generating model (solid curve) and the noisy observations
(square dots) for the case in which half of the lattice points have
been observed. This example has been chosen because it is possible to
analyze results from several methods of quantifying model complexity
and model predictability thoroughly, including cross-validation, which
is not possible for more expensive models.

For this simple problem, the goal is to evaluate methods of comput-
ing model complexity for a variety of prior models. The choice of a prior
model is restricted to Gaussian processes with squared exponential
covariance type and known variance. In this case, it is possible to
investigate model complexity as a function only of the range of the
prior model covariance. For each selected correlation length, the log
pointwise predictive densities (7) and a measure of the ability to predict
unseen data (8) are evaluated. The expected log pointwise predictive
density (8) is used to evaluate the ability to predict unseen (but similar)
data—it avoids the optimism inherent in simply choosing the model
that best fits the data. Fig. 2 shows the lppd and the lppd-loo-cv values
as functions of the correlation length. As expected, the lppd increases
monotonically as the correlation length in the prior covariance becomes
shorter, indicating an increased ability to match data as the number of
degrees of freedom increases. On the other hand, the predictability of
data at locations of held-out data (orange curve) peaks when the correct
correlation range is used for data assimilation, i.e., the correlation
length from the data-generating model (shown as the vertical red line in
Fig. 2). The difference between the blue and orange curves is a measure
of model complexity. The models with very short correlation ranges
have high model complexity and have over-fit the data.

The complexity of a model does not depend only on the choice of
the prior; it also depends on the type and number of observations. In
the previous computations, the number of observations was fixed at
75. In Fig. 3, realizations from the posterior predictive distributions
are shown for correlation lengths of 0.02, 0.2, and 2.0 and numbers
of observations varying from 2 to 75. In general, one can conclude that
the prior model with long correlation length and many data (Fig. 3(i))

is insufficiently complex to predict data accurately. Similarly, one could
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Fig. 1. The data-generating model (solid line) and observations (squares) for the
one-dimensional linear-Gaussian inverse problem.

Fig. 2. The log pointwise predictive density (lppd) and the expected log pointwise
redictive density for unseen data, computed using leave-one-out cross-validation as a
unction of correlation range in the trial models.

onclude that the model with a very short range (Fig. 3(a)) is overfitting
he data and hence poor at predicting unseen data. However, the
‘complexity’’ of each model/data system is not immediately apparent
rom these figures.

Fig. 4 compares four different methods of estimating model com-
lexity as functions of different amounts of data assimilated and dif-
erent correlation ranges in the prior covariance. The leave-one-out
ross-validation estimate of predictability (upper left) is known to be
pproximately unbiased. However, it has high variance because the
ata sets used for model calibration are very similar (Hastie et al.,
009). The 𝑝DIC estimate of model complexity (14) and the efd estimate
16) are essentially the same for this example because the posteriori
istribution is Gaussian. In this case, the slight differences are due to
he details of the computation. Although the psis-loo approach (upper
ight corner) is intended to approximate the loo-cv approach at a
uch-reduced cost, all of the examples appear to be outside the range

f applicability. In some cases, it might be feasible to augment psis-
oo results with a number of loo-cv results at increased cost, but this
pproach is not pursued as it seems unlikely to be practical for flow
roblems.

The effect of the number of observations on model complexity is
hown in Fig. 5. The information is similar to the information in Fig. 4,
ut the dependence of the effective number of parameters is shown
n Fig. 5 as a function of the number of observations for two fixed
orrelation ranges. In the case for which the correlation range is very
mall (𝜌trial = 0.01), the effective number of parameters measured by
ither 𝑝DIC or efd (black dots in Fig. 5(c)) is identical to the actual
umber of observations. When the correlation range for the model
ovariance is large, the effective number of parameters is limited (red
5

h

dots in Fig. 5(c)). The other measures of the effective number of
parameters, loo-cv (Fig. 5(a)) and psis-loo (Fig. 5(b)) show similar
trends but with different magnitudes.

