
1.  Introduction
The early Eocene is the warmest interval of the Cenozoic (Cramer et al., 2009; Hollis et al., 2019; Westerhold 
et al., 2020), and is often thought to be an analogy for the future climate (Burke et al., 2018; Tierney et al., 2020), 
in particular under the SSP5-8.5 scenario (Riahi et al., 2017). Recently, the Deep Time Model Intercomparison 
Project (DeepMIP) (Hollis et al., 2019; Lunt et al., 2017) was initiated to improve our understanding of the warm 
early Eocene climate.

Several regional climates during the Eocene are still under debate, and the Eocene environment of China is a 
particular focus of the discussion. One view, based on the widely distributed pollen of Ephedripites, as well as 
red beds and evaporite sediments, suggests that a dry zonal belt (Figure 1a) dominated mid-latitude China from 
west to east (Guo et al., 2002,; Sun & Wang, 2005; Wang, 1990). To the north and the south of the arid zonal 
belt, humid climates appeared in Northeast and South China, where pollen assemblages indicative of humid 
conditions, as well as coal and oil shales, occur in Eocene sediments (Guo et al., 2002,; Sun & Wang, 2005; 
Wang, 1990). However, another view proposes that a monsoon-like climate dominated China, at least from the 
Late Eocene onwards (Licht et al., 2014; Quan et al., 2012, 2014). Several plant fossil records (Quan et al., 2012) 
indicate remarkable seasonality in temperature and precipitation in Eastern China during the Eocene.

In addition to the different interpretations of the Eocene geological evidence in China, inconsistencies also 
occur in Eocene climate simulations. For example, in some previous simulations (Carmichael et al., 2018; X. 
Li et al., 2018; Shields et al., 2021; Zhang et al., 2012), an arid zonal band appeared in mid-latitude East Asia. 
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Figure 1.  (a) Modern map of China showing the geographic locations referenced in the text. The two sky blue lines show the Eocene arid belt between ∼30 and 40°N 
in Guo et al. (2008). The modern topography of the Nanling Mountains and the Zhe-Min Mountains are shown in southeastern China. On the south side of these 
mountains, the dark blue line shows the Pearl River. The purple shadows show the rough ranges of molasse depositions (Chen, 1997) in the Nanling-Zhe-Min Mountain 
region. The modern topography of Tibet Plateau and the location of Gangdese Mountains are shown in western China. The green dot is the Linzhou-Penbo Basin, and 
the blue dot is Oiyug Basin. (b–e), Norwegian Earth System Model 1-F simulated pre-industrial climate (MD_280) in East Asia. (b) JJA sea level pressure (shading, 
units: hPa) and 850 hPa wind directions (arrow, units: m/s). (c) Monsoon domains defined by the SNS index (Li & Zeng, 2003), with index values >0. (d) Monsoon 
domains defined by precipitation seasonality (Wang & Ding, 2008; Wang et al., 2012). (e) Arid index (Precipitation/Potential evapotranspiration).
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However, other Eocene experiments (Carmichael et al., 2018; Huber & Goldner, 2012; X. Li et al., 2018; Licht 
et al., 2014; Tardif et al., 2020) show a relatively wet climate in Eastern China. This inconsistency hinders our 
ability to determine whether or not a monsoonal environment existed in East Asia during the Eocene.

The cause of the divergence of the simulations of the Eocene climate in China is also poorly understood. Many 
factors, such as atmospheric greenhouse gas concentrations, Earth's orbital configuration, land-sea distribu-
tion, and topography, may be the cause of the model spread (Farnsworth et al., 2019; X. Li et al., 2018; Licht 
et al., 2014; Lunt et al., 2010; Zhang et al., 2012). Some extreme orbital settings can cause wet Eocene climates 
in East Asia (Tardif et al., 2021; Zhang et al., 2012), but that cannot explain the long-term drought reflected in 
the records. In addition, many previous Eocene simulations have tested multiple combinations of greenhouse 
gas levels and several land-sea distribution conditions (X. Li et al., 2018; Licht et al., 2014; Zhang et al., 2012), 
with minimal to no influence of these factors. However, uncertainties regarding paleogeography are a particular 
problem for Eocene climate modeling (Huber & Goldner, 2012; Zhang et al., 2012,).

