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Abstract The choice of a prior model can have a large impact on the ability to
assimilate data. In standard applications of ensemble-based data assimilation, all real-
izations in the initial ensemble are generated from the same covariance matrix with
the implicit assumption that this covariance is appropriate for the problem. In a hierar-
chical approach, the parameters of the covariance function, for example, the variance,
the orientation of the anisotropy and the ranges in two principal directions, may all be
uncertain. Thus, the hierarchical approach ismuchmore robust againstmodelmisspec-
ification. In this paper, three approaches to sampling from the posterior for hierarchical
parameterizations are discussed: an optimization-based sampling approach (random-
ized maximum likelihood, RML), an iterative ensemble smoother (IES), and a novel
hybrid of the previous two approaches (hybrid IES). The three approximate sampling
methods are applied to a linear-Gaussian inverse problem for which it is possible to
compare results with an exact “marginal-then-conditional” approach. Additionally,
the IES and the hybrid IES methods are tested on a two-dimensional flow problem
with uncertain anisotropy in the prior covariance. The standard IES method is shown
to perform poorly in the flow examples because of the poor representation of the
local sensitivity matrix by the ensemble-based method. The hybrid method, however,
samples well even with a relatively small ensemble size.
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1 Introduction

In Bayesian methods of data assimilation, it is necessary to specify the prior joint
probability density for the model parameters (the “prior” for short). The prior for
parameters of a subsurface reservoirmodel (properties such as permeability and poros-
ity) may be based partly on data that have already been assimilated, such as log or
core measurements and seismic surveys. The choice of a prior joint probability is also
often influenced by the joint distributions of properties observed in modern geological
analogues of ancient depositional environments.

The choice of the prior is a challenge in Bayesian inference (Scales and Tenorio
2001). In almost all applications of ensemble Kalman-based data assimilation meth-
ods, the prior is chosen to be multivariate normal with fully specified prior mean and
prior covariance. In these cases, the prior mean largely determines the average prop-
erties in regions where the data are not sensitive to parameters of the model, while
the choice of the covariance determines the smoothness of the spatial distributions,
the variability of magnitudes, and the orientation and the range of correlation of the
spatially distributed parameter fields. In most subsurface applications, it is difficult to
select these parameters (Malinverno and Briggs 2004).

In many applications of the Bayesian data assimilation methods to field cases, the
prior is found to have been too narrowly specified—it does not allow for the possibility
of events that could (and perhaps will) occur in the future, and is often inconsistent
with historical measurements of flow and transport. If a prior model that is inconsistent
with data is used for data assimilation, the result will be biased estimates and forecasts,
implausible parameter values, and unjustified reduction in uncertainty (Moore and
Doherty 2005; Oliver and Alfonzo 2018). At the end of an expensive model-building
and calibration exercise, it will be apparent that the model is inadequate and will need
to be rebuilt.

Although allowing for uncertainty in the prior mean is not common in ensemble-
based history matching, its usefulness has been demonstrated in both synthetic and
field cases. Li et al. (2010) allowed for a uniform adjustment to the mean, while Zhang
and Oliver (2011) allowed the prior mean to be characterized by a trend surface whose
coefficients were uncertain. In some cases (such as the Brugge benchmark case),
the use of a hierarchical model with uncertainty in the mean permeability was not
necessary for matching production data, but the hierarchical model provided a more
reasonable explanation of the bias in the initial forecasts (Chen and Oliver 2010).

Uncertainty in the prior covariance is widely recognized as being a key aspect of
overall uncertainty, but careful treatment of covariance uncertainty in history match-
ing is rare. A practical approach to parameterizing the uncertainty in the covariance
is to assume a family of covariance functions with hyperparameters that control the
smoothness, the covariance range, the variance, and the anisotropy. If these hyperpa-
rameters are fixed at inappropriate values, which are then used in data assimilation,
the ability to assimilate flow data will often be limited. One approach to treating
uncertainty in the hyperparameters is to use the concept of scenarios to represent
the possibilities of a discrete number of alternative values for the hyperparameters.
Park et al. (2013) demonstrated the usefulness of this approach for a case in which
the orientation of the anisotropy was assumed to be one of two possible angles. The
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approach used by Emerick (2016) was somewhat similar, except that weights for the
scenarios were computed using an iterative ensemble smoother. AlthoughMalinverno
and Briggs (2004) did not consider uncertainty in anisotropy, they allowed uncertainty
in five hyperparameters of the covariance for a problem of inferring compressional
wave slowness in a one-dimensional earth model.

If the covariance is allowed to be uncertain in an ensemble Kalman-based approach,
the parameterization of the model and the choice of the covariance model are both
important to successful data assimilation. Chada et al. (2018) investigated the effect
of both centered and non-centered parameterizations (described in Sect. 2.1) of a
hierarchical spatialmodel for usewith ensembleKalman iteration (EKI). In their exper-
iments, which included nonstationary hyperparameters, they concluded that using a
hierarchical approach with a non-centered parameterization was significantly better
than a hierarchical approach with a centered parameterization and that both hierarchi-
cal approaches were better than a non-hierarchical approach. Subsequently, Dunlop
et al. (2020) showed that for maximum a posteriori (MAP) estimation of the hyperpa-
rameters in a linear inverse problem, the centered parameterization is to be preferred
when the goal is MAP estimation as opposed to uncertainty quantification.

