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Abstract
Minimization of a stochastic cost function is commonly used for approximate sampling in high-dimensional Bayesian
inverse problems with Gaussian prior distributions and multimodal posterior distributions. The density of the samples
generated by minimization is not the desired target density, unless the observation operator is linear, but the distribution
of samples is useful as a proposal density for importance sampling or for Markov chain Monte Carlo methods. In this
paper, we focus on applications to sampling from multimodal posterior distributions in high dimensions. We first show
that sampling from multimodal distributions is improved by computing all critical points instead of only minimizers of
the objective function. For applications to high-dimensional geoscience inverse problems, we demonstrate an efficient
approximate weighting that uses a low-rank Gauss-Newton approximation of the determinant of the Jacobian. The method
is applied to two toy problems with known posterior distributions and a Darcy flow problem with multiple modes in the
posterior.

Keywords Randomized maximum likelihood · Importance sampling · Minimization · Multimodal posterior ·
Bayesian inverse problem

1 Introduction

In several fields, including groundwater management,
groundwater remediation, and petroleum reservoir manage-
ment, there is a need to characterize permeable rock bodies
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whose properties are spatially variable. In most cases, the
reservoirs are deeply buried, the number of parameters
needed to characterize the porous medium is large and the
observations are sparse and indirect [33]. In these applica-
tions, the problem of estimating model parameters is almost
always underdetermined and the desired solution is not
simply a best estimate, but rather a probability density on
model parameters conditioned to the observations and to
the prior knowledge [39]. Because the model dimension in
geoscience applications is always large, the posterior distri-
bution is often represented empirically by samples from the
posterior distribution.

Unfortunately, the posterior probability density for
reservoir properties, conditional to rate and pressure
observations, is typically complex and not easily sampled.
Several authors have shown that the log-posterior for
subsurface flow problems is not convex in some situations
[34, 40, 46] so that Gaussian approximations of the posterior
distribution appear to be dangerous. Markov chain Monte
Carlo methods (MCMC) are often considered to provide
the gold standard for sampling from the posterior. It is
frequently suggested to be the method against which other
methods are compared [23], yet it can be difficult to design
efficient transition kernels [11, 13] and convergence of
MCMC can be difficult to assess [17]. The number of
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likelihood function evaluations required to obtain a modest
number of independent samples may be excessive for highly
nonlinear flow problems [35].

Importance sampling methods can also be considered to
be exact sampling methods as they implement Bayes rule
directly. They are very difficult to apply in high dimensions,
however, as an efficient implementation requires a proposal
density that is a good approximation of the posterior [5,
28]. Various methods have been developed in the data
assimilation community to ensure that particles are located
in regions of high probability density [24]. Although not
introduced as importance sampling approaches, a variety of
methods based on minimization of a stochastic objective
function have been developed, beginning with Kitanidis
[21] and Oliver et al. [36] who introduced minimization
of a stochastic objective function as a way of simulating
samples from an approximation of the posterior when the
prior distribution is Gaussian and the errors in observations
are Gaussian and additive. The distribution of samples based
on minimizers of the objective function was shown to be
correct for Gauss-linear problems, but when the observation
operator g(m) is nonlinear, it was necessary to weight the
samples because the sampling was only approximate in that
case.

The randomized maximum likelihood (RML) method
approach to sampling has been used without weighting in
high dimensional inverse problems with Gaussian priors
[7, 9, 14, 16]. Weights are seldom computed for several
reasons: computation of exact weights is infeasible in large
dimensions because the computation of weights requires
the second derivative of the observation operator, the
proposal density does not always cover the target density,
and sampling without weighting sometimes provides a
good approximation of the posterior even in posterior
distributions with many modes [32]. In practice, the most
popular implementations are the ensemble-Kalman based
forms of the RML method [10, 20, 38, 45] in which a
single average sensitivity is used for minimization so that
weighting of samples is not possible.

Bardsley et al. [3] proposed another minimization-based
sampling methodology, randomize-then optimize (RTO), in
which the need for computation of the second derivative
of the observation operator is avoided for weighting. The
RTO method has then been modified to allow application
in very high dimensions [4], but the method is restricted
to posterior distributions with a single mode. Wang et al.
[44] discussed the relationship between the cost function in
the RML method and the cost function in the RTO method,
and showed that the methods are equivalent for linear
observation operators. Wang et al. also showed that some
approximations to the weights in RML could be computed
in high dimensions and provided a useful comparison of
sampling distributions.

For nonconvex log-posteriors, there could be many
(local) minimizers of the RML and RTO cost functions.
Oliver et al. [36] and Oliver [32] suggested that only the
global minimizer should be used for sampling, although
finding the global minimizer would be difficult to ensure.
To improve the likelihood of converging to the global
minimizer, they suggested using the unconditional sample
from the prior as the starting point for minimization.
In contrast, Wang et al. [44] investigated the effect of
various strategies for choosing the initial guess on sample
distribution and found that a random initial guess worked
well.

Unlike previous methods that compute minimizers only,
we show that exact sampling is possible when all critical
points of a stochastic objective function are computed
and properly weighted. Computing the weights accurately,
however, for all critical points in high dimensions does
not appear to be feasible, but we demonstrate that Gauss-
Newton approximations of the weights provide good
approximations for minimizers of the objective function in
problems with multimodal posteriors. The Gauss-Newton
approximations of weights can be obtained as by-products
of Gauss-Newton minimization of the objective function,
or as low-rank approximations using stochastic sampling
approaches. We also show that valid sampling can be
performed without computing all critical points, but by
instead randomly sampling of the critical points.

We investigated the performance of both exact sampling
and approximate sampling on two small toy problems for
which the sampled distribution can be compared with the
exact posterior probability density. For a problem with two
modes in the posterior pdf, the distribution of samples from
weighted RML using all critical points appears to be correct.
Approximate sampling using Gauss-Newton approximation
of weights and minimizers samples well from both modes,
but under-samples the region between modes. The data
misfit is not a useful approximation of the weights in this
case.

We also applied the approximate sampling method to
the problem of estimating permeability in a 2D porous
medium from 25 measurements of pressure. In this case,
the distribution of weights was relatively large, even when
the log-permeability was distributed as multivariate normal.
High-dimensional state spaces such as considered here have
a severe effect on importance sampling and remedies such
as tempering are suggested to reduce the impact of the
dimensionality on the estimation [6].