4. Numerical experiment: 2D porous flow problem

A second 2D porous flow test problem, with similarity to real-
istic history-matching problems, illustrates the effect of prior model
complexity on the ability to history-match data and forecast future
behavior. Given a true data-generating model, this numerical exper-
iment investigates the complexity of three prior model families with
respect to the flow observations from the data-generating model. In
this investigation, different possible scenarios in constructing the prior
models are considered, emphasizing weakly informative priors with
respect to the observations. The aim is to analyze the relationship
between the length of historical data, the quality of history matches,
and the forecast quality.

The prior predictive performance of each prior model is assessed
by comparing predictions with observations before history matching.
This provides an indication of the validity of the model. The ability
of the model to be calibrated to real observations is subsequently
evaluated, as models with insufficient degrees of freedom are incapable
of being history matched. Then, the complexity of each prior model is
estimated by computing the predictability of held-out data as discussed
in Section 2.4. Finally, the predictive performance of each model is
evaluated using the probabilistic accuracy of future forecasts.

4.1. The models

The reservoir simulator used for the test case simulates the flow
of two immiscible incompressible mobile fluid phases – water and
oil – through a porous medium of uniform porosity.1 Corey (1954)
power-law relative permeability curves with exponents of 2 are used
to compute the mobilities of both fluid phases. The viscosity of the oil
phase is assumed to be the same as the viscosity of the water phase.
The data used for history matching are the ‘‘water cuts’’ at producing
wells. (Water cut is the fraction of the producing fluid that is water.)
Water is injected at fixed, equal rates into four wells and produced at
fixed, equal rates at 9 producing wells. The data-generating model is
discretized on a 200 × 200 grid, while the data assimilation model is
discretized on a 30 × 30 grid.

The true synthetic observations are obtained from a channelized
reservoir that was originally created to model a tidal flat environ-
ment (Biver et al., 2015). This data-generating model Fig. 6(c) was
created using the truncated bi-Gaussian method. A similar bi-Gaussian
model was shown previously to be difficult to history match because
of the non-monotonic features of the threshold map (Oliver and Chen,
2018). The truncation rule results in the assignment of one of three
facies to each cell of the grid. Each facies is then assigned permeability
values of 1, 20, and 1000 in dimensionless units, respectively. (Note
that because of the fixed-flux boundary conditions, the water cut be-
havior depends only on the ratio of permeability values for the three
facies and the mobility ratios of the two fluid phases.)

In a channelized model, the water is expected to move rapidly from
the injectors to the producers through the high-permeability channels,
leaving much of the oil behind. This behavior is what is observed in
the model (Fig. 7). The presence of channels in a low-permeability
background explains the early production of water in Fig. 10 compared
to the production from more homogeneous models.

The observations consist of water-cut data with four different his-
tory lengths. The first data set has a very short history period with data

1 The simulator is available from the Github repository of Patrick Raanes:
ttps://github.com/patnr/TPFA-ResSim.

https://github.com/patnr/TPFA-ResSim
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Fig. 3. Realizations from the posterior distribution for three correlation ranges in the prior model and for three different numbers of equally spaced observations.

Fig. 4. Contour plots showing the effective number of parameters for the 1D linear inverse problem as a function of the number of actual observations and the correlation range
in the prior covariance.
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Fig. 5. The posterior predictive distributions for the one-dimensional linear-Gaussian inverse problem with varying amounts of data and varying correlation lengths.
Fig. 6. The true log-permeability field used to generate data.

only to 𝑡 = 10 at which time approximately half of the wells have water
production. The second and third data sets include data up to 𝑡 = 30
and 𝑡 = 50, respectively. The fourth data set includes data up to 𝑡 = 80
when all the wells have high water cuts (Fig. 8).

Because models are always only approximations of reality, prior
models from three model classes all of which are different from the
data-generating model are used for the numerical experiments. The
first class of prior models is the family of Gaussian random fields,
𝜃 ∼  (𝜃pr, 𝐶𝜃) , with squared exponential isotropic covariance. A wide
range of spatial correlation lengths was used to provide a variety of
prior models with differing complexity. A realization from a Gaus-
sian prior with a short covariance range is shown in Fig. 9(b). The
second class of models is a polynomial trend family in which the log-
permeability fields are polynomial functions of spatial location with
uncertain coefficients. This model type was selected to include models
that might be used for manual history matching for which parsimony is
valued. A prior realization of the polynomial prior is shown in Fig. 9(a).
The third class of models is the MPS prior based on a single training
image. In this investigation, a widely used training image from Stre-
belle (2002) is utilized, consisting of two facies: a high permeability
continuous channel facies and a low permeability background facies.
The channels are assigned a dimensionless permeability value of 1000
and a permeability value of 1 to the background, as these are the true
values in the data-generating model. Fig. 9(c) shows realization from
the MPS model.