2 The Hierarchical Model

Gaussian priors are often used in data assimilation because they are relatively tolerant
to errors in misspecification, but the choice of the parameters of the covariance still
have an influence on the quality of the final data match. In Sect. 4.2, the feasibility of
the hybrid IES to assimilate data in amodel with an uncertain prior covariance is inves-
tigated. In that example, the “true” model that generated the data has an anisotropic
covariance with a longer range in one direction. If one were fortunate enough to know
the covariance model from which the truth was sampled, it would not be necessary to
use a hierarchical model as a good average total squared datamismatch (e.g. Sod = 365
for the correct covariance in the two-dimensional flow problem) could be achieved
without consideration of uncertainty in hyperparameters. On the other hand, if the
prior covariance is mistakenly fixed at an incorrect orientation (off by π/2), the mis-
fit to data would be substantially worse (Sod = 2142), and the ability to accurately
forecast future behavior would also suffer. Uncertainty in the covariance can be eas-
ily accounted for by introducing a hierarchical model for which the anisotropy and
ranges are uncertain. By applying the hierarchical model in this problem and using the
hybrid iterative ensemble smoother for data assimilation, it is possible to obtain amean
squared data mismatch (Sod = 1151) that is intermediate between the value obtained
using the correct covariance and a covariance with incorrect orientation. When hier-
archical modeling is an appropriate approach to describing uncertainty, it provides
more robust priors for history matching and reduces the need for rebuilding the model
and re-history matching. Unfortunately, hierarchical models are more nonlinear than
non-hierarchical models, and data assimilation or history matching is more difficult.
A straightforward application of an iterative ensemble smoother with localization to
the hierarchical problem with uncertain anisotropy results in an extremely poor match
to data (Sod = 13,000). It appears that in order to use a hierarchical model with an
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ensemble-based data assimilation, modification of the data assimilation methodology
will generally be required, as presented in Sect. 3.3.

The probability distribution of Gaussian random variables (denoted m) is com-
pletely determined by the mean and the covariance of the variable. In this study, we
will assume that the mean mpr is known but that the covariance Cm is uncertain.
There are a number of parameters that could describe the uncertainty in Cm ; for two-
dimensional fields, we will focus on correlation range ρ, orientation of the anisotropy
φ, and the ratio of range in two principal directions. For a one-dimensional field, we
will focus on problems in which the variance and the correlation range are uncertain.

2.1 Hierarchical Model Parameterization: Centered and Non-centered

There are two common parameterizations for Gaussian hierarchical problems:
the centered (or natural) parameterization and the non-centered parameterization
(Papaspiliopoulos et al. 2007). In the centered parameterization, the natural variables
(denotedm for model parameters) are augmented with a set of hyperparameters θ that
characterize the covariance and perhaps the mean. With the augmented parameters,
the set of parameters that must be sampled can be written as x = (m, θ). The centered
parameterization utilizes the conditional independence of the data d and the hyper-
parameters of the distribution θ given the observable parameters m, so it is relatively
easy to implement a Gibbs sampler for a centered parameterization. The disadvantage
of the centered parameterization for the ensemble form of data assimilation, however,
is that the objective function contains the term (m −mpr)

TC−1
m (m −mpr). The matrix

Cm depends on the parameters θ , so that an ensemble approximation of Cm is not
appropriate.

In the non-centered parameterization, the relationship between the natural Gaussian
variable m and the non-centered parameters can be written

m = mpr + L(θ)z, (1)

where L is a “square root” of the model covariance matrix, i.e., LLT = Cm , and z
is a vector of independent standard normal deviates with the same dimension as m.
In the non-centered parameterization, θ and z are a priori independent. Thus, for the
non-centered parameterization, we can write the entire set of parameters x = (z, θ).
Note that the prior probability density function (pdf) for x is Gaussian in the centered
parameterization, making it suitable for an ensemble form of data assimilation.

Although Eq. 1 is used in this paper to generate realizations ofm, Eq. 1 will only be
feasible for large grids if the square root of the covariance, L , is compact (as it is for the
spherical covariance), or if the correlation range is sufficiently short thatmost elements
of L are effectively zero. Other methods could be more efficient for large grids. In
particular, it may often be advantageous to use either the inverse of the covariance
matrix (the precision matrix) or a factorization of the precision matrix (Stojkovic
et al. 2017) or a Matérn–Whittle covariance model (Gneiting et al. 2010) for which
stochastic partial differential equations can be used efficiently to generate a random
field (Roininen et al. 2019; Zhou et al. 2018). Another relatively common approach for
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describing the uncertainty in Gaussian hierarchical models is to assume that the prior
distribution for the covariance model matrix is inverse Wishart (Myrseth and Omre
2010; Tsyrulnikov and Rakitko 2017). While this approach has some computational
advantages, it seems less likely to describe the prior uncertainty in the covariance.

3 Data Assimilation for Gaussian Hierarchical Models

For large geoscience inverse problems, iterative ensemble smoothers are often an effec-
tive approach. These are all based on the original development of the ensembleKalman
filter (Evensen 1994), which has several advantages over Kalman filters or extended
Kalman filters: a low-rank approximation of the covariance matrix is used instead of
the full covariance, and the linearization of the relationship between predicted data
and model parameters is approximated without requiring adjoints. For geoscience
inverse problems, it has been found that it is more efficient to use a “smoother” to
update the parameters of the inverse problem using all the data simultaneously. On
the other hand, the problem of parameter estimation becomes more nonlinear when
all data are assimilated simultaneously, so iteration is almost always required when a
smoother is used for history matching. Although there are many variants of iterative
ensemble smoothers, they can generally be classified into one of two approaches. In
multiple data assimilation (MDA), the same data are assimilatedmultiple timeswith an
inflated observation error (Reich 2011; Emerick and Reynolds 2013). This approaches
reduces the nonlinearity in the update, but also requires updating the approximation of
the covariance matrix at each iteration. That seems to be more difficult for hierarchical
models than for models in which the prior covariance is assumed to be known.