In the past two decades, several Eocene paleogeographic maps have been produced, such as those of Sewall 
et al. (2000), Bice and Marotzke (2001), Markwick (2007), Herold et al. (2014), Scotese (2014), He et al. (2019), 
and Poblete et al.  (2021). These maps show large differences in the topography of East Asia, particularly the 
mountains in Southern China, including the Gangdese Mountains, the Nanling Mountains, and the Zhe-Min 
Highlands. The Nanling Mountains and the Zhe-Min Highlands together are called the Southeast Mountains. 
The height of the Gangdese Mountains in different reconstructions varies from 1,000 to 4,000 m, and those of 
the Southeast Mountains varies from 0 to 2,500 m, and they also have diverse morphologies in the maps. These 
mountains may significantly impact the simulated precipitation in China, because they are on the main path of 
vapor transport to East Asia during the Eocene (X. Li et al., 2018; Zhang et al., 2012); however, their climatic 
impact has not been comprehensively investigated.

Here, we use the Norwegian Earth System Model (NorESM1-F) to investigate the impact of the mountains 
in Southern China on the Eocene climate of East Asia. We use the paleogeographic map reconstructed by He 
et  al.  (2019), which synthesized the latest Early Eocene Asian geological records. The paper comprises five 
sections. First, we introduce the model and the experimental design in Section 2, and present the simulation 
results in Section 3. We then further discuss the simulated precipitation under different topographic configura-
tions and make a summary in Section 4.

2.  Model and Experimental Design
2.1.  Model Description

NorESM1-F (Guo, Bentsen, et al., 2019) is a computationally efficient coupled Earth system model, based on the 
Community Climate System Model, version 4 (CCSM4; Gent et al., 2011). In line with CCSM4, NorESM1-F 
uses the Community Atmosphere Model version 4 (CAM4) as the atmosphere component model. The ocean 
component is MICOM (Bleck et al., 1992; Bleck & Smith, 1990). NorESM1-F uses a horizontal resolution of f19 
(∼2°) in the atmospheric model and 26 vertical layers. The horizontal resolution of the ocean component is ∼1° 
and there are 53 vertical layers. Compared to the CCSM4, it uses an advanced chemistry–aerosol–cloud–radiation 
scheme, thus improving the simulation of precipitation seasonality (Guo, Bentsen, et al., 2019). It has been used 
to simulate the paleoclimate of the Pliocene (Haywood et al., 2020; Li et al., 2020), the Last Interglacial (127 ka) 
(Kageyama et al., 2021), and Marine Isotope Stage 3 (Guo, Nisancioglu, et al., 2019). Guo, Bentsen, et al. (2019) 
provide a detailed introduction and assessment of NorESM1-F. Our pre-industrial control experiment (Table 1 
MD_280) shows that NorESM1-F realistically simulates the mean climate state in East Asia (Figure 1).

2.2.  Experimental Design

With NorESM1-F, we first employed the paleogeographic reconstruction of He et  al.  (2019) to simulate the 
early Eocene climate (Table 1). We set CO2 to 1,120 ppm (Anagnostou et al., 2016; Hollis et al., 2019; Jagniecki 
et al., 2015; Witkowski et al., 2018), and used modern orbital settings and an idealized vegetation cover (forest 
between 30°N and 30°S, and shrubs in the remainder of the area). No ice sheets were present in Greenland and 
Antarctica. Since there is no reconstruction of the early Eocene atmospheric methane and N2O concentration, 
we set the methane and N2O to pre-industrial levels. This fully coupled experiment (He_1120) was integrated 
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for 1,500 model years to reach a quasi-equilibrium state. Finally, we analyzed the model outputs for the last 
100 years.

We then compared this fully coupled experiment to our previous simulations that contribute to DeepMIP. The 
DeepMIP simulations used the paleogeographic maps of Herold et al. (2014) and Lunt et al. (2017). In these 
maps, the Gangdese Mountains and the Southeast Mountains are coterminous with a long extension, and both are 
∼1,500 m high (Figures S1a and S1c in Supporting Information S1). In contrast, in the boundary conditions of 
He et al. (2019), the Zhe-Min Highlands range is relatively small, and the Nanling Mountains are absent (Figure 
S1b in Supporting Information S1).