2 RML sampling algorithm

Given a prior Gaussian distribution N(m̄, CM) on a set of
model parameters m ∈ R

Nm and observations do ∈ R
Nd
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which are related to the model parameters through a forward
map g : R

Nm → R
Nd for unknown m∗ and unknown

measurement errors ε ∼ N(0, CD), i.e.,

do = g(m∗) + ε, (1)

we wish to generate samples mi , i = 1, . . . , Ne, from the
posterior distribution

πM(m|do) = πMD(m, do)

πD(do)
∝ exp(−L(m)) (2)

with negative log likelihood function

L(m) = 1

2
(m − m̄)T C−1

M (m − m̄)

+1

2

(
g(m) − do)T

C−1
D

(
g(m) − do) . (3)

The normalisation constant πD(do) is unknown, in general.
We will use πM(m) := πM(m|do) in order to simplify
notation. A table of nomenclature is included in the
Appendix.

In this paper, we will show how to use the RML method
in order to produce independent weighted Monte Carlo
samples from the posterior distribution Eq. 2. Posterior
sampling problems of the form Eq. 2 with negative
log likelihood function Eq. 3 arise from many practical
Bayesian inference problems. In practical applications,
where the number of model parameters is typically large, the
computation of exact weights is infeasible. For those cases
we suggest approximations.

2.1 The trial distribution: RML as proposal step

The RML method draws samples (m′
i , δ

′
i ), i = 1, . . . , Ns ,

from the Gaussian distribution

qM ′Δ′(m′, δ′) = 1

(2π)NmNd/2|CM |1/2|CD|1/2

× exp

(
−1

2

(
m′ − m̄

)T
C−1

M

(
m′ − m̄

)

−1

2

(
δ′ − do)T

C−1
D

(
δ′ − do)

)
(4)

for given m̄ and do and then computes critical points of the
cost functional

Li(m) = 1

2

(
m − m′

i

)T
C−1

M

(
m − m′

i

)

+1

2

(
g(m) − δ′

i

)T
C−1

D

(
g(m) − δ′

i

)
. (5)

by solving

∇mLi(m) = 0, (6)

for m. Dropping the subscript i, this leads to a map from
(m, δ) to (m′, δ′) defined by
{

m′ = m + CMGT C−1
D (g(m) − δ)

δ′ = δ
(7)

which we denote compactly as

z′ = Ψ (z), (8)

where z = (m, δ), z′ = (m′, δ′) and the differential of g is
denoted G = Dg(m). The mapping (Eq. 8) is, in general,
not invertible and, hence, a single draw (m′

i , δ
′
i ) from Eq. 4

can lead to multiple critical points (mj , δj ).1 We therefore
introduce the set-valued

Mz′ = Ψ −1(z′)

and denote its elements by zj (z
′) ∈ Mz′ , j = 1, . . . , n(z′),

where n(z′) denotes the cardinality of Mz′ . Each z leads to
a unique z′, hence the sets Mz′ are disjoint. Let us denote
the set of all z′ for which n(z′) > 0 by U and let us assume
for now that U agrees with the support of the distribution
qM ′Δ′ .2

A distribution q(z′) transforms under a map (Eq. 8) into
a distribution p(z) according to

q(z′) =
∑

zi∈Mz′

p(zi)

J (zi)
(9)

with Jacobian J (z) = det(DΨ (z)). We will frequently use
the abbreviation |A| for the determinant det(A) of a matrix
A. An explicit expression for p(z) is obtained via

p(z) = n(z′)−1J (z) q(z′)

for all z ∈ Mz′ , which satisfies Eq. 9. In the original
notation and employing Eq. 7, the transformed distribution
pMΔ is given by

pMΔ(m, δ) := n(m′)−1qM ′Δ′(m′, δ′) J (m, δ)

= n(m′)−1qM ′
(
m + CMGT C−1

D (g(m) − δ)
)

× qΔ′ (δ) J (m, δ) .

Here n(m′) is the total number of critical points of Eq. 5 for
each (m′, δ′) and J (m, δ) denotes the Jacobian determinant
associated with the map (m, δ) → (m′, δ′). In the following,
we assume that J 	= 0 everywhere, i.e., the map is locally
invertible. The Jacobian matrix is provided by
(

I + Db(m, δ) −CMGTC−1
D

0 I

)
(10)

with b(m, δ) = CMGTC−1
D (g(m) − δ).

Hence, given samples, (m′
i , δ

′
i ), from Eq. 4 we can easily

produce samples, (mk, δk), from the distribution pMΔ(m, δ)
and would like to use them as importance samples from

1See Section 3.1 for a sampling problem with a quadratic observation
operator, g, resulting in a non-invertible mapping. In that example,
Eq. 7 is cubic in the variable m. Non-invertible mappings appear to be
common for Darcy flow problems (e.g., Section 3.3.3).
2If there are points z′ for which Mz′ is the empty set, that is, n(z′) = 0,
we adjust the PDF qM ′Δ′ such that qM ′Δ′ (z′) = 0 for Mz′ = ∅.
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the target distribution πM(m) := πM(m|do) as defined by
Eq. 2. Note that the target density πM(m) does not specify
a distribution in δ and we will explore this freedom in
the subsequent discussion in order to define an efficient
importance sampling procedure.

Indeed, we may introduce an extended target distribution
by

πMΔ(m, δ) := πM(m)πΔ(δ|m)

without changing the marginal distribution in m. The
conditional distribution πΔ(δ|m) will be chosen to make the
proposal density similar to the target density, i.e.,

πMΔ(m, δ) ≈ pMΔ(m, δ).

We will find that equality can be achieved for linear forward

maps, g(m) = Gm. In all other cases, samples, (mk, δk)

from pMΔ(m, δ) will receive an importance weight

wk ∝ πMΔ(mk, δk)

pMΔ(mk, δk)
(11)

subject to the constraint
∑Ne

k=1 wk = 1. Note that all
involved distributions need only to be available up to
normalisation constants which do not depend on m or δ.

The subsequent discussion will reveal a natural choice for
πΔ(δ|m) and will lead to an explicit expression for Eq. 11.
Let us therefore go through the analysis to factor

pMΔ(m, δ) = n(m′)−1qM ′Δ′(m′, δ′) J (m, δ)

to determine a candidate πΔ(δ|m). First, we expand the
negative log density − log qM ′Δ′ , ignoring the normalization
constant:

1

2

(
m − m̄ + CMGT C−1

D (g(m) − δ)
)T

C−1
M

(
m − m̄ + CMGT C−1

D (g(m) − δ)
)

+1

2

(
δ − do

)T
C−1

D

(
δ − do

)

= 1

2
(m − m̄)T C−1

M (m − m̄) + 1

2
(g(m) − δ)T C−1

d GCMGT C−1
D (g(m) − δ)

+1

2
(g(m) − δ)T C−1

d G (m − m̄) + 1

2
(m − m̄)T GT C−1

D (g(m) − δ)

+1

2

(
g(m) − do

)T
C−1

D

(
g(m) − do

) + 1

2
(g(m) − δ)T C−1

D (g(m) − δ)

−1

2
(g(m) − δ)T C−1

D

(
g(m) − do

) − 1

2

(
g(m) − do

)T
C−1

D (g(m) − δ) .

