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Learning from weather and climate science to prepare 
for a future pandemic
Sebastian Schemma,1 , Dana Grunda, Reto Knuttia, Heini Wernlia , Martin Ackermannb,c, and Geir Evensend,e

Established pandemic models have yielded mixed results to track and forecast the 
SARS-CoV-2 pandemic. To prepare for future outbreaks, the disease-modeling com-
munity can improve their modeling capabilities by learning from the methods and 
insights from another arena where accurate modeling is paramount: the weather 
and climate research field.

We argue that these improvements fall into four categories: model development, 
international comparisons, data exchange, and risk communication. A proper quan-
tification of uncertainties in observations and models—including model assump-
tions, tail risks, and appropriate communication using probabilistic, Bayesian-based 
approaches—did not receive enough attention during the pandemic. Standardized 
testing and international comparison of model results is routine in climate mode-
ling. No equivalent currently exists for pandemic models. Sharing of data is urgently 
needed. The homogenized real-time international data exchange, as organized by 
the World Meteorological Organization (WMO) since the 1960s, can serve as a role 
model for a global (privacy-preserving) data exchange by the World Health 
Organization. Lastly, researchers can look to climate change and high-impact 
weather forecasting to glean lessons about risk communication and the role of 
science in decision-making, in order to avoid common pitfalls and guide commu-
nication. Each of the four improvements is detailed here.

To prepare for future outbreaks, the 
disease-modeling community should draw 
on the methods and insights of the weather 
and climate research field. Image credit: 
Shutterstock/NASA Images.
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Accept and Incorporate Uncertainty

The accuracy of a numerical weather forecast improves with 
better estimates of the current state of the atmosphere (1).* 
One source of error here relates to the accuracy and type of 
measurement instrument used and low representativity of 
measurements. For example, station-based measurements 
are heavily biased towards land, while satellite coverage is 
more homogeneous, but has poor vertical resolution.

These issues have their analogies in SARS-CoV-2 measure-
ments: Virus loads in sewage water only represent the catch-
ment area; tests are prone to false-positive and false-negative 
errors; and testing strategies change over time. But even for 
the hypothetical case of a perfect estimate of the current state, 
the forecast will have errors because of model shortcomings.

In weather and climate models, shortcomings result from 
limited spatio-temporal resolution and the need to simplify 
the effects of unresolved processes, such as convection. Also, 
some relationships are not well understood—for example, 
the influence of clouds on the circulation. Modeling epidem-
ics relies on similar simplifications and aggregations, where 
the transmission or the severity of disease may depend on 
age, sex, human behavior, environmental conditions, and 
individual pre-existing health conditions.

When combined, imperfect measurements and model 
shortcomings lead to a phenomenon called deterministic 
chaos (2), in which small uncertainties lead to forecasts that 
can develop in entirely different directions. Weather fore-
casters deal with deterministic chaos by running the models 
multiple times, with small changes in the start conditions. 
Such an ensemble approach produces a set of different plau-
sible forecasts, which, in the case of weather forecasting, 
allows for a probabilistic weather forecast.

Ensemble forecasts have gained some ground in the field 
of pandemic predictions (3, 4). Importantly, uncertainties 
deduced from the ensemble spread could become an inte-
gral part of pandemic-related communication efforts, just as 
for daily weather reports. Ensemble forecasts can be tuned 
by using a mathematical technique called data assimilation, 
which attempts to estimate the most likely outcome and is 
commonly used to produce weather forecasts. Data assim-
ilation has led to the development of efficient algorithms—
for example, ensemble Kalman methods—that also suggest 
the most likely model parameters (5).

Ensemble data-assimilation methods can help to forecast 
disease outbreaks. In Fig. 1, we show the results of one such 
modeling exercise, used to assess the most likely state of 
the pandemic in fall 2020 in Switzerland. We used an 
extended dynamic SEIR (susceptible–exposed–infected–
recovered) model, with age classes plus number of hospi-
talized and quarantined. Surveillance data came from three 
sources (6). Hospitalizations and fatalities were collected 
by the Federal Office of Public Health (BAG; ref. 7) and SARS-
CoV-2 genetic data measured in wastewater collected by 
the Swiss Federal Institute of Aquatic Science and Technology 

(Eawag; ref. 8). The data assimilation used, an ensemble 
Kalman inversion scheme, constrains the future by past 
measurements in a process known as history matching and 
finds optimal SEIR model parameters. We also used 
reported infection numbers instead of wastewater and 
obtained comparable results; however, wastewater data 
are independent of the testing strategy.