Based on the boundary conditions reconstructed by He et al. (2019), we modified the topography of the moun-
tains in South China to conduct atmosphere-only sensitivity experiments. The horizontal resolution of the atmos-
phere model CAM4 is f19 (∼2°). We considered a low (∼1,500 m) and high (∼4,000 m) Gangdese Mountains as 
suggested in the reconstruction of He et al. (2019). The Gangdese Mountains occupy ∼8 model grids. Since the 
recent Eocene paleogeographic maps (Baatsen et al., 2020; He et al., 2019; Herold et al., 2014; Lunt et al., 2017) 
suggested that the elevation range of the Southeast Mountains was ∼500–2,500  m, we used four conditions 
(∼1,000, ∼1,500, ∼2,000, ∼2,500 m) for the Southeast Mountains. The Southeast Mountains occupy ∼10 model 
grids. Combining these topographic conditions (Figure 2), we designed six sensitivity experiments (Table 1).

In the sensitivity experiments we used the same land–sea configuration, atmospheric CO2 level, vegetation and 
orbital configuration as were used in coupled experiment He_1120. We used the monthly SST fields averaged 
over the last 100 years of the coupled experiment to force the atmosphere-only sensitivity experiments. The simu-
lated mean annual SSTs for ∼55 Ma are generally more than ∼8°C warmer than the simulated modern SSTs in 
the western Pacific Ocean (Figure S2 in Supporting Information S1). All of these atmosphere-only experiments 
were run for 30 model years and we analyzed the outputs for the last 25 model years.

2.3.  NorESM1-F Eocene Simulations Contributed to DeepMIP

Two NorESM1-F Eocene simulations using different paleogeographic maps have contributed to DeepMIP 
(Table 1). Experiment Herold_1120 uses the paleogeographic map in Herold et al.  (2014) (H14), which is in 
a mantle reference frame and applied in all other DeepMIP experiments. In contrast, experiment Pmag_1120 
uses the same H14 paleogeography, but rotated to a paleomagnetic reference frame (Lunt et al., 2017; Torsvik 
et al., 2012). Other boundary conditions, such as the atmospheric CO2 level, are consistent with those used in 

NorESM1-F coupled experiments

Exp ID Geography

CO2 
level 

(ppm) Other conditions

MD_280 Modern 280 Solar constant = 1,360.89 W/m 2

He_1120 He et al. (2019) 1,120 CH4 = 760 ppbv; N2O = 270 ppbv

Herold_1120 Herold et al. (2014) 1,120 Idealized vegetation for experiment He_1120, Herold_1120, Pmag_1120; Modern vegetation for experiment MD_280

Pmag_1120 Lunt et al. (2017) 1,120

Atmosphere-only experiments

Exp ID Gangdese mountains (m) Southeast mountains (m) Other conditions

G1500_S1000 1,500 1,000 Other geography: He et al. (2019)

G1500_S2500 1,500 2,500 Solar constant = 1,360.89 W/m 2

G4000_S1000 4,000 1,000 CO2 = 1,120 ppm

G4000_S1500 4,000 1,500 CH4 = 760 ppbv; N2O = 270 ppbv

G4000_S2000 4,000 2,000 Idealized vegetation

G4000_S2500 4,000 2,500

Table 1 
Experimental Design
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the He_1120 experiment. The NorESM1-F experiments share the same solar constant, orbital configuration, and 
non-CO2 greenhouse gas concentrations with the other DeepMIP experiments.

3.  Results
3.1.  Comparison to DeepMIP Simulations

From the DeepMIP ensemble, we chose the simulations forced with three or four times the pre-industrial atmos-
pheric CO2 level. They include simulations with CESM1.2, HadCM3, IPSL, MIROC, COSMOS, GFDL, and 
NorESM1-F (Table 2).

Compared to other DeepMIP simulations, NorESM1-F tends to simulate a wetter climate in Eastern China. For 
example, the simulations with HadCM3, IPSL, COSMOS and GFDL show that an arid zonal climate belt (BWh 
and BSh) controls almost the whole of China (Figures 3b, 3c, 3e, and 3f). However, forced with the topographic 
conditions from DeepMIP, NorESM1-F simulates temperate humid climates (Cwa, Csa and Cfa) in some parts of 
Eastern China (Figures 3g and 3h). These wet climates also appear in the simulations with CESM1.2 and MIROC 
(Figures 3a and 3d).