The second class of iterative ensemble smoothers is based on the randomized
maximum likelihood (RML) approach to approximate sampling from the posterior
(Kitanidis 1995; Oliver et al. 1996, 2008). In the RML approach, samples from the
prior are updated to become approximate samples from the posterior by minimizing
a stochastic objective function. Like MDA, this method is exact for linear Gaussian
data assimilation problems, but this method does not require updating of the covari-
ance at each iteration. In the iterative ensemble smoother form of RML (Chen and
Oliver 2012), an average sensitivity, computed from the ensemble of samples, is used
to approximate the downhill direction. Because an ensemble average sensitivity will
not provide an accurate sensitivity when the problem is highly nonlinear, a hybrid
data assimilation method that is a blend of RML and IES is introduced in which some
derivatives are computed analytically, while other derivatives are estimated from the
ensemble. Finally, for the linear observation case, results will be compared with the
marginal-then-conditional (MTC) approach introduced by Fox and Norton (2016).

The unnormalized posterior pdf for the model parameters in the non-centered
parameterization can be written as

p(z, θ | d) ∝ exp

(
−1

2
(do − g(m(θ, z)))TC−1

d (do − g(m(θ, z)))

)

× exp

(
−1

2
(θ − θ̄ )TC−1

θ (θ − θ̄ ) − 1

2
zTz

)
(2)
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or more simply

p(x | d) ∝ exp

(
−1

2
(do − g(m(x)))TC−1

d (do − g(m(x)))

)

exp

(
−1

2
(x − x̄)TC−1

x (x − x̄)

)
. (3)

The non-centered parameterization appears to be well suited to data assimilation using
an iterative ensemble smoother when the prior pdf for both z and θ have been assumed
Gaussian (perhaps after transformation), as the pdf for x (Eq. 3) is identical in form to
the pdf for m in traditional Bayesian history matching. Nonlinearity is a result either
of the relationship d = g(m) being nonlinear, as is the case if the data are water rates
and the model parameters are porosity and log-permeability, or a result of nonlinearity
in the relationship between m and θ . Although Eq. 3 is written for the case in which
the prior for the hyperparameters is Gaussian, when the uncertainty in the orientation
of the anisotropy is moderately large, a Gaussian approximation is not appropriate.
We discuss that case in Appendix A.

3.1 Data assimilation: RML

The randomized maximum likelihood approach begins, like the perturbed observation
form of the ensemble Kalman filter (Burgers et al. 1998; Houtekamer and Mitchell
1998), by drawing samples (x ′

i , ε
′
i ), i = 1, . . . , Ns , from the Gaussian distribution

qX ′ε′(x ′, ε′) ∝ exp

(
−1

2
(x − x̄)TC−1

x (x − x̄)

)
exp

(
−1

2

(
ε′)T C−1

ε ε′
)

(4)

for a given x̄ . The i th approximate sample from the posterior is obtained by computing
the minimizer of the cost functional

Ji (x) = 1

2

(
x − x ′

i

)T
C−1
x

(
x − x ′

i

)

+1

2

(
g(m(x)) + ε′

i − do
)T

C−1
d

(
g(m(x)) + ε′

i − do
)
. (5)

This is usually done by solving

∇x Ji (x) = 0 (6)

for x . If Levenberg–Marquardt with a Gauss–Newton approximation of the Hessian
is used for the minimization, the �th update is of the form

δx� = x ′
i − x�

1 + λ�

− CxG
T
�

[
(1 + λ�)Cd + G�CxG

T
�

]−1[
(g(x�) + ε′

i − do) − G�(x� − x ′
i )

1 + λ�

]
,

(7)
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where GT = ∇x
(
gT

)
, and λ� is the Levenberg–Marquardt regularization parameter.

Thismethod of sampling from the posterior distribution is only exact if the relationship
between the data and the model parameters is linear. It will sample accurately from
multimodal distributions in some situations, but exact sampling using RML requires
computation of additional critical points and weighting of solutions (Ba et al. 2022).
For geoscience applications, the standard unweighted RML is almost always used.

3.2 Data assimilation: IES

One disadvantage of RML is the need for computation of the gradient of the objective
function. For many forward models of the data such as reservoir production simula-
tion, the derivatives are not readily available. In those cases, the iterative ensemble
smoothers offer an alternative that avoids the need to compute G directly. The basic
idea is that terms that appear in Eq. 7 can often be computed efficiently using ensemble
approximations. In an ensemble-based approach to sampling from the posterior, Eq. 7
is replaced by the following update step (Chen and Oliver 2013)

δx�+1 = − 1

(1 + λ�)
	x� 	xT� C

−1
x (x� − x ′)

− 	x� 	dT�

(
(1 + λ�)Cd + 	d�	dT�

)−1

×
(
g(m�) + ε′

i − do − 1

(1 + λ)
	d�	xT� C

−1
x (x� − x ′

i )

)
,

(8)

where 	x� = (X�−X̄�)√
(N−1)

and similar for 	d�. If this approach were applied directly, it
can be seen that any update is restricted to the space spanned by the initial ensemble,
and the number of degrees of freedom available for calibration is Ne − 1 where Ne is
the number of realizations in the initial ensemble. To avoid this limitation, localization
is nearly always applied in large problems, but for clarity, localization has been omitted
in Eq. 8. The main disadvantage of an ensemble-based methodology is the failure to
handle strong nonlinearity well—primarily because the same average sensitivity is
used for all samples.