For this particular set of production observations, the geoscientist
might speculate that the early breakthrough times are a result of the
presence of channels in the real system; thus, the MPS model that
has channel features similar to the data-generating model might be
characterized as ‘‘realistic’’. On the other hand, the Gaussian and the
polynomial priors would have been excluded from consideration for
history matching based on a comparison of observations with predic-
tions from the models. One would, in fact, conclude that these models
7

are demonstrably ‘‘wrong’’ and the wrongness would become apparent
as more data is available for assimilation.

4.2. Predictability before history matching

Fig. 10 shows the prior predictive distributions of production data
and the corresponding observations from the first well of each prior
model. The inconsistency between the observations and the realizations
from Gaussian and the polynomial prior are very apparent in Fig. 10(a)
and Fig. 10(b). In practice, based on the inconsistency, these two
models would have been rejected as candidates for the prior model. On
the other hand, the prior predictive distribution from the MPS model
covers the observations (Fig. 10(c)). The log-score (12) was used to
quantitatively evaluate how each model performs at predicting the
unseen observations from the data-generating model at several time
steps of the study. The logarithmic score shows that the MPS model
performs better at predicting future behavior for the situation when no
data have been used for calibration. In summary, a ‘‘realistic’’ prior may
be appropriate for prediction when few data are available.

4.3. History matching – IES

Given model parameters 𝜃 following a Gaussian distribution 𝜃 ∼
 (𝜃pr, 𝐶𝜃) , the prior distribution for the model parameters is given by:

𝑝(𝜃) ∝
(

−1
2
(𝜃 − 𝜃pr)𝑇 C−1

𝜃 (𝜃 − 𝜃pr)
)

(17)

where the 𝐶𝜃 is the covariance of model parameters and 𝜃pr is the prior
mean of model variables. Assuming that the observations errors are
zero-mean Gaussian with covariance 𝐶𝑦, the posterior distribution for
the model parameters is:

𝑝(𝜃|𝑦) = 𝑝(𝑦|𝜃)𝑝(𝜃) ∝ exp
(

−1
2
(𝜃 − 𝜃pr)𝑇 C−1

𝜃 (𝜃 − 𝜃pr) −
1
2
(𝑔(𝜃) − 𝑦)𝑇 C−1

𝑌 (𝑔(𝜃) − 𝑦)
)

(18)

where 𝑔(𝜃) is the vector of predicted data values for the variables 𝜃.
Approximate sampling from the posterior distribution is obtained by
minimizing randomized cost functions (Oliver et al., 2008),

𝑂 = (𝑦obs,𝑖 − 𝑔(𝜃𝑖))𝑇𝐶−1
𝑌 (𝑦obs,𝑖 − 𝑔(𝜃𝑖)) + (𝜃pr,𝑖 − (𝜃𝑖)𝑇 )𝐶−1

𝛩 (𝜃pr,𝑖 − 𝜃𝑖), (19)

where the 𝑦obs,𝑖 are perturbed observations.
In large inverse problems for which the forward model is a partial

differential equation, an iterative ensemble smoother approach is often
used to compute minimizers of (19), as the iES does not require the
adjoint of the forward model. Here, the approximate form of the
Levenberg–Marquardt IES (Chen and Oliver, 2013) is used for sampling
from the posterior distribution. Iterations are stopped when either the
maximum number of iterations exceeds 50 or the tuning parameter 𝜆
increases in 3 successive steps. Local analysis (Chen and Oliver, 2017) is
used to remove spurious correlations from the updates and to increase
the number of degrees of freedom. The localization radius in these cases
is based on the true correlation range and on the distance between
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Fig. 7. Evolution of the water saturation in the true field at different time-steps. Positions of 9 producing wells are shown by triangles pointing up. The positions of 4 water
injectors are shown by triangles pointing down.
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Fig. 8. Evolution of water cuts from the data-generating model from the 9 producing
wells at different times. The true observations consist of the water cut data obtained
up to t = 10, 30, 50, and 80, as indicated by dashed vertical lines.

wells. The ensemble model update at the 𝑙th iteration of the LM-IES
algorithm is as follows.