Moreover, when the paleogeographic map from He et al. (2019) was used, our simulation shows that temperate 
humid climates (Cwa, Csa, and Cfa) occupy the whole of Eastern China (Figure 3i). Furthermore, the simulation 

Figure 2.  The topography of Eastern Asia used in the sensitivity experiments. The shading is altitude (units: m). The blue dashed line indicates 1,000 m contour, and 
the green dashed line the 2,000 m contour. The black lines show the boundary of China (Figure 1a) rotated to 55 Ma by Gplates.
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Model Short name CO2 Atmospheric resolution References

CESM1.2_CAM5 CESM1.2 ×3 1.9° × 2.5° (Zhu et al., 2019)

HadCM3B_M2.1aN HadCM3 ×3 3.75° × 2.5° (Lunt et al., 2021)

IPSLCM5A2 IPSL ×3 1.9° × 2.5° (Zhang et al., 2020)

MIROC4m MIROC ×3 2.8° × 2.8° (Lunt et al., 2021)

COSMOS-landveg_r2413 COSMOS ×4 3.75° × 3.75° (Lunt et al., 2021)

GFDL_CM2.1 GFDL ×4 3° × 3.75° (Lunt et al., 2021)

NorESM1-F NorESM ×4 1.9° × 2.5° (Lunt et al., 2021)

Table 2 
Summary of the DeepMIP Model Simulations, With Atmospheric CO2 Levels Three or Four Times Higher Than 
Pre-Industrial, Analyzed in This Study

Figure 3.  Köppen climate classification in DeepMIP experiments with atmospheric CO2 levels three to four times higher than pre-industrial. Af, tropical rainforest 
climate; Am, tropical monsoon climate; Aw, tropical savanna climate; BWh, hot desert climate; BSh, hot steppe climate; Cwa and Cfa, humid subtropical climate; Cwb 
and Cfb, oceanic climate; Csa and Csb, Mediterranean climate; Dsa, and Dfa, hot summer continental climate; Dsb, and Dfb, warm summer continental climate; Dsc, 
and Dfc, cold summer continental climate. (a–g) With the paleogeographic map in Herold et al. (2014) (H14); (h) with the H14 map using a paleomagnetic reference 
frame in Torsvik et al. (2012), provided in Lunt et al. (2017); (i) with the map in He et al. (2019).
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with the paleogeographic map from He et al. (2019) shows a wetter climate in Eastern China compared to the 
NorESM1-F simulations with two other conditions (Herold et al., 2014; Lunt et al., 2017) (Figures 3g and 3h).

3.2.  Köppen Climate Classification and Precipitation

In our sensitivity experiments, the Köppen climate classification demonstrates that an arid desert (BWh) and 
steppe (BSh) climate always dominates Western China (over 65–94°E and 24–65°N), irrespective of the height of 
Gangdese Mountains and the Southeast Mountains (Figure 4). The simulated annual precipitation is <1.5 mm/day.

Figure 4.  Climate classification in all experiments according to the Köppen climate classification system. The legend is the same as in Figure 3. Sensitivity 
experiments are: (a) G1500_S1000, (b) G1500_S2500, (c) G4000_S1000, (d) G4000_S1500, (e) G4000_S2000, and (f) G4000_S2500.
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However, the simulated climate and precipitation in Eastern China (over 94–118°E and 18–41°N) are highly 
dependent on the topography. Compared to the height of Gangdese Mountains, the topography of the Southeast 
Mountains plays a more critical role in modulating the simulated climate in Eastern China. Humid subtropical 
climates (Cwa and Cfa, Figures 4a, 4c, and 4d) always appear in Eastern China when the Southeast Mountains are 
low (<∼2,000 m), irrespective of the height of Gangdese Mountains (∼1,500 m or ∼4,000 m). The annual precip-
itation in Eastern China is generally >2.5 mm/day (Figures 5a, 5c, and 5d). In contrast, the simulated arid steppe 
climate (BSh, Figures 4b, 4e, and 4f) appears in Eastern China when the Southeast mountains are >∼2,000 m. 
The high topography of the Southeast Mountains drastically reduces the annual precipitation in Eastern China 
(Figures 5b, 5e, 5f, and 6).