To simplify the notation we will use

V := CD + GCMGT (12)

and

η(m) := G(m − m̄) − (g(m) − do). (13)

Then, using the new definitions to simplify notation, we
obtain

pMΔ(m, δ) =
πM(m)︷ ︸︸ ︷

A0 exp

[
−1

2
(m − m̄)T C−1

M (m − m̄) − 1

2

(
g(m) − do

)T
C−1

D

(
g(m) − do

)]

×

πΔ(δ|m)︷ ︸︸ ︷

A1 |V |1/2 exp

[
−1

2

(
δ − g(m) − V −1η(m)

)T

V
(
δ − g(m) − V −1η(m)

)]

×n(m′)−1A2 |V |−1/2 exp
[

1
2η(m)T V −1η(m)

]
J (m, δ),

(14)

where A0, A1, and A2 are all normalisation constants,
independent of m and δ. A0 is determined from the
requirement that

∫
πM(m) dm = 1. Similarly, A1 is

determined from the requirement that
∫

πΔ(δ|m) dδ =
1. Finally, A2 is determined from the requirement that∫

pMΔ(m, δ) dm dδ = 1. The last line of Eq. 14 is exactly

the difference between the proposal density and the target
density, which determines the importance weights Eq. 11.

Note that if the observation operator is linear, then
n(m′) = 1 and all terms on the last line of Eq. 14 are
independent of m so the target and proposal densities are
equal: pMΔ = qMΔ.
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2.2Weighting of RML samples

To weight the RML samples, we compute the weights by

wk ∝ πM(mk) πΔ(δi |mk)

pMΔ(mk, δk)

with πΔ(δ|m) as defined in Eq. 14. So the weight on a
sample is

w ∝ n(m′) |V |1/2 exp

[
−1

2
η(m)T V −1η(m)

]
J−1(m, δ).

(15)

The Jacobian determinant and the gradient of the misfit
term with respect to the parameter are necessary for the
computation of weights. For the low-dimensional space, it
is easy to calculate them. However, the computation of the
Jacobian determinant and the gradient is difficult when the
problems are strongly nonlinear.

In this section, we use the low-rank approximation to
get the Jacobian determinant and det V . Using the Gauss-
Newton approximation for the Jacobian matrix given by
Eq. 10, we have

J (m, δ) ≈ |I + CMGT C−1
D G|

and J becomes independent of δ. Let mMAP and Hmisfit

denote the minimizer point of Eq. 6 and the Hessian
matrix of Li(m) with respect to the misfit term at mMAP,
respectively. Thus the Hessian matrix of Li(m) at mMAP is
given by

Hmap = C−1
M + Hmisfit.

To compute its determinant, we would like to approximate
Hmap with a relatively small number of terms. Thus we solve
the following generalized eigenvalue problem (GEP): find
U ∈ R

Nm×Nm and � = diag(λi) ∈ R
Nm×Nm , which are the

generalized eigenvectors and eigenvalues of the matrix pair
Hmisfit and C−1

M , respectively:

HmisfitU = C−1
M U�,

such that

UT C−1
M U = I and Hmisfit = C−1

M U�UT C−1
M .

For the large-scale flow problem, we consider the
Whittle-Matérn prior covariance operator based on the
inverse of an elliptic differential operator,

Cprior = (−γΔ + αI)−2,

= 1
4πγα

(
r√
γ /α

)
K1

(
r√
γ /α

) (16)

where K1 denotes the modified Bessel function of the
second kind of order 1. Equation 16 provides a sparse
representation of the inverse covariance and a square
root factorization that is useful for computing a low-rank
approximation of the Hessian matrix [8]. From Eq. 16 the
variance is seen to be (4παγ )−1 and the range of the

covariance to be proportional to
√

γ /α. CM is given by the
discretization of Cprior and the inverse of CM can be easily
factored

C−1
M = QQT .

So we have

Hmap = QQT U�UT QQT +QQT = QÛ(�+ I )ÛT QT ,

where Û = QT U is the matrix of orthonormal eigenvectors
for Q−1HmisfitQ

−T. We actually want the determinant

|CMHmap| = |Q−1HmapQ
−T | =

∣
∣
∣Û(� + I )ÛT

∣
∣
∣ =

Nm∏

i=1

(1 + λi).

When the generalized eigenvalues {λi} decay rapidly,
we can use a low-rank approximation of Hmisfit by
retaining only the r largest eigenvalues and corresponding
eigenvectors, i.e.,

Hmisfit ≈ QQT Ur�rU
T
r QQT .

Thus we have

J (m, δ) ≈
r∏

i=1

(1 + λi).

We also need the determinant of V for the computation
of weights in Eq. 15. In Section 3.3, we will use a diagonal
matrix for CD , i.e., CD = σ 2I . Due to Hmisfit ≈ GT C−1

D G,
we have

GT σ−2IG ≈ C−1
M U�UT C−1

M .

Then

CMGT G ≈ σ 2U�UT C−1
M .

The determinant of V

|V | = |σ 2I + GCMGT |
= σ 2(Nd−Nm)|σ 2I + CMGT G|
≈ σ 2(Nd−Nm)|σ 2I + σ 2U�UT C−1

M |
= σ 2Nd |I + QT U�UT Q|

= σ 2Nd |I + Û�ÛT | ≈ σ 2Nd

r∏

i=1

(1 + λi).

Thus the determinant of V can be also replaced by a low-
rank approximation. σ 2Nd is not necessary in |V | because it
appears in all weights and can be factored out. Then Eq. 15
can be approximated by

w ∝ n(m′) exp

[
−1

2
η(m)T V −1η(m)

] r∏

i=1

(1 + λi)
−1/2.

In the approach described above, the computation of
G for the weights is necessary. To obtain G for the flow
problem in Section 3.3, we solve an adjoint system [42].
In Section 3.1, we investigate the effect of a Gauss-Newton
approximation for the weights for cases in which all the
critical points and only minimizers of Eq. 6 are obtained,
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respectively. As the Gauss-Newton approximation of the
weights is shown to be poor for maximizers of the objective
function, we only consider the minimizers in the Darcy flow
example (Section 3.3).

2.3Weighted RML sampling algorithm

In this section, we consider two possible situations when
seeking independent samples from Eq. 2 for a log-posterior
of the form Eq. 3. In both cases, we allow for the possibility
that the stochastic cost function Eq. 5 is nonconvex. Note
that in this case the number of critical points may be greater
than 1. In the first algorithm, we assume that all critical
points can be identified, while in the second case, we
suppose that it is only possible to identify a single critical
point, but that the total number of critical points is unknown.

2.3.1 All critical points found

For problems in low dimensions, with polynomial obser-
vation operators g, or convex cost functions, it may be
feasible to find all critical points for each pair (m′, δ′). If
the ith sample of (m′, δ′), generates a cost function Li(m)

with nci
critical points, it is possible to sample correctly by

weighting each critical point using Eq. 15.