𝛿𝜃𝓁+1 = −𝛥𝜃𝓁 𝛥𝑌 𝑇
𝓁

(

(1 + 𝜆𝓁)𝐶𝑌 + 𝛥𝑌𝓁𝛥𝑌
𝑇
𝓁

)−1 (𝑔(𝜃𝓁) + 𝜖∗ − 𝑦obs) (20)

where 𝑦obs is the observed data, 𝑌 is the ensemble of predicted data.
𝛥𝜃 is the ensemble of mean-removed vectors of parameter realizations,
and 𝛥𝑌 is the ensemble of variations of 𝑌 from the ensemble mean. 𝜆𝓁
is the Levenberg–Marquardt tuning parameter that controls the size of
the update step.

4.4. History matching – mcmc

The IES methods require that the prior distribution for model vari-
ables be Gaussian, so an IES cannot be used to history match the
MPS models. Instead, a McMC method is used to generate approxi-
mate samples from the posterior distribution, and because it is not
feasible to compute the posterior probability that would be required
in a standard Metropolis–Hastings test, the extended Metropolis algo-
rithm (Mosegaard and Tarantola, 1995) is implemented, which requires
only evaluation of the ratio of the likelihoods of the proposed state and
the current state.

The key steps of the extended Metropolis algorithm are summarized
as follows:

1. Generate an initial model 𝜃0 at iteration 0 from the prior distri-
bution for 𝜃.

2. At iteration 𝑡 generate a proposed model 𝜃∗ based on perturba-
tion of the current model, 𝜃𝑡.

3. Assign 𝜃𝑡+1 = 𝜃∗ with probability 𝑃 = min
(

1, 𝑝(𝜃∗|𝑦)𝑝(𝜃𝑡|𝑦)

)

, else assign
𝜃𝑡+1 = 𝜃𝑡.

4. 𝑡 = 𝑡 + 1, return to step 2.

The history matching process for the MPS model makes use of the
8

IPPI platform (Hansen et al., 2013), which provides tools for the
generation of MPS realizations and proposal generation. The proposed
model (Step 2 above) is obtained by replacing the permeabilities within
a square region of the current model with new permeabilities condi-
tioned to values on the boundaries of the region. The Gibbs sampler is
used for generation of the permeabilities in the interior of the square.
If the perturbation in the proposal step makes a small change to the
current model, it will generally result in slow mixing of the chain
but a high probability of acceptance. In contrast, a large change to
the current model will lead to a small probability of acceptance. In
order to achieve a reasonably high rate of mixing, the size of the
square is selected adaptively to try to obtain an acceptance rate of
approximately 0.2. Because the Gibbs sampler is used to generate
proposed perturbations from the prior distribution, the acceptance test
(Step 3 above) requires only the ratio of the likelihoods of the current
model and the proposed model.

History matching consists of minimizing the mismatch between
the observations and the simulated data from the updated models by
adjusting uncertain parameters in the prior realizations. The value of
the squared data mismatch part of the objective function is generally
used as a criterion for judging the quality of the history match.

𝑂𝑦 =
1
2

𝑁
∑

𝑗=1

(

𝑦sim
𝑗 − 𝑦obs

𝑗

𝜎𝑗

)2

(21)

where 𝑁 is the total number of data, 𝑦sim
𝑗 and 𝑦obs

𝑗 are the 𝑗th simulated
nd observed data, respectively; and 𝜎𝑗 is the standard deviation of the
orresponding data-noise.

.5. Evaluating model complexity

For the history matching test cases, the only measure of model com-
lexity that was feasible to use was the effective number of parameters
efd). The efd values of each prior model were computed using (16)
pplied to the ensemble of posterior (history-matched) realizations. For
he Gaussian model, with a fixed amount of data, efd is a monotonic
unction of the correlation length of the prior covariance (Fig. 11a).
he effective dimension of the model decreases as the prior covariance
ange increases. As might be expected, for the polynomial prior, the
odel complexity (as quantified by the efd) increases monotonically

s the number of the uncertain coefficients is increased for a fixed
mount of flow data (Fig. 11(b)). The magnitudes of the efd for the
olynomial models with relatively small numbers of coefficients are,
owever, much smaller than the magnitudes of the efd for the Gaussian
rior models that were considered.