Under the scenario with low Gangdese Mountains and high Southeast Mountains (experiment G1500_S2500), 
the simulated arid area (Figure 4b) in East Asia is a continuous zonal band, agreeing best with early Eocene 
reconstructions (Guo et al., 2008; Sun & Wang, 2005).

Figure 5.  Annual mean precipitation (mm/day) in all experiments. Sensitivity experiments are: (a) G1500_S1000, (b) G1500_S2500, (c) G4000_S1000, (d) G4000_
S1500, (e) G4000_S2000, and (f) G4000_S2500.

 21698996, 2022, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

036510 by N
orce - N

orw
egian R

esearch C
entre, W

iley O
nline L

ibrary on [15/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Atmospheres

ZHANG ET AL.

10.1029/2022JD036510

9 of 18

3.3.  Atmospheric Dynamics and Water Vapor Transport

In our sensitivity experiments, most of the precipitation in Eastern China 
is in summer (Figure  6), when the land-sea thermal contrast leads to a 
low-pressure system over the Eurasian continent and high-pressure systems 
over the oceans. This low-pressure system results in cyclonic circulations. 
Summer northwesterly and northerly winds transport limited amounts of 
moisture along the western margin of the cyclonic circulation into Western 
China (Figures 7 and 8); and along the eastern margin of the cyclonic circula-
tions, southwesterly winds transport moisture along the eastern coast region 
of East Asia (Figures 7 and 8).

However, the topography of the Southeast Mountains significantly affects 
the simulated summer southwesterly winds. The uplift of the Southeast 
Mountains (e.g., G1500_S2500 vs. G1500_S1000 and G4000_S2500 vs. 
G4000_S1000) leads to a low-pressure anomaly in Eastern China (Figures 7c 
and  7d). The blocking effect of the Southeast Mountains compresses the 
moisture transport path, causing the marginal seas in East Asia to receives 
more moisture while Eastern China receives less (Figures 8e and 8f). As a 
result, the simulated arid climate extends to Eastern China, enabling an arid 
zonal belt to form in East Asia. Compared to the Southeast Mountains, the 
Gangdese Mountains play a less critical role in reorganizing the atmospheric 
circulation in Eastern China; however, the Gangdese Mountains have more 
significant impacts in South Asia (Figures 7e and 7f).

3.4.  Drought and the Wind/Precipitation Seasonality

Two monsoon indices are widely used in previous paleoclimate studies 
(Huber & Goldner, 2012; X. Li et al., 2018; Zhang et al., 2012,), based on 

precipitation and wind seasonality, respectively. According to the precipitation seasonality, the monsoon zone is 
identified by two criteria: (a) the local summer (May–September) minus winter (November–March) mean precip-
itation rate is >2 mm/day; (b) the ratio of local summer precipitation to annual total precipitation >55% (Wang 
et al., 2012). The other monsoon index, the SNS Index, defined by wind seasonality, indicates the monsoon zone 
where the values are >0. The SNS Index value is calculated as follows:

SNS =
‖𝐹𝐹1 − 𝐹𝐹7‖

‖𝐹𝐹‖
− 2,�

where F1 and F7 are respectively the January and the July climatological winds, and 𝐴𝐴 𝐹𝐹  is the annual average 

climatological winds. The norm 𝐴𝐴 ‖𝐴𝐴‖ is defined as 𝐴𝐴 ‖𝐴𝐴‖ = (∬ |𝐴𝐴|
2
d𝑆𝑆)

0.5 , where S denotes the domain of integra-
tion. Details can be found in Li and Zeng (2003).

Our sensitivity experiments demonstrate that the simulated early Eocene precipitation in Eastern China is strongly 
seasonal (Figure  9). The ratio indicating seasonal precipitation is comparable to the present-day monsoonal 
precipitation seasonality in Eastern China (Figure 1c).

However, the simulated early Eocene climate in Eastern China is not a typical monsoon climate because these 
simulated southwesterly summer winds cannot be classified as a summer monsoon. Even in the experiments that 
show humid climates (Cwa and Cfa) occupying the whole of Eastern China (Figures 4a and 4c), the simulated 
annual precipitation is much less than the current monsoonal precipitation (Figure 6). Moreover, the aridity index 
(AI)—the ratio between annual rainfall and potential evapotranspiration (PET) (Zhang & Jiang, 2019)—is always 
<0.5 in most of China in these early Eocene sensitivity experiments (Figure 10). Today, index values <0.5 only 
occurs in semi-arid and arid inland China (Figure 1d).