Algorithm 1 Weighted RML – computing all the critical
points.

i = 1, k=1
while k≤Ne

generate samples m′
i and δ′

i from qM ′Δ′(m′, δ′)
for j = 1 to nci

solve Eq. 6 for m(j) and
set δ(j) = δ′

i

compute w(j) using Eq. 15
assign mk = m(j) and w′

k = w(j)

k = k + 1

i = i + 1

assign wk = w′
k/

∑
k w′

k

Note that when the forward operator g is linear, i.e.,
g(m) = Gm, the stochastic cost function is convex for each
pair (m′, δ′). The log-posterior has a single critical point,
which is the minimizer. Thus, for linear forward operators,
we just need to compute the minimizers and the weights are
all equal by using Eq. 15.

2.3.2 One critical point found

Finding all the critical points is not feasible when the prob-
lem dimension and the complexity increases. In these cases,

it is unlikely that even the number of critical points will be
known. Instead of seeking to compute all critical points, we
compute a single critical point using a random starting point
for the optimization. We assume, without evidence, that
the optimization performed this way uniformly samples the
critical points, in which case the resulting

∑nc

j=1 m(j)w(j)

provides an unbiased estimator in the same manner as it is
obtained from computing all critical points.

Algorithm 2 Weighted RML – sample one critical point.
for i = 1 to Ne

generate samples m′
i and δ′

i from qM ′Δ′(m′, δ′)
randomly generate minit (initial guess)
solve Eq. 6 for mi and set δi = δ′

i

compute w′
i using Eq. 15 with n(m′) = 1

assign wi = w′
i/

∑
i w′

i

2.3.3 Local minimizers only

Due to the high dimension of most realistic applications,
solutions of Eq. 6 are much more difficult to obtain than
local minimizers of L, although local maximizers can
clearly be easily found as minimizers of −Li . In general,
however, it appears that in high dimensions, minimizers of
Li are far more important than maximizers. When that is
the case, a Gauss-Newton approximation of the Jacobian
determinant can be made with little loss of accuracy

J = |I + D(CMGT C−1
D (g(m) − δ))|

≈ |I + CMGT C−1
D G| .

Thus, in the Darcy flow problem, we will solve for
random minimizers instead of solving for random critical
points and we will compute a Gauss-Newton approximation
of the Jacobian determinant. The consequence of this
approximation is that the distribution of samples will not
be exact. In Section 3.1, we investigate numerically the
consequence of sampling only the minimizers.

To obtain the weights, the computation of the Jacobian
determinant and the gradient of the misfits with respect to
the parameter are necessary. For the first two examples,
it is easy to compute the weights. For the large-scale
flow problem, we use the Gaussian-Newton method in
the hIPPYlib [42] to get a low-rank approximation of the
Jacobian determinant. This can reduce the cost.

3 Numerical examples

In this section, we present sampling results using test cases
of increasing size and complexity. We first demonstrate the
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methodology using a toy problem that has been previously
used by [44]. It is small enough that the true posterior
distribution is easily derived. We focus on the parameter
values that are difficult to sample correctly. This example
shows the difficulty with using only the minimizers and not
accounting for the limited range in the solutions.

A second simple example is the “banana-shaped”
distribution from [18]. It has been used fairly often to test
adaptive forms of MCMC [12, 19, 30, 37, 43]. It is simple
enough that computing the Jacobian determinant is not a
challenge so the focus again is on showing that if we find
the roots and compute the weights, the sampling is correct.

3.1 Bimodal posterior pdf

The first example has been previously discussed in [44]
where it was used to demonstrate properties of the
randomized maximum a posteriori sampling algorithm.
One of their test problems required sampling from the
distribution

πM(m) ∝ exp

(

−1

2
(m − 0.8)2 − 1

2σ 2
d

(m2 − 1)2

)

.

Although [44] used three different values of σd , we only
show results for the most difficult value, σd = 0.5. For
larger and smaller values, the posteriori distribution is more
easily modeled as a mixture of Gaussians and is therefore
easier to sample.

In our approach, approximate samples from the posteriori
distribution are obtained by solving for the critical points of

Li(m) = 1

2
(m − m′

i )
2 + 1

2σ 2
d

(m2 − δ′
i )

2 (17)

m′
i ∼ N(0.8, 1) δ′

i ∼ N(1, 0.25).

Because the objective function in this case is a polynomial,
it is straightforward to obtain all real roots of Eq. 6. For
most choices of (m′, δ′) there are three real roots – Ns =
10, 000 samples of (m′, δ′) from the prior generated Ne =
25, 046 pairs of (m, δ). The locations of the roots are shown
in Fig. 1a. The set of points in the center of the plot
correspond to maximizers of Eq. 17. The points on the
right side correspond to the global minimum, and the points
on the left correspond to the local minimum. The colors
show unnormalized importance weights for each sample.
The maximizers are generally given small weights (Fig. 1b),
although a small number of maximizers have weights that
are similar to the weights of points near the local minimum.

Because the samples are generated independently (or
in groups of three), the quality of the weighted sampling
approximation to the target distribution is limited only by
sampling error – larger samples provide better approxima-
tions. Figure 2 shows results for three different sample sizes
Ns (200, 1000, 5000). The number of weighted samples is

larger than the ensemble size because a single sample from
the prior usually results in three critical points.

For this problem, computing all real roots of (6) and
computing importance weights for each root is trivial. For
large high-dimensional problems, finding multiple roots
and computing the weights will be challenging. Here we
examine the consequence of three realistic approximations
to correct sampling: (1) identifying only the minimizers
of the cost function, (2) using a Gauss-Newton (GN)
approximation of the Jacobian of the transformation and
(3) neglecting importance weights altogether. Figure 3c
shows that correct sampling of the target distribution is
obtained when all critical points are included and the
weights are computed accurately. If the importance samples
are neglected (Fig. 3a) or if the GN approximation of the
Jacobian is used (Fig. 3b), the distribution of samples is
badly distorted. When it is not possible to compute the
Jacobian accurately in high dimensions, it appears to be
advisable to only compute the minimizers. The distribution
of samples obtained using the GN approximation applied
to minimizers (Fig. 3e) is nearly as good as the results
with correct weights, and far better than results with no
importance weighting.

3.2 Banana-shaped posterior pdf

The second numerical example is the widely used “banana-
shaped” target density initially presented in [18], but
extended to higher dimensions by [37],

πM(m) ∝ exp

[
− 1

2σ 2
m

(
m2

1 + m2
2 + · · · + m2

Nm

)]

× exp

[

− 1

2σ 2
d

(4 − 10m1 − m2
2)

2

]

(18)

with σd = 4 and σm = 5. In our numerical experiment,
we use parameters values from [30], but increased the
dimension of m to 4. The first term of Eq. 18 is identified as
the Gaussian prior with model covariance CM = I and the
second term as the log-likelihood, with

g(m) = 10m1 + m2
2.