The model output includes the number of infections, hos-
pitalizations, and fatalities, as well as the time-dependent 
reproduction number R (9). These results allow subsequent 
study projections of future infections, hospitalizations, and 
fatalities that depend on R. Scenarios reflect decisions of 
what containment measures are in place, how they collec-
tively affect R, and uncertainties in R. Included are ensem-
ble-based CIs, which enables real-time projections with 
uncertainty bounds.

The modeling system finds the best match between the 
future and the past and estimates SEIR model parameters (e.g., 
transmission rates). Compared with observations from the 
time, the model indicates that the true value of R in mid-No-
vember and December 2020 in Switzerland was between 0.9 
and 1, corresponding roughly to the intermediate scenario.

There is one key difference between forecasting weather 
and disease. No perfect analogue exists for the spread of 
mutations in SARS-CoV-2 that lead to changes in transmission 
or disease. In the case of the spread of a new variant of a 
pathogen, routine recalibration of the pandemic model is 
necessary. But data assimilation is ideally suited to perform 
this recalibration based on observations that reflect the 
impact of the mutation on, for example, the incubation 
period.

Coordinate Model Development

Standardized test cases and scenarios to quantify model 
differences have been routine in climate projections for 
almost three decades, with dozens of models now partici-
pating in commonly coordinated model intercomparisons 
and sharing their results via the Coupled Model 
Intercomparison Project (10). Standardized setups and data 
structures also allow projections based on a combination of 
models, which are shown to often be more skillful than those 
based on single models in both seasonal forecast (11) and 
climate applications, and they allow one to more robustly 
assess uncertainties (12).

In the realm of climate science, global modeling efforts 
and model intercomparison projects are regularly organized 
by the World Climate Research Programme, to support the 
Intergovernmental Panel on Climate Change. The dis-
ease-modeling community needs a counterpart to check 
and improve pandemic forecasts. Over time, such efforts 
allow scientists to understand which of the inevitable sim-
plifications in models matter most and which model struc-
tures perform best. While there is not a pandemic every year 
for repeated evaluation (just as, by definition, extreme 
weather events are rare), standardized testing of a model 
with test cases in different regions or countries relying on 
different strategies or interventions at different points in 
time during the COVID-19 pandemic would better guide 
model development and so provide more robust projections 
based on multiple models.

*A climate projection is a boundary-value problem, and uncertainty can arise from future 
scenarios (e.g., the socioeconomic development, volcanic eruptions, which constitute the 
simulation’s boundaries). Predicting the weather is an initial value problem and its uncer-
tainty mainly arises from the estimate of the model’s start conditions. Predicting a pandemic 
is both an initial and a boundary-value problem. The accuracy of the forecast improves with 
better estimates of the initial conditions (e.g., the initial number of infected people) and of 
model parameters (e.g., transmission rates and their time dependency), while the future 
development hinges strongly on human behavior (like for climate, but not for weather).D
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Global Data Exchange

The esteemed British meteorologist Sir Napier Shaw once 
said that: “Meteorology is necessarily a cooperative enter-
prise; one’s own measurements at one time must be viewed 
in relation to other measurements at the same or other 
times” (13).

The same applies to science in a pandemic and high-
lights the need for global standardized, routine, and 
immediate data exchange (14). While preprints of publi-
cations are immediately available, the pandemic has 
demonstrated severe limitations in how health agencies 
collect, document, and provide data that are critical to 
calibrate models and evaluate the effectiveness of inter-
ventions. Shaw’s plea for global data exchange in mete-
orology paved the way for the World Weather Watch 
Programme managed by the WMO, which was founded in 
1950 and became a role model for long-term international 
cooperation (15, 16).