Furthermore, the wind seasonality defined by the SNS index (Li & Zeng, 2003) does not support a typical early 
Eocene monsoon in Eastern China either. Today, the index is >0 in the East Asian monsoon region (Figure 1b). 

Figure 6.  Monthly precipitation (mm). Dotted lines: Eocene precipitation 
averaged over 28–45°N and 94–116°E in sensitivity experiments. Solid lines: 
Modern precipitation averaged over 20–45°N and 105–120°E (black line, 
observed GPCP data averaged over 1979–2019; red line, MD_280).
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However, in our sensitivity experiments, the simulated SNS indices are always <0 in most of Eastern China, 
indicating no significant wind seasonality in the early Eocene simulations (Figure 11).

4.  Discussion and Summary
4.1.  Modeling Uncertainties

Although most previous studies have focused on the (both thermal and mechanical) climate impact of the large 
and high Tibet Plateau (An et al., 2001; Molnar et al., 2010; Wu et al., 2014), several studies also revealed the 
important roles of other mountains, for example, Tian Shan (Baldwin & Vecchi, 2016), Yunnan–Guizhou and 
Mongolian Plateau (Sha et al., 2015; Shi et al., 2019), mountains in India and Indochina (Wang et al., 2006), and 
Zagros Mountains (Tang et al., 2012), in shaping Asian climate. In agreement with these studies, our simulations 
further demonstrate that the Southeast Mountains were also critical in shaping the East Asian climate during the 
Eocene. The Southeast Mountains cause the mechanical effect by blocking water transport into Eastern China 

Figure 7.  JJA sea level pressure (shading, units: hPa) and 850 hPa wind directions (arrow, units: m/s) in the experiments. (a–b) JJA mean state, (a) G4000_S1000, (b) 
G1500_S2500. (c–f) Anomaly between two experiments, (c) G1500_S2500 and G1500_S1000, (d) G4000_S2500 and G4000_S1000, (e) G4000_S1000 and G1500_
S1000, (f) G4000_S2500, and G1500_S2500.
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during the Eocene. In contrast, the high Gangdese Mountains are less critical in influencing climate in Eastern 
China but cause a thermal effect in South Asia and a mechanical effect in Western China.

Here, our sensitivity experiments are still not exhaustive in some aspects. The resolution of the atmospheric 
model is ∼2°, and the moisture transport through narrow mountain valleys can not be well simulated. Due to the 
potential higher precipitation sensitivity to topography (relative to other DeepMIP models) as well as the ideal-
ized vegetation, NorESM1-F may have overestimated the Eocene precipitation in East Asia in these experiments. 

Figure 8.  Vertically integrated MJJAS vapor transport flux (IVT). The shading shows the intensity of the IVT (units: 10 −2 kg/[m·s]) and the arrow shows the direction 
of the IVT. Sensitivity experiments are: (a) G1500_S1000, (b) G1500_S2500, (c) G4000_S1000, (d) G4000_S1500, (e) G4000_S2000 and (f) G4000_S2500.
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Moreover, our atmosphere-only sensitivity experiments do not resolve feedbacks due to SST variabilities. Associ-
ated with the warm SST, in particular in the Pacific, the variability of the subtropical high-pressure system might 
cause severe aridity in East Asia during the Eocene. Therefore, it remains valuable to repeat these experiments 
with high-resolution coupled climate models.

4.2.  The Gangdese and Southeast Mountains

The height of the Gangdese Mountains during the Eocene is debated. Several studies (Deng et al., 2019) suggest 
that it was still low (<2,000 m) during the Eocene. Low Gangdese Mountains enable moisture from the Indian 

Figure 9.  Simulated monsoon domains according to the definition of precipitation seasonality (Wang & Ding, 2008; Wang et al., 2012), Sensitivity experiments are: 
(a) G1500_S1000, (b) G1500_S2500, (c) G4000_S1000, (d) G4000_S1500, (e) G4000_S2000, and (f) G4000_S2500.
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Ocean to penetrate into the humid lowland central Tibetan Plateau (Cai et  al.,  2019; Deng et  al.,  2019; Su 
et  al., 2019; Wu et  al., 2017). However, other studies based on oxygen isotopes and clumped-isotopes (Ding 
et al., 2014; Ingalls et al., 2018) suggest that several basins in the Gangdese Mountains were already high during 
the Eocene. For example, the Linzhou Basin, Penbo Basin, and Oiyug Basin (Figure  1a) may have reached 
heights of 4,500 ± 400, 4,400 + (1,300–1,700), and 4,100–6,500 m during the Eocene.