Because of the curved shape of the objective function
(Fig. 5b), accurate computation of minimizers of Li was
relatively difficult. Three projections of the first 3000
approximate samples obtained using the Broyden-Fletcher-
Goldfarb-Shanno algorithm for minimization are shown in
Fig. 4. Each minimization was initiated at the point m′

i .
For this problem, which has a single critical point, the

empirical distribution obtained from minimization appears
to be relatively good. The true conditional distribution
distribution π(m1, m2|m3 = 0, m4 = 0) is compared in
Fig. 5b, with a kernel estimate of the empirical marginal
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(a) Solutions of 0. Color indicates im-

portance weight.

(b) Distribution of weights from critical points.

Fig. 1 Critical points and importance weights for the quadratic observation operator

Fig. 2 Weighted sampling approximations to the true posterior distribution
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Fig. 3 Compare distributions from approximations to sampling based on computation of critical points of cost function
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(a) m 1 -m 2 plane. (b) m 1 -m 3 plane. (c) m 1 - plane.

Fig. 4 Critical points of the banana-shaped objective function. Color indicates importance weight on the samples. The same color scale is applied
to all subplots

distribution for m1, m2 (dashed contours) obtained using
50,000 minimizations. Also, based on the distribution of
unnormalized importance weights (Fig. 5a), it appears that
the weights are not dominated by a few large values,
which is confirmed by a high effective sampling efficiency,
Neff/Ne = 44796/50000 ≈ 0.9, based on Kong’s estimator
Eq. 19,

NEff = 1
∑Ne

k=1 w2
k

, (19)

where
∑Ne

k=1 wk = 1

3.3 Darcy flow example

For the first two examples, there would be no advantage in
using RML for sampling – MCMC with a carefully chosen
transition kernel would probably be a better alternative in
either case. The advantage for RML occurs in large high-
dimensional problems for which traditional methods are
impractical. In this section, we investigate the ability to

(a) Distribution of importance weights for the minimizers of

the log posterior.
(b) Compare true distribution with esti-

mation from weighted minimizers ( m 1 -

m 2 plane).

Fig. 5 Minimizers of the banana-shaped objective function
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quantify uncertainty in the permeability field κ(x) from
spatially distributed observation of steady-state pressure.
The pressure u(x) in this example is governed by the
equation

−∇ · (κ(x)∇u(x)) = 0 in � = [0, 1] × [0, 1]

with the mixed boundary conditions

⎧
⎪⎨

⎪⎩

∇u · n = 0 on ΓN1 = 0 × [0, 1] ∪ 1 × [0, 1]
∇u · n = v(x) on ΓN2 = [0, 1] × 1

u(x) = 0 on ΓD = [0, 1] × 0.

As permeability is a positive quantity, it cannot be modelled
as a Gaussian random variable. Here, we evaluate sampling
with three possible prior distributions for permeability. In all
cases, we define a latent variable m(x) that is multivariate
Gaussian, with a prior given by Eq. 16. We take α =

0.12 and γ = 1.12 which results in a correlation length
of approximately 2 and a variance of 1. In the first case
(Case 1), permeability is modeled as being log-normally
distributed, i.e., κ(x) = exp

(
m(x)

)
, which is a typical

assumption for the distribution of permeability within a
single rock type [15]. In more complex formations, it
is often useful to model permeability as being largely
determined by rock type. In that case, permeability might
be largely uniform within a rock type, but variable
between rock types. We created two soft thresholding
transformations to model the distribution of permeability
in a formation with three rock types. In the the first of
the distributions (Case 2), the permeability is related to the
latent variable through a highly nonlinear, but monotonic
transformation

κ(x) = exp
(

tanh
(
4m(x) + 2

) + tanh
(
4m(x) − 2

))
. (20)

1esaC)b(snoitamrofsnarteerhT)a(
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Fig. 6 The true log-permeability fields for Cases 1, 2 and 3. All cases use the same true latent variable field
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Fig. 7 The true state (left) and observation locations (right)

In the second distribution (Case 2), the permeability is
related to the latent variable through a non-monotonic
transformation

κ(x) = exp
(

2 tanh
(
4m(x) + 2

) + tanh
(
2 − 4m(x)

) − 1
)
,

(21)

which gives a permeability field with a low permeability
‘background’ and connected high perm ‘channels’ as
might occur in subsurface rock formations [2]. Figure 6
shows the transformations and the three synthetic true log-
permeability fields that are used to generate observations for
Case 1 (top right), Case 2 (lower left) and Case 3 (lower
right).

Figure 7 (left) shows the true pressure field for Case 1.
The pressure distributions for Cases 2 and 3 look similar.
For each case, we take 25 pressures as observations. The
observation locations are distributed on the uniform 5 × 5

grid of the domain [0.1, 0.9] × [0.1, 0.9] as shown in Fig. 7
(right). The noise in the observations is assumed to be
Gaussian and independent with standard deviation 0.01.
For the mixed boundary condition, we take v(x) = 2 for
Case 1 and 0.7 for Case 2. Here the piecewise quadratic
finite element is used for the state and adjoint spaces, while
piecewise linear finite element is used for the parameter
space. The forward model is solved by the finite element
method with a uniform 50 × 50 grid for the three cases.
Thus the dimension of the discrete state and adjoint space
is 10201 and the dimension of the parameter space is
2601.

We used the hIPPYlib environment [41, 42] for
computation of low-rank approximations of eigenvalues
of the Hessian. hIPPYlib builds on FEniCS [22, 27] for
the discretization of the PDE and uses PETSc [1, 47] for
scalable and efficient linear algebra operations and solvers.
Minimizers of the objective functions are computed using

Fig. 8 The weights vs misfits for the minimizers. Blue points show computed weights
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an inexact Newton-CG solver. We used default parameters
for minimization, except that we increased the maximum
number of iterations to 300. The actual average number of
iterations required for convergence varied considerably for
the three cases. In Case 1, an average of 24 iterations were
required, Case 2 required 34 iterations and Case 3 required
an average of 73 iterations.

For the Darcy flow examples, the low-rank approxima-
tion of the Jacobian determinant J was used to reduce the
cost of computation of weights. The low-rank approxima-
tion adopts the Gauss-Newton method in the hIPPYlib [42].
To illustrate the performance of the proposed method, we
compare the results obtained by using the stochastic New-
ton method [29] implemented in hIPPYlib with that of
unweighted RML and weighted RML. Here the stochastic
Newton samples are generated from the Gaussian approxi-
mation of the posterior. The observation data, prior covari-
ance operator and sample size Ne are the same for the RML
and stochastic Newton methods. For convenience, we write
the stochastic Newton as SN, unweighted RML as RML and
weighted RML as WeRML in the figures of the three cases.