3.3 Data assimilation: hybrid IES

The hybrid IES is a method that takes advantage of the ability of the RML to use
different gain matrices for each sample and the ability of the IES to avoid the need
for adjoint systems. As in the RML method, the (transpose of) sensitivity of data to
model parameters in a non-centered parameterization is

GT = G(x)T = [∇x g1 ∇x g2 . . . ∇x gNd

] = ∇x
(
gT

)
(9)
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and similarly define the sensitivity of data to the observable model parameters m,

GT
m = G(m)T = [∇mg1 ∇mg2 . . . ∇mgNd

] = ∇m
(
gT

)
. (10)

These two sensitivity matrices are related

GT = ∇x
(
gT

) = ∇x
(
mT) · ∇m

(
gT

) = ∇x
(
mT) · GT

m (11)

or

G = Gm ·
(
∇x

(
mT))T

. (12)

For notational simplicity, the Jacobian of the observablemodel parameterswith respect
to the non-centered hierarchical parameters is written as

Mx =
(
∇x

(
mT))T

, (13)

where the dimension of Mx is Nm × Nx . Substituting G = GmMx into the RML
update expression (Eq. 7) with ensemble representation of Gm results in a hybrid IES
data assimilation approach

δx = − 1

(1 + λ)
(x − x ′) − CxM

T
x G

T
m

(
(1 + λ)Cd + GmMxCxM

T
x G

T
m

)−1

×
(
g(m) + ε′ − do − 1

(1 + λ)
GmMx (x − x ′)

)

= − 1

(1 + λ)
(x − x ′)

−CxM
T
x (	m)−T 	dT

(
(1 + λ)Cd + 	d (	m)−1MxCxM

T
x (	m)−T 	dT

)−1

×
(
g(m) + ε′ − do − 1

(1 + λ)
	d (	m)−1Mx (x − x ′)

)
. (14)

Note that in the hybrid IES method, each ensemble member has its own Kalman gain
matrix since the sensitivityMx of the physical model parametersm to the non-centered
parameters x is specific to an ensemble member; assuming that m is determined from
the known mean mpr , the uncertain covariance Cm and from the stochastic variable
z, i.e., m = mpr + L(σ, a)z where LLT = Cm .

3.3.1 Factorization of Covariance Functions

The hybrid approach will only be useful if computation of the terms in Eq. 14 is
practical. First, note that Cx is diagonal, so that it can be eliminated by scaling of the
variables. Computing Mx this way relies on factorability of the covariance matrix. For
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functions in one dimension, the equivalent to defining Cm = LLT is to define

C(r) = f ∗ f T =
∫ +∞

−∞
f (s) f (r + s)ds. (15)

For illustration, consider the one-dimensional exponential covariance function
C(r) = σ 2e−|r |/a where r is the distance between two variables, a is a measure
of the range of the correlation, and σ 2 is the variance. In one dimension, a symmetric

factorization is Ls(r) = σ
√
2√

aπ
K0(| r | /a), where K0 is the modified Bessel func-

tion of the second kind of order 0. The factorizations are not unique, however, and it
may be beneficial to use a factorization for which the “square root” is not singular.
A one-sided factorization that is always finite is La(r) = σ

√
2/a H(r) exp(−r/a)

where H(r) is the Heaviside function. Similarly, the symmetric factorization of the
squared exponential or Gaussian covariance C(r) = σ 2e−r2/a2 can be shown to be

Ls(x) = σ
(

4
a2π

)1/4
exp(−2r2/a2).

Similar factorizations in two and three dimensions can easily be derived for other
covariance functions such as the spherical covariance in three dimensions, the circular
covariance in two dimensions, and Whittle’s covariance (Oliver 1995). For exam-
ple, in a two-dimensional stationary field with geometric anisotropy and positions x ,
we define r = √

(x − x ′)TH(x − x ′) and compute convolution square roots of the
covariance as described above. In this paper, the square root of a two-dimensional
Gaussian covariance model is used. Alternatively, one can start with a specific covari-
ance “square root” and compute the corresponding covariance function (Gaspari and
Cohn 1999). In this study, the factorization of the covariance function has been used
to obtain an approximation of the factorization of the covariance matrix. A scale space
implementation might be justified if additional accuracy was required (Lindeberg
1990).

4 Numerical Examples

Two numerical examples are presented to illustrate data assimilation for Gaussian
models with uncertainty in the covariance. In the first example, the model is defined
on a one-dimensional grid, and the observations are of m. In the second example,
the uncertain permeability field in a two-dimensional porous medium is estimated by
assimilation of a time series of water cut observations at six producing wells.

4.1 One-Dimensional Linear Gaussian

Consider a simple one-dimensional Gaussian random field, discretized on the interval
[0, 1], into nm = 150 lattice points. The random variable m is observed at every
fourth lattice point, with independent measurement noise characterized by σd = 0.01.
The data-generating model has correlation range atr = 0.100 and standard deviation
σ tr
m = 1.08. The noisy observations are shown in Fig. 1a.
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Fig. 1 The one-dimensional linear test problem with hierarchical prior

Fig. 2 Reduction of squared datamismatch to perturbed data (Eq. 17) for three data assimilation algorithms

The form of the covariance of the data-generating model Cm (squared Gaussian) is
assumed to be known—only the correlation range a and model variance σ 2 are uncer-
tain. Because both parameters are required to be positive, log-normal distributions are
assumed for each: θ1 ≡ log σm ∼ N (−0.22, 0.52) and θ2 ≡ log a ∼ N (−2.3, 0.62).
Ten unconditional samples of m from the prior are shown in Fig. 1b.

The posterior pdf can therefore be written as

p(z, a, σ | d) ∝ exp

(
−1

2
(d − g(m(u, z)))TC−1

d (d − g(m(u, z)))

−1

2
(θ − θpr )

TC−1
θ (θ − θpr ) − 1

2
zT z

)
, (16)

and the corresponding objective function for a minimization-based sampling approach
is given by Eq. 5. Results from the three different data assimilation approaches
described in Sect. 3 (RML, IES, and hybrid IES) are compared with the exact
distribution of hyperparameters obtainedusingmarginalization for the centered param-
eterization (Rue and Held 2005; Rue and Martino 2007; Fox and Norton 2016) and
with the true values of the hyperparameters.