Because the MPS model is much more costly to history match than
he Gaussian or polynomial models, a single MPS training image that
oes not allow rotation or scaling of the image was used. The MPS
odel consequently has a single value of efd for each length of the
istory matching period. The efd for the short data period, which ended
t 𝑡 = 30, was 4.4, while the efd for the longest history matching period,

which ended at 𝑡 = 80, was 9.8. For comparison, the Gaussian model
with the shortest correlation length had an efd of 28.2 for the short data

period and an efd of 37.9 for the longest data period, i.e., the Gaussian
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Fig. 9. Prior permeability fields.(a) The permeability field from the polynomial linear trend. (b) Permeability of Gaussian prior with shorter covariance range. (c) Permeability of
MPS prior.
Fig. 10. Prior data before history matching and the true data. The blue dots show the observations, and the multicolored curves show the prior realizations from well 1 of each
model.
Fig. 11. (a) Effective number of parameters (efd) as a function of covariance range for the Gaussian model. (b) Effective number of parameters (efd) as a function of the number
of coefficients of polynomials.
models with short correlation range are much more complex than either
the polynomial model or the MPS model with the flow data.

4.6. Ability to match historical data

The quality of the history matching for each of the prior models is
perhaps best judged by visual inspection of the comparisons between
the actual observations and the posterior data predictions from each
of the models. Fig. 12 shows the comparisons at three of the producing
wells for one of the Gaussian models with a short correlation length, the
polynomial model with 9 uncertain coefficients, and the MPS model.
9

Because the observation error is small (𝜎𝑑 = 0.02) the samples from the
posterior should be very similar to the observations, and the spread
of the predictions should also be small. The Gaussian model with short
correlation length appears to capture all important features of the data,
including breakthrough time and late time water-cut (Fig. 12(a–c)),
while the match of the data for the polynomial model is inaccurate
and overconfident (Fig. 12(d–f)). The matches to the data for the MPS
model are not as accurate as should be expected if these predictions
are actually from the posterior of the data-generating model. In par-
ticular, the predictions for Well 2 are biased over most of the history
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Fig. 12. A comparison of the posterior predictive distribution of each prior models with the historical data of length 80 from the three first wells.
atching interval, but the spread in predictions is too large for all wells
Fig. 12(g–i)).

A quantitative assessment of the quality of the history match is pro-
ided by the data objective function, 𝑂𝑦, which is half the normalized

squared data mismatch (21). In a perfect model scenario with perfect
sampling from the posterior, the expected value of 𝑂𝑦 is equal to half
the number of observations, and the standard deviation of 𝑂𝑦 is

√

𝑁∕2.
or the long period of history matching, the number of data is 𝑁 = 720
o the expected value of the objective function is 𝐸[𝑂𝑦] = 360, and the
tandard deviation is approximately 19. For comparison, the value of
𝑦 for the Gaussian prior with the shortest correlation range is 337,
hich is in the expected range. The value of 𝑂𝑦 for the polynomial
odel with 9 coefficients is 49 380, and the value of 𝑂𝑦 for the MPS
odel is 20 600, neither of which is in the acceptable range.

The posterior predictive distributions for the Gaussian model shown
n Fig. 12((a–c)) are for history matching up to 𝑡 = 80 with correlation

range 𝜌 = 0.05. However, when long correlation ranges were used in
the Gaussian model (e,g. when 𝜌 = 2), the data mismatch was much
arger after history matching. The complete tabulation of predictability
nd complexity measures for Gaussian models is shown in Table 1.