3.3.1 Case 1: permeability field is log-normal

As the permeability transformation, κ = exp m, is
monotonic in this example, we might expect the stochastic
cost function Li to have a single critical point for each
sample from the prior. We confirmed this empirically
through an investigation in which we generated a single
sample from the prior, but 50 randomly sampled starting
points for the minimization. In the experiments, all 50 initial
starting models converged to the same model parameters. In
the results that we present, RML sampling was performed
with 1000 samples from the prior and a single random
starting point for each minimization. We dropped 15 out of
1000 samples for which the minimization routine failed to
converge to a sufficiently small value of the gradient norm
in 300 iterations.

The effective sample size computed from Eq. 19, was
relatively high for this case: Neff ≈ 823 effective samples.
The effective sample efficiency, Neff/Ne = 823/985 =
0.836. Unlike the toy examples, computing the minimizers
and the Jacobian determinant is necessarily approximate in
the Darcy flow problem. The expected value for the squared
data misfit (with respect to the actual observed values of
pressure) is ndσ 2

d = 0.0025, which is somewhat smaller
than the mean of the actual squared misfits, 0.0032.

Figure 8a shows crossplots of the weights vs squared data
misfit computed using V as in Eq. 12. The approximation of
log-weights is only slightly correlated with the squared data
misfit (r = −0.09) so it appears that in this case, as in the
quadratic example, the data mismatch would not serve as
a viable surrogate for weighting of samples. In addition to

data mismatch, the weights are affected by the nonlinearity
of the problem – either through |V | or through the term
(g(m) − Gm), which occurs in η.

In Fig. 9, we plot the distribution of sample values of
the latent variable at three locations for which the true field
has values m = 1.7, 0.04 and −1.17. For this example, the
marginal distributions of samples at observation locations
from unweighted RML, SN and weighted RML are all
similar and approximately Gaussian.

Estimates of the posterior mean of the log-perm field
from three different sampling approaches are shown in
Fig. 10. As the permeability field is a monotonic function of
the latent variable for this case, the estimated conditional
means of the log-perm fields are similar for the three methods.

Despite the similarity of the mean fields and the
similarity of the estimates of the posteriori standard
deviation from the three methods, the realizations from
the three methods are not as similar in their ability to
reproduce data (Fig. 11). The mean squared data misfit
for weighted RML is 0.0032, while the mean squared data
misfit for stochastic Newton is 0.0048. This is similar to the
observation of Liu and Oliver [25] who showed that the data
mismatch of realizations generated from the posteriori mean
and covariance in a 1D Darcy flow problem were much
larger than data mismatch from MCMC or from RML.

3.3.2 Case 2: log-permeability is monotonic function
of latent variable

Although it is common to assume that permeability is log-
normally distributed within a single rock type, in many
subsurface formations the distribution of permeability is
largely controlled by ‘rock type’. In Case 2 we model the
spatial distribution of rock types by applying a soft threshold
to a latent Gaussian random field. With this transformation,
values of m < 1 are assigned log κ ≈ −2 and values values
of m > 1 are assigned log κ ≈ 2. One practical consequence
of this transformation is that minimization of the objective
function is more difficult. The second, more important
consequence is that the nonlinearity in the neighborhood
of the minimizers increases the variability in weights. So
while in Case 1, approximately 90% of the weights were
between 0.0006 and 0.0015, in Case 2 approximately 90%
of the weights fell between 10−4 and 9×10−3 (Fig. 8b). The
effective sample size for the 930 samples that converged
successfully is also smaller in this case; Neff = 179 for an
efficiency of about 19.2%.

As the posterior distribution is not even approximately
Gaussian, the mean and variance may not be the best
attributes for judging the quality of the data assimilation.
It is common in inverse problems to judge the quality of
the realizations by the data misfit after calibration. The
expected value of the mean squared data mismatch with
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observations is 0.0025. The value computed from weighted
RML (0.0029) is quite close to that value. In contrast, the
value from SN realizations (0.0087) is about 3.5 times
larger than expected and the value from unweighted RML
(0.0033) is slightly larger than weighted RML. The distri-
butions of squared data misfits for the three methods are
shown in Fig. 12a.

3.3.3 Case 3: log-permeability is non-monotonic function of
latent variable

Applying the transformation Eq. 21, we obtain a perme-
ability field with a low permeability ‘background’ and
connected high perm ‘channels’. The ‘true’ latent variable
field and the corresponding true log-permeability field are

Fig. 9 Density histograms of samples of the latent variable at locations (0.1,0.5), (0.5,0.1) and (0.9,0.9) using SN (upper row), unweighted RML
(middle row) and weighted RML (lower row)
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shown in Fig. 6. The true pressure field, from which data are
generated, and observation locations are plotted in Fig. 13.

In this example, the transformation from the Gaussian
latent variable to the permeability variable is highly
nonlinear and non-monotonic, so we should expect to
encounter two problems: convergence to the minimizer will
be slow [26] and the algorithm is likely to converge to a
local minimum that does not have large probability mass
associated with it.

We focus on the distribution of samples that are obtained
using a practice that could feasibly be applied to large-
scale subsurface data assimilation problems if a gradient is
available – search for a single minimizer for each sample
from the prior and use the Gauss-Newton approximation
of the Jacobian to compute the weights. Here we have
taken 1000 samples from the prior and performed 1000
corresponding minimizations, from which we obtained
Ne = 885 samples with successful termination and
weights. Using Eq. 19, we compute the effective sample

size NEff ≈ 14. Because of the dimensionality of the
problem, it is not possible to completely characterize the
posterior distribution for either the latent variables, or for
the log-permeability. In order to gain some understanding,
we examine the marginal distribution of the minimizers
at three observation locations for which the true log-
permeability values are approximately, -2, 0 and 2. The
marginal distribution of unweighted minimizers (upper row
Fig. 14) is bimodal at two of the observation locations. The
lower row of Fig. 14 (lower row) shows the corresponding
distribution of unweighted log-permeability values at the
same locations. Although the spread of m is fairly large
at each of the observation locations, the spread of the
log-permeability values are tightly centered on −2, 0 and
2 in Fig. 14 (lower row). This is a consequence of the
thresholding property of the log-permeability transform.