Figure 10.  Arid index (Precipitation/Potential evapotranspiration). Regions with aridity index (AI) values <0.65 are considered drought areas. The degree of aridity 
can be further divided into hyperarid (AI < 0.05), arid (0.05 ≤ AI < 0.2), semi-arid (0.2 ≤ AI < 0.5), and dry-subhumid (0.5 ≤ AI < 0.65). Sensitivity experiments are: 
(a) G1500_S1000, (b) G1500_S2500, (c) G4000_S1000, (d) G4000_S1500, (e) G4000_S2000, and (f) G4000_S2500.
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Our simulations demonstrate that the height of the Gangdese Mountains has relatively strong effects on Western 
China and South Asia. The thermal effect of high Gangdese Mountains leads to the convergence of low-level 
summer winds, and strengthens the Somali jet (Figures 7e and 7f). Due to the high Gangdese Mountains, the rain 
shadow effect significantly reduces the precipitation in Western China (Figures 4 and 10). However, the height 
of the Gangdese Mountains influences the simulated early Eocene climate weakly in Eastern China (Figure 4). 
Forced with low Gangdese Mountains in experiment G1500_S2500, the simulated arid climate pattern fits best 
with the reconstructed zonal dry climate configuration during the Eocene in China (Figure 4b).

Due to the lack of robust evidence, it is difficult to constrain the height of the Southeast Mountains (the 
Zhe-Min Highlands and the Nanling Mountains), although our simulations suggest that they should be higher 

Figure 11.  Monsoon domains defined by the SNS index (Li & Zeng, 2003). The shaded area shows SNS values >0. Sensitivity experiments are: (a) G1500_S1000, (b) 
G1500_S2500, (c) G4000_S1000, (d) G4000_S1500, (e) G4000_S2000, and (f) G4000_S2500.
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than 2,000–2,500 m during the Eocene. The molasse deposits that are widely distributed in Zhejiang, Fujian, 
Jiangxi and Guangdong (Figure 1a) suggest that the Zhe-Min Highlands were at heights of up to 3,500–4,000 m 
in the Late Cretaceous, and this paleogeographic configuration did not change until the Early Paleogene 
(Chen, 1997). However, in the Nanling region, no paleo-elevation reconstructions are currently available, and 
therefore, following He et al. (2019), we used the deposition rate of the Pearl River to provide an estimate. Yan 
et al. (2018) have shown that the entire volume of eroded rock in the Pearl River Basin from 45 Ma to the present 
is ∼1,122 × 10 3 km 3. Since the area of the Pearl River Basin area is 368 × 10 3 km 2, the total thickness of the 
denuded area reached ∼2,900 m since the Middle Eocene. Moreover, modern observations (Dai et al., 2008) 
show that the annual mean sediment flux from the Pearl River is 75 Mt/yr. During the entire Cenozoic, even if 
the sediment flux from the Pearl River was much less than the present value (e.g., only half, or 37.5 Mt/yr), the 
height of the eroded rock adjusted for isostatic balance is ∼2,000 m. Therefore, an estimated height of the Nanling 
Mountains of 2,000–3,000 m during the Early to Middle Eocene appears reasonable.

In addition to our sensitivity experiments, the height of the Southeast Mountains also determines the precipita-
tion patterns in Eastern China in other Eocene simulations. In the DeepMIP experiments (Figures 3a–3h) and 
some Eocene simulations (X. Li et al., 2018; X. Y. Li et al., 2018; Shields et al., 2021; Zhang et al., 2012), which 
contain high and long Southeast Mountains (at least 1,500 m), an arid zonal band appears in China. In contrast, 
other Eocene experiments without high Southeast Mountains (Baatsen et al., 2020; Huber & Goldner, 2012; X. 
Li et al., 2018; Licht et al., 2014; Tardif et al., 2020) or with short Zhe-Min Highlands alone (Figure 3i), simulate 
a wet pattern (annual mean precipitation >500 mm) in Eastern China. Therefore, we suggest that the uncertainty 
regarding the topography of the Southeast Mountains is the main cause of the divergence of the results in the 
previous model simulations of the Eocene climate in China.