Additionally, the approximation of the ability of each prior model
o be used to predict unseen data from the history matching period is
easured with the lppd (3). Fig. 13(a) summarizes the results of the

ppd computations as functions of model complexity, quantified by the
fd. Models with higher efd generally have higher lppd. The polynomial
odels (orange points) have the lowest lppd and also the lowest efd.
he MPS models also have small efd, but it is not apparent from
ig. 13(a) how the predictability (lppd) of the MPS models compares
o the Gaussian models. Limiting the range of the lppd to focus on
he models with higher predictability, Fig. 13(b) shows the relationship
nly for the Gaussian and MPS models. It shows, however, not just the
10
Table 1
Predictability results for the Gaussian prior model with correlation length 0.05 and
data to 𝑡 = 80.
𝜌pr lppd lppd (loo) 𝑝𝐷 (loo) efd pDIC mean obj

0.80 −16 156 −17 856 1700 14.9 65.2 19 369
0.50 −4 667 −5 659 992 18.3 171.9 7 498
0.30 1 207 697 510 27.7 150.7 1 333
0.20 1 453 1 051 402 28.4 187.0 878
0.10 1 672 1 484 188 32.0 150.5 461
0.07 1 742 1 502 240 35.5 212.3 430
0.05 1 717 1 530 187 36.0 12.8 419
0.03 1 761 1 571 191 36.5 63.0 337

dependence of efd on the prior model (e.g. correlation length for the
Gaussian models), but also the dependence on the amount of data.

In this range, the relationship between model complexity (efd) and
predictability (lppd) is clear—higher model complexity leads to higher
predictability of data that were held out from the history matching pe-
riod. The Gaussian models as a class have the highest predictability, and
the Gaussian models with short correlation length have the highest lppd
within that class. As discussed in Section 4.7, these conclusions may not
be valid for predictions of data governed by different processes.

4.7. Evaluating the predictability

The primary purpose of modeling and history matching is to im-
prove the reliability of predictions of future reservoir behavior. Not
all models are equally suitable for history matching and one of the
main criteria in the model selection exercise is the model’s predictive
power at probabilistic forecasting. This numerical experimental study
investigates the impact of the length of the observation period on
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Fig. 13. Predictability of observed data. The green circles correspond to the Gaussian model data points, in orange for the polynomial model, and the blue triangles for the MPS
model. For each of these colors, the dark shades are for the longest period of historical observations. Lighter shades are for the shortest data length.
Fig. 14. Posterior mean of water saturation of the Gaussian prior with 𝜌 = 0.05 at three different times for data length of 80.
the predictability of future near-term behavior (𝑇𝑒 + 10) and future
long-term behavior (𝑇𝑒 + 60) for each model type. The assessment of
the predictability is performed by comparing the logarithmic score
which is a function of the approximation of the pdf for the forecast
from the posterior ensemble and the actual forecast from the true
data-generating model.

Table 2 shows the results of the computed values of the logarithmic
score (12) for extrapolations of historical behavior in the three prior
model classes and the true predictions from the data-generating model.
Here predictability is evaluated at two times: 10 time steps after the
end of the history period and 60 time steps after the end of the history
period.

Fig. 15 compares the ensemble of forecasts from three of the nine
producing wells with the forecasts from the data-generating model
when the models have been history matched to data from the first
80 time-steps. Neither the polynomial model nor the MPS model are
well-history-matched. The data predictions from the Gaussian model
exhibit very little spread in water cut during the historical period,
which is what should be seen when the data are accurate. The spread in
predictions from the Gaussian model increases somewhat in the forecast
period, but the spread is relatively small. The predictability score for
the Gaussian model is relatively high because the mean forecast is
accurate for all nine wells and the spread is relatively small, yet covers
the truth.

The ensemble of predictions from the polynomial model, on the
other hand, has small spread in the history matching period and in the
forecast period (Fig. 15(d-f)). The mean forecast at Well 1 is quite good,
but poor at Well 2. The predictability score is based on forecasts at all
11
nine wells. The polynomial model receives a low predictability score
primarily because the forecasts are overly confident (the truth is not
within the ensemble).

Like the polynomial model, the MPS model is also incapable of
matching the data in the history matching period, but its spread is
larger because it was necessary to increase the assumed observation
error to achieve any mixing in the McMC ((Fig. 15(g–i)). And, like
the polynomial model, the mean forecast at Well 2 ((Fig. 15(h)) is
poor, although the log-score for MPS is better than the log-score for
the polynomial model because the predicted forecasts are not overly
confident.