The international exchange of meteorological data has 
never been interrupted since, even at the height of the Cold 
War, and led to the so-called global observing system (17). 
WMO member states are typically represented through their 
national meteorological agencies, which maintain national 
standardized surveillance networks, operate numerical 
weather-prediction models, offer expert judgments, provide 
climate services, and issue warnings in close collaboration 
with public safety organizations.

Taking this as an exemplar, many of the scientific networks 
that formed ad hoc during the pandemic could integrate into 
national health agencies that could coordinate the data col-
lection and operate their own operational forecasting models 
similar to national weather services. These health agencies 
would have a renewed, more ambitious, and internationally 
coordinated portfolio. Routinely testing disease agents in 
wastewater could become an important cornerstone in 
future pandemic preparation and response planning, com-
parable to the global network of WMO-standardized surface 
meteorological stations, which remain the backbone of mod-
ern weather forecasting.

Risk Communication

In terms of risk and uncertainty communication, the lessons 
learned from meteorology and climate change indicate a 
widespread misbelief that more frequent, and more accu-
rate, scientific information automatically leads to more 
rational human decisions. Instead, we know that different 
communication concepts rooted in social science are appro-
priate for different situations (18).

Faced with a new threat, such as climate change, when 
uncertainty is large and decisions must be made rapidly, we 
lack the familiar heuristics from the past to decide, and we 
therefore must tolerate uncertainty. Clear communication 
of uncertainty builds trust. It is also not enough to be scien-
tifically correct: In situations where fundamental values and 

Fig. 1. Estimated hospitalizations due to COVID-19 until November 7, 2020 (orange line) and projection into the future until the end of November 2022 
in Switzerland. Used surveillance data in the assimilation scheme are reported hospitalizations, fatalities, and infection numbers until November 
7, 2020. Subsequently, three scenarios for the effective reproductive number R (0.9, 1.0, and 1.1) are projected into the future, either corresponding 
to uncertainty in the measurement of R or representing different intervention measures (labeled as reduced, continued, and strong measures, 
respectively). Confidence intervals are given for the middle scenario, based on the ensemble spread.
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worldviews are important, numbers, facts, and scenarios can 
only be a starting point of a societal debate on what to do 
(19). While the advice to seek shelter when a hurricane is 
coming may be relatively uncontroversial and unpolitical at 
first, even this example is not free from social biases and 
different risk perceptions (20, 21).

The pandemic has shown us that there is widespread dis-
agreement in society about what measures are appropriate 
to ensure public health at the expense of limiting personal 
freedom. The same is true for individual scientists and expert 
bodies: Should they only provide numbers that describe the 
current situation? Should they provide predictions? Should 
they recommend policies? Often, scientists have multiple 
roles. Can they represent the views of an interdisciplinary 
body advising the government and advocate their own views 
on social media at the same time? A key question for us is 
how to protect scientists and the integrity of the scientific 
process when they are attacked by those who question 
established facts, while being open to discussion with those 
who acknowledge facts, but oppose specific measures, 
because positive and negative effects of a measure are per-
ceived differently by different people.

Many of the above raised questions do not have unique 
and final answers. What we have learned from weather 
forecasting and climate change is that established proce-
dures, clear mandates, trust between scientists, the public, 
and policymakers, paired with clear and transparent com-
munication (22), are crucial to establish common ground. 
So are openly dealing with mistakes, an explicit discussion 

of uncertainties, tail risks, and the assumptions underlying 
future scenarios.

Framing the future as multiple “what if” scenarios, or as 
requirements needed to achieve a certain goal, can provide 
a basis for the political and public debate without compro-
mising the independence of the scientific process.

Scientific information alone cannot and 
should not determine policies, but universal and 
immediate access to privacy-preserving data 
and carefully calibrated model projections with 

quantified uncertainties can ensure that the best scientific 
information is available to guide policy.

At times of intersecting crises, cross-disciplinary interac-
tion is more important than ever. Weather and climate sci-
entists are not wiser than experts in other fields, and the 
pandemic, like climate change, is not only a natural science 
problem. But a half-century of experience with uncertainties, 
forecasting in the spotlight, global data exchange, and public 
debates with billions of dollars at stake offer the opportunity 
for disease modelers to avoid some pitfalls and provide 
opportunities for mutual learning.
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It is time to start building predictive systems  
for the next pandemic.
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