The colors used for the density histograms in Fig. 14
separate the samples into two groups: one in which w >

10−9 and the second for which w < 10−9. Note that

Fig. 10 The true log-permeability field for Case 1 (upper left) and the posterior mean log-permeability fields from three approximate sampling
methods: stochastic Newton (upper right), RML without weighting (lower left) and RML with GN approximate weighting (lower right)
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Fig. 11 Distributions of squared data misfit from samples generated
using SN and using weighted RML

in Fig. 14 (lower right), a substantial fraction of samples
converged to a local minimizer with log κ ≈ 0 at x, y =
(0.9, 0.9), which is far from the true value, log κ true ≈
−2. Many of the clearly erroneous minimizers are easily
eliminated, however, by the low weights. Note that the
inefficiency of the sampling in this case is a result of the
non-monotonic nature of the permeability transform – to get
from log κ = 0, which is a local minimizer, to the correct
root log κ = −2 it is necessary to pass through the point
log κ = 2. In the histograms, the samples with high weights
(blue bars) are generally close to the true values (red dashed
line), which is as we expected.

As in the previous case, the expected value of the
squared data misfit with the actual observation is approx-
imately 0.0025 at the global minimizer of the stochastic
cost function. This is close to the values that are obtained
in the best minimizations (Fig. 15 (right)). In this example,

however, many of the minimizations converged to mini-
mizers with much larger misfit values (Fig. 15 (left)). The
minimizations with large misfit values result from conver-
gence to local minima in the cost function. The number
of local minima with large numbers of samples appears to
be relatively small as a result of the large correlation range
for the latent permeability variable. For this example, it
appears that many of the unwanted local minimizers could
be eliminated either through the weighting, or through the
magnitude of the squared data misfit.

Figure 16 compares distributions of the values of the
log-permeability field obtained by the SN and the weighted
RML methods at three pressure observation locations.
For consistency, the same sample size was used for both
methods. The true values of the log-permeability field at
the observation locations are close to −2, 0 and 2 (shown
as small red dots). When using the weighted RML samples
to approximate the distribution, the samples are seen to be
concentrated close to the true values at the three observation
locations (Fig. 16 (lower)). Because of the highly nonlinear
transformation of the permeability field, the SN method
was unable to provide a good approximation to the true
posterior distribution, although it did provide plausible
estimates of uncertainty in log κ at two of the locations. At
the third location (upper left in Fig. 16) the uncertainty in
log-permeability was completely misrepresented.

Although the marginal distribution of the log-
permeability field is multimodal at some locations before
and after data assimilation, the mean of log-permeability
is useful for qualitatively gauging the quality of the data
assimilation. In Fig. 17, we compare the MAP point of
SN, and the unweighted and weighted posterior means
of RML with the true log-permeability field. All three
methods provide reasonable characterization of the mean
log-permeability in the upper right area of the grid, but only

(a) Case 2 (monotonic log-permeability) (b) Case 3 (non-monotonic log-permeability)

Fig. 12 Compare distributions of squared data misfit for three sampling methods: RML, weighted RML (WeRML), and stochastic Newton (SN)
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Fig. 13 The true state (left) and observation locations (right)

Fig. 14 Density histograms of values of the minimizers of the objective functions at three observation locations (upper row) and corresponding
values of the log-perm field (lower row). Colors separate minimizers into two groups by weight
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Fig. 15 The weights vs misfits for the minimizers of the stochastic cost function

the weighted RML method adequately characterizes log-
permeability on the left side. It appears that it would be risky
to use results from RML without weighting in this case.

As the posterior distribution is multi-modal, the mean
and variance may not be the best attributes for judging the
quality of the data assimilation. Two qualitative criteria are

Fig. 16 The histograms of values of the log-perm field at three observation locations by using the SN (upper row) and weighted RML (lower row)
methods

233Comput Geosci (2022) 26:217–239



often used in practice. First, it is common to judge the
quality of the realizations by the data misfit after calibration.
The expected value of the mean squared data mismatch with
observations is 0.0025. The value computed from weighted
RML is quite close to that value, 0.0029. In contrast, the
value from SN realizations is about 10 times larger than
expected (0.0264) and the value from unweighted RML
is larger still (0.0486). The distributions of squared data
misfits for the three methods are shown in Fig. 12a. Second,
the samples themselves can be examined qualitatively for
‘plausibility’ – do they look like samples from the prior?
Fig. 18 shows RML samples with largest weights (bottom
row) and the corresponding posterior samples for SN (top
row). In this case, the weighted and unweighted RML
samples look plausible, but the samples from SN do not.

3.4 Discussion of porous flow results

The porous flow examples were chosen to be large enough
that a naı̈ve approach to particle filtering in which particles

are sampled from the prior and then weighted by the
likelihood would suffer from the curse of dimensionality
and all the weight would fall to a single particle. The
dimension of the model space (2601 discrete parameters)
was also large enough that computation of the Jacobian
of the transformation from the prior distribution to the
distribution of critical points would be challenging.

Exact sampling of the posterior distribution using this
methodology requires either computation of all critical
points of the objective function, or random sampling of all
critical points. In the porous media flow examples, however,
we were unable to locate any maximizers for the objective
function even for Case 3 in which the objective function
had many local minima. As a consequence, it appears that
searching only for minimizers is a robust approximation in
high dimensions. Because we searched only for minimizers,
it also appears that the Gauss-Newton approximation of
the Jacobian gave useful approximations. The terms that
must be computed are then very similar to terms that
are computed in Gauss-Newton minimization of the cost

Fig. 17 The true log-permeability field for Case 3 (upper left) and the posterior mean log-permeability fields from three approximate sampling
methods: stochastic Newton (upper right), RML without weighting (lower left) and RML with GN approximate weighting (lower right)
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Fig. 18 Three posterior log-permeability samples from the stochastic Newton method (top row) and the three weighted RML samples with largest
weights (bottom row). Samples can be compared with the true log-permeability distribution in Fig. 17

function. It was possible to compute an inexpensive estimate
of the determinant of the Gauss-Newton approximation
of the Jacobian using eigenvalues of the Hessian at the
minimizers. Because the dimensions of the data space
was relatively small, it was also possible to estimate the
determinant of the Jacobian using the adjoint system. For
Case 1, the estimates from the two approaches were similar,
but the differences increased as the nonlinearity increased.
To evaluate the quality of the sampling from the various
methods, we used weights computed using the adjoint
system. The weights were more variable when low rank
approximations were used. In that case, it was useful to
account for the model error by inflating the value of Cd used
for computing weights.

The degree of nonlinearity in the transformation from
parameter to log-permeability had a strong effect on
the effective efficiency of the minimization approach for
sampling. The least nonlinear example (Case 1) had an
effective sample efficiency of 84% while the most nonlinear
example (Case 3) had an effective sample efficiency of
1.6%. It appears that the low efficiency in Case 3 was
largely a result of the prevalence of many local minima in
the objective function, many of which were characterized by
large data mismatch and very small weights.