Note that although RML does not use information from the ensemble for data
assimilation—each realization is generated independently—100 RML samples were
generated for the comparison. It is necessary to set a few algorithmic parameters for the
minimizations. For RML with Levenberg–Marquardt minimization, an initial value
of λ = 5000 was used. It was decreased by a factor of 4 if the objective decreased.
Otherwise, it was increased by a factor of 4. For each minimization, the initial model
was chosen to be the sample from the prior. For IES and hybrid IES, the initial value of
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Fig. 3 Samples of m from the posterior for three data assimilation methods (top row) and comparison of
prior and posterior distributions of hyperparameters (bottom row)

λ was based on the initial mean value of the data mismatch objective function (Chen
and Oliver 2013). An ensemble size of 200 was used for the IES, and an ensemble
size of 100 was used for the hybrid IES.

The reduction in the squared mismatch of simulated data to perturbed observations
(Eq. 17) was initially rapid for all three methods, although a few realizations with
long initial correlation ranges failed to converge for both the RML and the hybrid IES
(Fig. 2). The smallest mismatch values with perturbed observations were achieved
by the RML, with values of the realizations of the data objective function achieving
values

Srml
d (m) = 1

2

Nd∑
i=1

(g(m) − (do + ε))2

σ 2
d

(17)

smaller than one in several cases. While this objective is useful for monitoring con-
vergence, for model checking it is more useful to evaluate the squared data mismatch
between predicted data from the calibrated models and the actual data; the expected
value of that metric is

E[Sobsd (m)] = 1

2

Nd∑
i=1

(g(m) − do)2

σ 2
d

= 1

2
Nd = 19. (18)

The average values from all three methods are close to the expected value.
The a posteriori realizations of m from all three methods also look generally plau-

sible (top row Fig. 3), although it appears that realizations from the RML and IES
have correlation lengths that are generally shorter that the correlation length in the
data-generating model (Fig. 3). Qualitatively, it appears that the standard deviation
of the posterior model realizations is somewhat larger for the IES method than for
the other two methods. Figure 4 confirms this quantitatively, although the differences
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Fig. 4 Posterior estimates of
standard deviation of the model
as functions of position, for
three data assimilation methods
applied to the one-dimensional
linear problem

Fig. 5 Two-dimensional reservoir flow problem with uncertain prior covariance

between methods are relatively small. Note that the standard error in the observations
is 0.1, and the prior standard deviation for m was uncertain.

4.2 Fluid Flow Example

In the second example, the data-generating system is a two-dimensional (30 × 15)
anisotropic porous medium with two-phase (oil and water), immiscible, incompress-
ible flow driven by two injectors and six producing wells. The permeability field that
generates the data is a draw from a prior model in which the angle of the principal axis
of anisotropy is 0.93 radians, the range parameter for the longest correlation length
is 1.0, and the ratio of correlation ranges in the two principal directions is 6.0. The
covariance type for log-permeability is set to be “Gaussian,” i.e., squared exponential
(Eq. B6) with standard deviation 2.0. The porosity is uniform.

The data are measurements of water cut (fraction of produced fluid that is water)
as a function of time in the producing wells. Although the permeability is highly
variable, the wells are controlled by total flow rate which is identical for all producers.
Figure 5a shows the permeability field that was used to generate the observations,
and Fig. 5b shows the noisy observations of water cut at each of the wells. The
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Fig. 6 Prior uncertainty in each of the hyperparameters of the hierarchical model for the two-dimensional
flow problem

errors in the observations are independent Gaussian with standard error 0.02. For
data assimilation, the prior covariance for log-permeability has uncertainty in the
orientation of the principal axes of anisotropy and in the range of the correlation in each
of the two principal directions. The prior uncertainties for each of the hyperparameters
of the covariance are shown as histograms of sampled values in Fig. 6. The priors for
correlation length and ratio of correlation ranges are both assumed to be log-normal.
The prior for orientation of the principal axes of the covariance for permeability is
Gauss–von Mises (Eq. A1), which is close to Gaussian when the variance is relatively
small.

4.3 Data Assimilation Results

Data assimilation with the hierarchical parameterization was performed using two
methods: a standard Levenberg–Marquardt iterative ensemble smoother and a hybrid
IES, also with Levenberg–Marquardt regularization. In both approaches, the param-
eters being updated are z and the three hyperparameters of the covariance function.
Recall that z has the same dimension as m (450) and is defined in Eq. 1. The updates
of z were localized in the IES approach using the Gaspari–Cohn correlation function
with a taper range that was the same as the true correlation range. Localization was
not used in the hybrid IES approach. An ensemble size of 200 was used for the IES,
while a smaller ensemble (Ne = 100) was used for the hybrid IES approach. In both
approaches, the starting value of the Levenberg–Marquardt parameter λ was selected
based on the magnitude of the initial data mismatch (Chen and Oliver 2013). If the
average squared data mismatch decreased in an iteration, the value of λwas decreased
by a factor of 4. If the average square data mismatch increased, then λ was multiplied
by a factor of 4. Iterations were stopped if λ increased in two successive iterations, or
if the number of iterations exceeded 25, or if the magnitude of the reduction in data
mismatch was too small.

Prior and posterior predictive distributions of water cut are compared with the
observed water cut in Fig. 7 for five of the six producers. The prior predictive distribu-
tion (top row) “covers” the observations, although the prior distribution for producer
3 appears to be inconsistent with trends in the data. The posterior predictive distribu-
tion computed using the IES (middle row) has reduced spread compared to the prior
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Fig. 7 Data assimilation with the IES and hybrid IES. Watercut versus time for 40 realizations from the
prior and from the posterior for five producers. Blue dots are noisy observations of water cut

Fig. 8 Reduction in squared mismatch with observed (not perturbed) data. The expected value at conver-
gence is 240. Note that different scales are used for the two plots

distribution, but the mismatch with actual observations (blue dots) is much larger than
would be expected for conditional realizations. The hybrid IES (bottom row) generates
a posteriori predictions that are generally consistent with both the observations and
with the measurement error, with the exception that the match with data in producer
3 is poor.