Predictability for the Gaussian and MPS models are illustrated in
Fig. 16 for the situation in which only a small amount of data are avail-
able for history matching. In this case, the Gaussian model performs
well in a few wells that have already experienced water breakthrough
(Fig. 16(a) and (d)), but poorly at the short-term forecast for Well 2
which had not yet seen water production. Interestingly, the ensemble
of models show very little spread in the model predictions in the
history-matched periods, but reasonable spreads for Wells 1 and 3 in
the forecast period. The MPS model receives a higher log-score for the
forecasts in this case because the ensemble of predictions contain some
with early break through times, even though water production had not
been seen in the history period (Fig. 16(e)).

The short term predictability results from numerical experiments
with history matching and forecasting using the MPS and Gaussian
models are summarized in Fig. 17. One model (MPS) might be con-
sidered ‘‘realistic’’ in the sense that it is trained to generate realizations
with connected high-permeability channels, but it is extremely costly to
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Fig. 15. A comparison of forecast from each prior models with the historical data of length 80 from the three first wells. Data are history matched only using data to 𝑡 = 80, after
which the forecasts are compared with actual behavior of the data-generating model.

Fig. 16. A comparison of forecast from Gaussian and MPS models with the historical data of length 10 from the three first wells. Data are history matched only using data to
𝑡 = 10, after which the forecasts are compared with actual behavior of the data-generating model.
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Table 2
Log-score values between forecast from each prior and the true observed data.

Time Prior type Lppd 𝑇𝑒 + 10 𝑇𝑒 + 60

𝑇𝑒 = 10 MPS(*) – −10.9 11.8
(before HM) Gaussian 0.05 – −2.47e+181 −26.1

Polynomial (c = 9) – −8.13e+61 −263.5

𝑇𝑒 = 10 MPS(*) −10.12 −1.6 −12.4
Gaussian 0.05 60.3 −1.92e+08 −16.3

𝑇𝑒 = 30 MPS(*) −57.90 −7.7 −12.3
Gaussian 0.05 526.7 3.4 −5.4

MPS(*) −117.82 30.9 36.9
𝑇𝑒 = 50 Gaussian 0.05 1037.8 22.9 9.3

Polynomial (c = 9) −34 313.8 −2.52e+04 −5.50e+04

MPS(*) −176.27 −10.2 −11.4
𝑇𝑒 = 80 Gaussian 0.05 1723.1 7.8 6.4

Polynomial (c = 9) −46 301.0 −2.42e+04 −6.28e+04

Fig. 17. Short-term predictability for two different model types and various lengths of
data.

history match and does not have enough complexity (effective dimen-
sion) to assimilate even modest amounts of data. On the other hand,
the Gaussian models are decidedly ‘‘unrealistic’’ as models of a channel-
ized reservoir. None of the realizations exhibit the early breakthrough
times characteristic of channelized reservoirs. Yet, the Gaussian model
has sufficient complexity to match the water production behavior
when data, including water breakthrough, are assimilated and to de-
velop channel-like features after assimilating sufficient production data
(Fig. 14).

4.8. Discussion of flow example

Although the key purpose of the study was to identify a measure
of model complexity beyond computational expense, it is still worth
noting that geologically realistic models are generally challenging to
history match to a proper misfit level while maintaining realism. For
history matching using the IES, an ensemble size of 100 and a max-
imum number of iterations of 50 were used, so 100 approximately
independent model realization were obtained from the posterior at the
cost of 50 × 100 reservoir simulations plus a minor additional cost
of computing the changes to the model. For the MPS model, it was
impossible to obtain convergence with the correct observation error,
so the observation error was increased and 5 independent realizations
were obtained from 30,000 simulation runs plus the cost of running the
Gibbs sampler at each iteration. In summary, it required about 390 min-
utes of CPU time to generate one independent realization of the MPS
model (still without proper data misfit in the history matching period)
compared to only 4.3 seconds for a Gaussian model and 1.1 seconds for
the polynomial model. In this case, large computational expense did not
result in well-calibrated models or good predictability. For reference,
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the simulations were performed using a i9-9900 CPU @ 3.10 GHz × 16
processor and 64 GB of memory.

Fig. 17 shows that at early times (especially before data is avail-
able), it might be advantageous to use a geologically realistic prior to
predict future reservoir behavior. Later in the life of a field, however,
the models with larger potential complexity and ability to assimilate
data (e.g. Gaussian) should be preferred. Incidentally, the short-term
predictability of the polynomial models is not shown in Fig. 17 as the
predictability is too poor to appear on the plot. The polynomial models
lack the realism to mimic channels and the complexity (the effective
dimension) to assimilate the flow data.