4.3.  Comparison Between Eocene and Present-Day Climate in Eastern China

Currently, monsoonal climate leads to pronounced seasonality in winds and precipitation in China. In summer, 
the southwest winds (also called the southwest monsoon) and the southeast winds (also called the southeast 
monsoon), which transport water vapor from the Indian and Pacific Oceans, supply most of the annual rainfall in 
China. On the other hand, cold and dry northwest winds from inland Asia blow over North China in winter, and 
northeast winds blow over Southeast China (Chen et al., 1991).

Our simulations demonstrate that the simulated early Eocene climate shares some similarities with the present-day 
monsoon climate in East Asia. For example, the experiments show a strong precipitation seasonality similar to 
today (Figures 1c and 9), which is also evident in other Eocene simulations (Huber & Goldner,  2012; X. Li 
et al., 2018; Tardif et al., 2020). Furthermore, the simulated precipitation seasonality agrees with the seasonal 
cycles revealed in Eocene lake sediment and pollen records from Eastern China (Quan et al., 2012,; Tong, 1996; 
Wang et al., 2013; Zhang et al., 2005).

However, our simulations also demonstrate that the simulated early Eocene climate differs from the present-day 
monsoon climate in China. During the early Eocene, the southwesterly summer winds are more dominant in East-
ern China, and the southeasterly winds are weaker than today (Figures 1a and 7). In addition, the wind seasonality 
remains weak in most parts of Eastern China (Figure 11). This weak wind seasonality also appears in previous 
Eocene simulations (X. Li et al., 2018; Tardif et al., 2020; Zhang et al., 2012,).

Furthermore, the simulated early Eocene climate in Eastern China is much drier than today, consistent with plant 
fossil evidence, indicating an arid Eocene climate in Eastern China. Even the experiment forced with low South-
east Mountains (Figures 4 and 5), which simulates a relatively wet environment in Eastern China, reproduces 
less annual precipitation than today (Figures 4 and 6). Together with the higher evapotranspiration associated 
with high temperatures during the Eocene, the low precipitation results in a semi-arid and arid climate across 
almost the whole of China (Figure 1), in good agreement with the zonal dry band pattern revealed by integrated 
geological records (Guo et al., 2008; Sun & Wang, 2005). Sporadic indicators of humid climate also occur in 
Eocene sediments in Eastern China (Quan et al., 2012,), although the temporal resolution of these records is 
relatively coarse. As revealed in previous simulations (Tardif et al., 2021; Zhang et al., 2012), changes in Earth's 
orbital configuration can cause large climatic oscillations in Eastern China during the Eocene, consistent with 
the occurrence of both wet and dry climatic indicators in Eocene sediments. If a modern-like monsoon climate 
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had developed during the Eocene, these arid climate indicators should be completely absent from the Eocene 
sedimentary record.

Therefore, our early Eocene experiments are a convincing demonstration that seasonality in precipitation is not 
a good proxy for indicating a monsoon climate in deep time. Even though rainfall seasonality appears similar 
to current conditions, other features (including the seasonality of winds and the mean climatology) may differ 
significantly.

4.4.  Summary

We have evaluated the impact of the topography of the Gangdese Mountains and the Southeast Mountains on 
the simulated Eocene climate of China. Our results show that an arid zonal band appeared in China during the 
Eocene when the Southeast Mountains are relatively high (>∼2,000 m with NorESM1-F). The blocking effect 
of the high Southeast Mountains compress the moisture transport path, causing a reduction in precipitation in 
Eastern China. Furthermore, our simulations show that the early Eocene climate in East Asia is distinct from the 
present-day monsoon climate, and that seasonality in precipitation alone does not represent a monsoon climate.

Data Availability Statement
The DeepMIP simulation data can be accessed following Lunt et al. (2021). In addition, temperature from the 
models can be downloaded directly from the Supporting Information of Lunt et al. (2021). NorESM1-F is avail-
able from Guo, Bentsen, et al. (2019). The precipitation results of sensitivity experiments are available at https://
zenodo.org/record/6620024.
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