The improvedmatch to the data obtained using the hybrid IES approach is confirmed
quantitatively in Fig. 8. In both subfigures, the spread of squared data mismatch values
is shown as a box which represents the range containing the central 50% of the values.
Note that the reduction in the squared data mismatch is slow for the IES and that
the final mean value (13,000) is much greater than the expected value for a properly
calibrated ensemble (240). The hybrid IES converges much faster and ends at a much
smaller mean value of data mismatch (1,151). Although the final value is larger than
expected, it is largely a result of the poor match to water cut observations in producer
3.
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Fig. 9 The first six realizations of the log-permeability field from the prior (left) and the corresponding
realizations from the posterior (right). Darker greens correspond to larger values of log-permeability

Fig. 10 Modification of distributions of hyperparameters after assimilation of flow data. Blue is prior
distribution. Orange is posterior distribution. Red dashed lines show the values used in the data-generating
model

Figure 9 shows the first six ensemblemembers from the prior and the corresponding
ensemble members from the posterior after data assimilation in the hierarchical model
using the hybrid IES method. Six realizations are not sufficient to illustrate the results
of the data assimilation, but by comparing corresponding realizations, it appears that
the spread in orientation of the anisotropy is reduced and that the principal range is
largelymaintained. The effect of data assimilation on the hyperparameters is illustrated
more quantitatively in Fig. 10 which compares the prior distribution for the three
hyperparameters (blue), with the posterior marginal distributions (orange), and the
values used in the data-generating model (dashed red line). The posterior distribution
of orientations (φ) is narrower than the prior distribution, but the mean is nearly
unchanged from the prior (Fig. 10 (left)). The range parameter (ρ) shows the largest
influence of data assimilation. Short correlation ranges have been eliminated from the
posterior, while the mean of the posterior distribution has been shifted to a value that
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Fig. 11 Sensitivity of observation ofm at (10,4) to values of z at every cell. Note difference in color scales

is larger than both the prior mean and the value that was used in the data-generating
model (Fig. 10 (center)). If the relationship of data to model hyperparameters was
linear, one would expect the posterior mean to lie between the prior and the data-
generating value, which is not what is seen here. The mean value of the ratio of
correlation ranges in the principal directions (α) has shifted to a slightly smaller value
after data assimilation (Fig. 10 (right)), meaning that the mean correlation range in
the second principal direction has increased slightly, but less than the range in the first
principal direction.

4.4 Discussion: Benefit of the Hybrid Approach

In Sect. 4.3, the IES method failed to assimilate data properly in a hierarchical model
for which the anisotropy in the covariance was uncertain. The problem of estimating
the permeability field from flow observations in this case is clearly nonlinear, but
IES often works well for highly nonlinear problems, so that does not appear to be the
primary explanation. In this typeof hierarchical problem, it is relatively straightforward
to see why a standard IES may not converge and why the hybrid IES works very
well. To illustrate the relative performance of the two algorithms, consider a simpler
two-dimensional hierarchical problem in which an ensemble of realizations of m are
updated from partial noisy observations of m. The prior covariance in this example
has uncertain orientation and ranges, just as in the two-dimensional flow problem but
with simpler observation and sensitivity. It is instructive in this case to look at the
ensemble estimate of the sensitivity,∇zm, between observation ofm at a location near
the center of the domain and z for an ensemble with 200 realizations (Fig. 11a) and
compare it to the exact sensitivity for one particular realization (Fig. 11b).

The ensemble estimate of sensitivity (Fig. 11a) suffers from several problems. The
first is that although the ensemble size (200) is larger than typically used for data assim-
ilation, the magnitudes of the spurious correlations are comparable to the estimated
magnitude at the observation location. Also, the magnitude of the ensemble estimate
of the sensitivity at the observation location is almost an order of magnitude smaller
than the correct value. Finally, the region of significant sensitivity in the ensemble
estimate is different from the region in the exact calculation. Increasing ensemble size
would reduce the spurious correlations and improve the magnitude of sensitivity at the
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Fig. 12 Comparison of purely ensemble-based estimates of the cross-covariance of observation at (10,4)
to the values of z (top row) to hybrid estimates of cross-covariance (bottom row)

peak, but the region of sensitivity would not improve because the average orientation
is different from the orientation in realization 0.

The effect of ensemble size on the estimation of the cross-covariance between the
observation of m at (10,4) and values of z at every cell is shown in Fig. 12. Because
the covariance matrix for z is the identity matrix, the cross-covariance should be the
same as the sensitivity matrix if both are computed accurately. It can be seen, in fact,
that the hybrid IES estimate of the cross-covariance for large ensemble size (Fig. 12)
is identical to the exact sensitivity shown in Fig. 11. Importantly, the estimates from
the hybrid IES method with Ne = 100 is much better than the standard IES estimate
with ensemble size Ne = 800. And again, the bias in the cross-covariance from the
ensemble is large, indicating that the global estimate is not representative of the local
value in this highly nonlinear problem.

The reasons for the remarkably good results for the hybrid IES in this example are
twofold. First, Cz = I for the non-centered hierarchical parameterization. The hybrid
IESmethod uses the exactCz , while the traditional IES uses a low-rank approximation
of Cz , which suffers from spurious correlations. Second, the hybrid method uses the
chain rule to compute part of the sensitivity analytically. This eliminates the bias that
appears when the mean hyperparameters do not match the hyperparameters of the
individual realization.

4.4.1 Summary

In an attempt to increase the robustness of data assimilation against model misspec-
ification, a hierarchical Gaussian model was introduced for history matching of flow
data. The non-centered parameterization used here is relatively simple, but allows
uncertainty in several important parameters of the prior covariance that are typically
fixed during history matching. Because we assumed that the prior covariance was
stationary, the total number of uncertain parameters was only slightly larger than the
number of uncertain parameters in standard data assimilation, but the effective number
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of uncertain parameters is much larger, as the grid-based variables are independent
and identically distributed (iid) in the non-centered hierarchical parameterization.