These simple results suggest that it may be usefull to abandon
the goal of geologic realism in brown-field modeling studies if the
goal is improved forecasting. A model with sufficiently high com-
plexity (large numbers of effective parameters) should be preferred
for history-matching mature fields when large amounts of data must
be history matched. Isotropic Gaussian models with short correlation
lengths were surprisingly effective at history-matching the data and
providing accurate short-term forecasts, despite the data-generating
model being characterized by narrow high-permeability channels in a
low-permeability background medium. The isotropic Gaussian models
would, in fact, have been falsified by analysis of the prior predic-
tive distribution. The posteriori Gaussian realizations also developed
channel-like features that allowed regions of the reservoir between
channels to remain undrained (Fig. 14). The Gaussian models have
the flexibility to match a wide variety of reservoir behaviors, leading
to possible concerns over the possibility of overfitting. It was not,
however, observed in the flow examples—although the models with
the best fit to data were the most complex, they had not done so at
the expense of overfitting.

5. Conclusions

Model complexity can be defined in many ways including, for
example, realism, the computational time required for simulation, and
the difficulty of conditioning to observations. This paper focused on the
number of effective parameters as a useful measure of complexity. The
rationale for this choice is that the predictability of unseen data suffers
when models are either ‘‘over parameterized’’ or ‘‘under parameter-
ized’’. In the first case, it may be possible to match the historical data,
but the model may have excessive variability in predictions. In the case
of under-parameterization, the model will neither fit historical data nor
be useful for predicting unseen data (bias). The effective number of
parameters for history matching is a function of both the prior model
and the data. Although it is a function of the number of actual pa-
rameters, the effective number of parameters is generally much smaller
than the actual number. In the flow problems, for example, there were
900 values of permeability that could be adjusted, yet the effective
number of parameters was on the order of 36 for cases in which
the data were well matched. This paper investigated several methods
of estimating predictability and the effective number of parameters,
including leave-one-out cross-validation and various approximations
based on information criteria.

The methods were tested on a simple linear Gaussian problem with
noisy partial observations and a 2D porous flow problem in which the
data-generating model had narrow high-permeability channels embed-
ded in a low-permeability background medium. Leave-one-out cross-
validation always provided useful results for the 1D linear problem but
was too expensive to apply to practical history matching problems.
An importance sampling approximation gave useful cross-validation
approximations without the expense of cross-validation. However, it
failed when applied to the history matching problem, primarily because
the estimate was highly sensitive to a few extreme values of the esti-
mated predictability. The most successful methods for estimating the
effective number of parameters were based on the DIC. The use of the

effective number of parameters as a metric to measure the complexity
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of the model can be easily applied for a real field application. It is
straightforward to compute since it only requires the posterior covari-
ance for model parameters, an approximation of which is obtained from
the ensemble of history-matched realizations.

The results from the numerical experiments performed in this study
suggest key elements to formalize the process of prior model selection
for history matching for practical fields. From Fig. 17, it is apparent
that the prior model type should be chosen based on the modeling
objective and data availability. Realistic models and complex models
are not necessarily the same, and each may be required for certain types
of problems. If the modeling goal is to predict the reservoir behavior in
a green field for which only a few data are available, it is beneficial to
incorporate realistic characteristics of the geology, such as channels,
into the model. In the flow problem example, the water cut from
the arguably more realistic MPS model (Fig. 10(c)) provided a better
prediction of future behavior before data were available. The MPS
model, however, lacked the effective parameters required to match
observed flow data and was not useful for short-term forecasting when
more observations become available.

The methodology we presented for computing model complexity is
extremely efficient when IES methods are used for history matching.
They would not, however, always provide useful measures when the
posterior distribution of model parameters is multimodal. In practice,
it may be difficult to select a prior model with the appropriate level of
complexity as the effective dimension of the model can only be eval-
uated after history matching. The findings here do, however, suggest
useful guidelines for prior model selection in both data-rich and data-
poor scenarios. These guidelines do not obviate the need for model
elicitation as described, for example, by O’Hagan (2013).
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