When the posterior distribution had a single mode as
in Case 1, the distribution of residual errors in the data
mismatch was quite small and the correlation between

weight and data mismatch was correspondingly small (r =
−0.086). In that case, the data mismatch would not have
provided a useful proxy for weighting. In Case 2, the
nonlinearity was greater but it appears that the posterior
distribution was still uni-modal. The weights did correlate
with data mismatch in that case (r = −0.485) but it
appears that the skewness of the distribution may have
been the largest reason for the decrease in effective sample
efficiency. Finally, in Case 3, the transformation from the
model parameter to log-permeability was non-monotonic
and the posterior distribution was characterized by a large
number of local minima. Here, the correlation between
importance weight and data mismatch was almost perfect
(r = −0.999) and the data mismatch could serve as a useful
tool for eliminating samples with small weights.

Although we did not compare the distribution of samples
from weighted RML with methods such as MCMC, we did
compare with the stochastic Newton method because it is a
practical and scalable method for approximate sampling in
high dimensions. For Case 1, which appears to be unimodal,
the mean log-permeability fields from SN and RML (both
weighted and unweighted) were visually similar. For Case
3, the mean permeability fields from SN and weighted RML
are less similar, the data mismatches from SN are substan-
tially larger, and the samples are visually less plausible.

The documented cost of the three considered methods
are substantially different. The computational complexity
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of the stochastic Newton method stems from a single min-
imization to compute the MAP and the cost to generate
samples from a low-rank Gaussian approximation of the
posterior. While the sampling step contributes to the cost
of the stochastic Newton, it is dominated by minimization
of the objective function. For the Darcy flow example, the
cost to generate 1000 approximate samples varied from
13 seconds for the log-normal case to 56 seconds for the
non-monotonic case.3 Note that this increase is a result of
the varying number of iterations required for the minimizer
to converge for the different settings. In case of the RML
method, the cost to generate Ne realizations is dominated
by the cost to perform Ne minimizations with different cost
functions. Henceforth the computational complexity for
RML can be expected to be approximately Ne times greater
than the cost for stochastic Newton method. Indeed, in our
examples, the run time required to generate 1000 samples
from RML was approximately 1000 times greater, varying
from 13000 seconds for the log-normal case to 47000 sec-
onds for the non-monotonic case. For weighted RML, there
is an additional cost incurred in the computation of the
weights. Although several of the terms in the weights can be
obtained at low cost through the same low-rank approxima-
tions that were used for the Hessian, we chose tosolve the
adjoint system Nd times to compute the Jacobian of the data
for computation of V −1. The additional cost for computing
the weighting is thus dominated by the cost of running
the simulator an additional Nd times for each realization.
Because the adjoint system was solved to compute weights,
the cost of computing weights varied from 24000 seconds to
35000 seconds for 1000 samples, which was similar to the
cost of the minimization. All computational costs, including
the cost of minimization, could be reduced through careful
modification of the algorithms. In particular, the efficiency
of the weighted RML could be improved by tempering the
objective function at early iterations to avoid convergence to
local minima with small weights. Also, the cost of compu-
tation of the weights could be reduced by using a low-rank
approximation of V as in the ensemble Kalman filter.

4 Summary

We have presented a method for sampling from the
posterior distribution for inverse problems in which the
prior distribution of model variables and measurements
errors are Gaussian. Although the method is highly efficient
when the posterior distribution is also approximately
Gaussian, the target application is to problems in which the

3Timing should be considered illustrative, but for reference all results
were obtained on a computer with a i7-5500U@2.40GHz×4 processor
with 7.5 GiB memory and a 64-bit operating system.

posterior distribution is multimodal – situations in which
Gaussian approximations of the posterior distribution are
inappropriate. Because of the requirement that the prior
distribution be Gaussian, this method then is probably
more appropriate for parameter estimation problems than
for state estimation problems in which the prior may be
multimodal as a result of nonlinear dynamics [31]. The
method is similar to the method of randomized maximum
likelihood or randomized maximum a posteriori in that
samples are generated from the prior distribution and then
moved to regions of high probability. Instead of solving
only for minimizers of a stochastic cost function, however,
the method samples correctly when all critical points are
sampled and weighted, or when the critical points are
randomly sampled and weighted. This procedure sampled
correctly in small multimodal and skewed toy problems
for which it was possible to compute all critical points. In
those cases, it was also possible to obtain good approximate
sampling using only minimizers of the cost function and a
relatively inexpensive Gauss-Newton approximation of the
particle weights.

The toy problems showed that the weights on maximizers
are generally small and cannot be computed accurately
using the Gauss-Newton approximation. Consequently
a practical approach for larger inverse problems is to
compute only the minimizers of the cost function and use
approximate weights. We showed that the weights can be
computed from low-rank approximations of the Hessian
evaluated at the minimizers. This approach was applied to
three porous media flow examples. In the first example
the posterior pdf appears to be unimodal. In that case,
the spread in the weights was small and the effective
sample efficiency was 84%. The distribution was not visibly
different from samples obtained using a less expensive low
rank approximation of the Hessian, but the quality of the
match to the data was significantly better.

The flow example with a non-monotonic transformation
to log-permeability was much more difficult. In this case,
the cost function was characterized by a large number of
local minimizers with small probability mass. Many of the
local minimizers could be easily rejected on the basis of
either low weights or unexpectedly large mismatch with
observations. Because of the difficulty of converging to
minimizers with large weights, the variance of the weights
was large and the effective sampling efficiency in this case
was low, approximately 1.6%. We emphasize, however, that
this example was chosen to be extremely nonlinear to test
the ability to sample the multimodal posterior distribution
for a moderately large model with thousands of parameters.
The weighted mean of the samples from RML in this case,
provided a good approximation to the true permeability
distribution and the weighted data mismatches were close to
the expected value.
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Appendix

Table 1 Notation used throughout the manuscript

List of notations

Nm number of model parameters N(·, ·) Gaussian distribution

Nd dimension of observational space CM covariance matrix of Gaussian prior

Ne number of samples CD covariance matrix of Gaussian observation error

Ns number of samples of prior pMΔ(m, δ) target density

NEff effective sample size w weights

do observations m̄ mean of Gaussian prior

mi ith sample of posterior distribution ε observation error

g forward map πD(do) normalisation constant

L(m) log likelihood function πM(m|do) posterior distribution

qM ′Δ′ (m′, δ′) proposal distribution Ψ map between samples

Mz′ set mapping to z′ via Ψ n(z′) cardinality of Mz′

A0, A1, A2 normalisation constants κ(x) permeability field

J Jacobian determinant m∗ unknown reference parameter

m and δ samples of target distribution m′ and δ′ samples of Gaussian qM ′Δ′ (m′, δ′)
z tuple of samples m and δ mMAP optimizer of cost functional

z′ tuple of samples m′ and δ′ V , η(m) auxiliary variables

σd standard deviation of measurement variables σm standard deviation of parameter variables

u(x) pressure κ true reference permeability field

n(m′) total number of critical points G differential operator of g

Hmap, Hmisfit Hessian matrices � diagonal matrix of eigenvalues

Q square root of CM λi eigenvalues
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