Unfortunately, updating model parameters using a standard ensemble Kalman-like
method was not effect when the number of model cells was relatively large compared
to the size of the ensemble, even though it is common in data assimilation for the
number of model parameters to be much larger than the ensemble size. There appears
to be two reasons for the increased difficulty with the use of data assimilation for the
hierarchical model. The first is that the effect of spurious correlations is much larger
with the non-centered parameterization, and localization based on the range of the
prior covariance was not useful when the grid-based parameters were iid. Secondly,
the addition of hyperparameters makes the problem more nonlinear so that the use
of average sensitivities (or Jacobians) computed from the ensemble do not represent
local sensitivities accurately. Although the problem of spurious correlations could
conceptually be solved by increasing the ensemble size, that does not solve the problem
of incorrect sensitivities.

To solve these problems while retaining the advantages of the iterative ensemble
smoothers (no need to derive the adjoint system and no need to store very large matri-
ces), a hybrid IES was developed in which the “difficult sensitivities” such as the
sensitivities of water production rate to permeability are still computed approximately
using an ensemble of model parameters and the ensemble of model predictions. The
“easy sensitivities” such as the sensitivity of the permeability to the hyperparameters
or to the latent iid variable z are computed analytically. In a two-dimensional problem
with uncertainty in the orientation of the principal axes of the covariance, hybrid esti-
mates of G and CGT were much less noisy than estimates computed directly from the
ensemble. Additionally, the hybrid estimates of sensitivities G and cross-covariances
CGT are specific to a realization and will ill allow convergence to the correct value as
ensemble size increases for linear observation operators. Finally, since each realization
has its own Kalman gain matrix, the methodology is less limited by Gaussian assump-
tions in the standard IES approaches. The hybrid method provides greater robustness
against nonlinearity if some of the nonlinearity is in the relationship between z and
m, as it is for the hierarchical model and also for the truncated plurigaussian model
(Oliver and Chen 2018).

In this paper, the hybrid IES method was tested on a one-dimensional linear prob-
lem and on a two-dimensional-flow problem with hierarchical parameterizations. In
the one-dimensional problem, the hierarchical parameterization provided uncertainty
in the range and variance of the prior covariance. The number of parameters was
small compared to the ensemble size in this case, so all methods performed similarly,
although the standard IES tended to produce correlation ranges that were too short.
In the two-dimensional flow problem, there was uncertainty in the orientation of the
anisotropic covariance and in the correlation range in the two principle directions. The
data assimilation using hybrid IES gave results that were much better than the IES.
In this problem, the number of model parameters was much greater than the number
of ensemble members. The hierarchical model with hybrid IES data assimilation pro-
vided updated models with data mismatch magnitudes that were close to the expected
values in all wells except one.
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The comparison of data assimilation with a hierarchical prior to data assimilation
with a “good” and a “bad” prior showed results with the hierarchical parameterization
were slightly worse than results with the good prior and much better than results with
the bad prior. But the good results for the hierarchical method were only obtained in
conjunction with the use of the hybrid IES method of data assimilation. When the
standard IES was used with the hierarchical parameterization, the mismatch to data
was nearly as large as the prior mismatch.
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Appendix A Gauss–Newton update with circular hyperparameters

In Sect. 3.3, the hybrid IES data assimilation algorithm is described in somewhat gen-
eral terms, assuming that the prior densities for the hyperparameters of the covariance
were Gaussian. Here, additional background is provided for the case of geometric
anisotropy in which the prior for the orientation is Gauss–von Mises. The physical
model parametersm for the two-dimensional flow problem in Sect. 4.2 are determined
from the mean mpr (assumed known), the uncertain covariance function Cm (which
is a function of correlation range ρ, ratio of ranges α, and orientation of anisotropy,
φ), and from the stochastic variable z

m = mpr + L(ρ, α, φ)z.

Here, LLT = Cm , ρ ∈ (0,∞) is the range parameter of the covariance, α ∈ (0,∞)

is the stretch parameter, and φ ∈ [−π/2, π/2) is the orientation of the principal axis
of the covariance.
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Because ρ and α are required to be positive, I have chosen log-normal prior distri-
butions for u1 ≡ ln ρ,

p(u1) ∝ exp

(
−1

2

(u1 − μu1)
2

σ 2
u1

)
,

and for u2 ≡ ln α,

p(u2) ∝ exp

(
−1

2

(u2 − μu2)
2

σ 2
u2

)
.

The prior distribution for the orientation φ cannot be Gaussian as it is defined on the
interval [−π/2, π/2). A Gauss–vonMises (GVM) distribution with parametersμ and
κ is a reasonable choice for the probability density function of a random variable θ on
the circle

g(φ;μ, κ) = 1

π I0(κ)
exp[κ cos 2(φ − μφ)]. (A1)

where I0(κ) is a modified Bessel function of the first kind of order 0 (Jammalamadaka
and Sengupta 2001). Note that the prior for φ is the only prior that is not Gaussian
(although for large values of κ it is approximately Gaussian or amixture of Gaussians).
Finally, the prior for z is

p(z) ∝ exp

(
−1

2
zTz

)
,

and hence the posterior pdf for ρ, α, φ, z can be written as

p(z, u, φ | d) ∝ exp

(
−1

2
(d − g(m(u, φ, z)))TC−1

d (d − g(m(u, φ, z)))

)

× exp

(
−1

2
(u − μu)

TC−1
u (u − μu) − 1

2
zTz

)
exp[κ cos 2(φ − μφ)],

where I have defined u = [u1, u2], and Cu =
[
σ 2
u1 0
0 σ 2

u1

]
. Computation of the

maximuma posteriori point can be found from themaximizer of the negative logarithm
of the posterior pdf,

S(z, u, φ) = 1

2
(d − g(m(u, φ, z)))TC−1

d (d − g(m(u, φ, z)))

+1

2
uTC−1

u u + 1

2
zTz − κ cos 2(φ − μφ).
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For an RML-like approximation to sampling, minimizers of

S∗(z, u, φ) = 1

2
(d − (g(m) + ε∗))TC−1

d (d − (g(m) + ε∗))

+1

2
(u − u∗)TC−1

u (u − u∗)

+1

2
(z − z∗)T(z − z∗) − κ cos 2(φ − φ∗)

are computed, where ε∗ ∼ N [0,Cd ] is a sample of the observation error, u∗ ∼
N [μu,Cu], etc.

An efficient way to find a minimizer is to solve for ∇S = 0, where

∇S = −GTC−1
d (d − (g(m) + ε∗)) +

⎡
⎣ (z − z∗)

C−1
u (u − u∗)

2κ sin 2(φ − φ∗)

⎤
⎦ , (A2)

where G = Dz,u,φg instead of the sensitivity with respect to m, as is more typical.
The Gauss–Newton approximation of the Hessian is

∇(∇S)T ≈ GTC−1
d G +

⎡
⎣Iz 0 0
0 C−1

u 0
0 0 4κ cos 2(φ − φ∗)

⎤
⎦ ,

but

∇(∇S)T ≈ GTC−1
d G +

⎡
⎣Iz 0 0
0 C−1

u 0
0 0 4κ

⎤
⎦

is used for data assimilation, as it is always positive definite.Define the prior covariance
matrix for the model parameters as

Cx =
⎡
⎣Iz 0 0
0 Cu 0
0 0 1/(4κ)

⎤
⎦ .

With this definition of the prior covariance, Eq. A2 can be rewritten as

∇S = GTC−1
d (g(m) + ε∗ − d) + C−1

x

⎡
⎣ (z − z∗)

(u − u∗)
1
2 sin 2(φ − φ∗)

⎤
⎦ .
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After substitution, the �th Levenberg–Marquardt update for x can then be written as

δx�+1 = − 1

(1 + λ�)

⎡
⎣ (z� − z∗)

(u� − u∗)
1
2 sin 2(φ� − φ∗)

⎤
⎦

− CxG
T
�

(
(1 + λ�)Cd + G�CxG

T
�

)−1

×
⎛
⎝g(m�) + ε∗ − d − 1

(1 + λ)
G�

⎡
⎣ (z� − z∗)

(u� − u∗)
1
2 sin 2(φ� − φ∗)

⎤
⎦

⎞
⎠

(A3)

which corresponds to Eq. 7, the only difference being the explicit treatment of uncer-
tainty in orientation as a Gauss–von Mises distribution.

Appendix B Sensitivity of m to parameters: geometric anisotropy

In the hybrid method, derivatives of the square root L of the prior covariance matrix
with respect to the hyperparameters are required. In order to obtain numerical results,
attention is restricted to the case of geometric anisotropy (Chilès and Delfiner 1999,
sec. 2.5.2), in which the anisotropy is defined by rotation and stretching of the coor-
dinate system; assuming that in the new coordinate system, the covariance can be
written as cov(x, x ′) = cov(r), where r is the distance between points x and x ′ after
transformation.

B.0.1 The coordinate transformation for geometric anisotropy

The new coordinates x∗ are defined such that x∗ = Ax where

A =
[
1 0
0 α

] [
cosφ sin φ

− sin φ cosφ

]

=
[

cosφ sin φ

−α sin φ α cosφ

]
.

The distance (for covariance computation) is thus of the form r = √
(x∗)Tx∗ =√

xTHx where

H =
[
cosφ −α sin φ

sin φ α cosφ

] [
cosφ sin φ

−α sin φ α cosφ

]

=
[
cos2 φ + α2 sin2 φ (1 − α2) sin φ cosφ

(1 − α2) sin φ cosφ sin2 φ + α2 cos2 φ

]
.

(B4)

Recall that m = mpr + Lz, where Cx = LLT, and

Mx =
[
L

(
∂

∂u1
L
)
z

(
∂

∂u2
L
)
z

(
∂
∂φ

L
)
z
]
. (B5)
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For the flow problem in Sect. 4.2, it was assumed that the covariance took the form

C(r) = σ 2e−3r2/ρ2
. (B6)

The convolution “square root” in two dimensions is

f (r) = 2σ
√
3

ρ
√

π
exp

(
−6r2

ρ2

)
.

The matrix square root, L , will simply be the discrete version of this functional form,
and effects of boundaries will be ignored.

B.1 Derivative of f wrt φ

∂ f

∂φ
= 2σ

√
3

ρ
√

π

(
− 6

ρ2

)
exp

(
−6r2

ρ2

)∂r2

∂φ

= −4σ
√
27

ρ3
√

π
exp

(
−6r2

ρ2

)(
xT

∂H

∂φ
x
)

= − 6

ρ2

(
xT

∂H

∂φ
x
)
f (r).

From Eq. B4, it is straightforward to show that

∂H

∂φ
= (1 − α2)

[− sin 2φ cos 2φ
cos 2φ sin 2φ

]
.

(Note that ifα = 1, the covariance is isotropic and there is no sensitivity to orientation.)

B.2 Derivative of f wrt α

∂ f

∂α
= 2σ

√
3

ρ
√

π

(
− 6

ρ2

)
exp

(
−6r2

ρ2

)∂r2

∂α

= −4σ
√
27

ρ3
√

π
exp

(
−6r2

ρ2

)(
xT

∂H

∂α
x
)
,

(B7)

where

∂H

∂α
= α

[
1 − cos 2φ − sin 2φ
− sin 2φ 1 + cos 2φ

]
.
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B.3 Derivative of f wrt ρ

∂ f

∂ρ
=

(
12r2

ρ2 − 1

) (
2σ

√
3

ρ2
√

π

)
exp

(
−6r2

ρ2

)
.
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