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Abstract
Traditional uncertainty analysis for subsurfacemodels is typically based on a single dynamicmodel with a number of uncertain
parameters. Improved and more robust forecasting can be obtained by combining several models in a Bayesian setting using
model averaging. The traditional Bayesian Model Averaging (BMA), however, suffers from several drawbacks, such as too
large sensitivity to prior model assumptions and instability with respect to measurement perturbations, especially when the
number of measurements is large. We suggest a modified version of BMA (MBMA) where the calculations are stabilized
using an ensemble of measurements. Bayesian stacking (BS) is a method that is directly focused on the performance of the
combined predictive distribution of several models. The original version of BS (BSLOO) is based on leave-one-out cross-
validation and requires a Bayesian inversion for each data point which may be very time consuming. We suggest a modified
version of stacking (MBS) that requires only a single history match and uses an ensemble of measurements. MBS may be
used with either prior (MBS-pri) or posterior (MBS-post) predictive distributions. The behavior of the methods is illustrated
using three synthetic, linear examples. One is a simple mixture model. The other two are inspired by 4D seismic data. The
results with MBS-pri are very similar to the results with MBMA. The results with MBS-post are similar to those of BSLOO
when the data are uncorrelated. MBS can take into account correlated data or measurement errors, while correlations are
neglected in the BSLOO weight calculations.

Keywords Uncertainty quantification · Bayesian model averaging · Bayesian stacking · Model combination

1 Introduction

Dynamic models of the underground typically depend on
a large number of unknown and/or uncertain parameters
and should also be conditioned to a set of, typically time-
dependent, data. While uncertainty in model parameters
is commonly taken into account when solving subsurface-
related inverse problems, the uncertainty related to themodel
itself is most often ignored. This is not because the involved
models are certain to be correct, but reflects thatmodel uncer-
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tainty is challenging to handle properly. Most approaches to
uncertainty analysis are still based on perturbations around
a single “base case” model, and the uncertainty related to
the model itself is ignored even if several alternative sce-
narios may often be possible á priori.1 Our goal is to make
robust predictions and improve the uncertainty quantification
for the predictions by keeping, in principle, all viable models
and average these in a Bayesian setting. That is, given a set of
viable models, M = {M1, ..., MK }, which have been fitted
to the data separately, we want to make predictions by com-
bining the posterior distributions for the individual models
using a posterior model weight.

Bayesian model probability (BMP) or model evidence
(BME) to discriminate between alternativemodels have been
applied within a number of fields during the last few decades,
including medicine [1], weather forecasting [2] and cli-
mate research [3]. The posterior model probabilities are also
typically used as the weighting factors in Bayesian model
selection and averaging (BMS/BMA) [4]. A drawback of

1 Notice that in this paper we will use both “models” and “scenarios”
and not distinguish between these.
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BMA in the context of reservoir modelling is that it will
asymptotically select the candidate model that is closest to
the true model in Kullback-Leibler divergence [5]. That is,
for a large amount of data, such as seismic data, the BMP
will often be 1.0 for one of the models, even if several of the
models could explain the data within the given uncertainty.
It will also be very sensitive to the prior models as well as
uncertainty in the measurements.

How the true data-generating model relates to the candi-
date models have been classified asM-closed,M-complete,
and M-open, see e.g., Yao et al. [5]. M-closed means that
one of the candidate models is actually the data-generating
model. Thus, when the amount of data increases, the BMP
for this model should converge to 1.0, and other values only
“reflect a statistical inability to distinguish the hypotheses
based on limited data” [6]. In theM-complete andM-open
settings, the true model is not any of the candidate models. In
M-complete, the true model is known, but it is not practical
to include it in the list of candidate models, while M-open
refers to a situation where it is not possible to specify the
true model because it is too difficult conceptually or compu-
tationally [5]. Höge et al. [7] introduces even a 4th setting,
Quasi-M-closed,where the truemodel is not in the candidate
model list, but very close to one of them. Within this con-
text, BMA is appropriate only for the M-closed situation,
but not in the M-complete and M-open settings. M-open
would be the normal case in reservoir modelling where the
true reservoir typically is far more complex than any of the
models.

To avoid some of the problems with BMA, Gelman [8]
recommends to expand the discrete set of models into one
continuousmodel family if possible. Alternatively, one could
use other methods for Bayesian model combination than
BMA. Yao et al. [5] discuss alternative model weighting
approaches, including Pseudo-BMA, Akaike weights and
Bayesian Stacking (BS), and generally recommend stack-
ing (of predictive distributions) for the task of combining
separately-fit Bayesian posterior predictive distributions.
With BS one tries to find an optimal combination in the space
spanned by all candidatemodels,which in aBayesian context
means finding a predictive distribution that is close to the true
data generating distribution. Höge et al. [7] compare various
Bayesian model combination methods for finding the best
model for the spatial distribution of hydraulic conductivity
from a sandbox lab experiment. The methods considered are
BMS/BMA,pseudoBMS/BMA,BSandBayesianbootstrap-
ping (BB). Höge et al. [7] recommend using BS inM-open
situations if averaging of distributions for broad coverage of
predictive uncertainty is the goal. The version of BS intro-
duced in [5] (which we will denote BSLOO) is based on the
principle of “Leave-One-Out Cross-Validation” (LOOCV).

We aim at applying Bayesianmodel combination for large
subsurfacemodels—with 4D seismic data in particular—and

the amount of data may be huge. Also, there is typically only
one set of measurements, which may consist of correlated
or uncorrelated data. When applying Bayesian inversion to
such problems, the actual measurement vector, or sometimes
a smoothed version, is assumed to be the mean of the random
data variable, and the statistical properties of this variable
is represented by the measurement error PDF. Also these
measurements will often not be independent and identically
distributed (iid), and the validity of the LOOCV approaches
may be questionable [7]. Thus, we suggest a modified ver-
sion of BS (MBS) and replace the LOOCV-replications with
an ensemble of data realizations. MBS can be used with
both prior and posterior predictive distributions and take into
account correlated measurement errors. We also suggest to
stabilize theBMAcalculations by averagingBMPovermany
data realizations along the lines used by Hong et al. [9] to
integrate model uncertainty in a probabilistic decline curve
analysis. This modified version of BMA will be denoted
MBMA.

In the next section we define the concepts of model like-
lihood or model evidence, model probability and model
averaging and introduce the modified versions of stacking.
Then the alternative methods for calculating model weights
are compared on some simple, linear Gaussian examples
where all calculations can be performed analytically. We
demonstrate thatMBS based on posterior predictive distribu-
tions give similar results as BSLOOwhen measurements are
iid. We also demonstrate MBMA may greatly improve the
results fromBMAby reducing the sensitivity to themeasure-
ments and prior assumptions as well as the tendency that the
probability of onemodel approaches 100%when the number
of measurements is large.

2 Methods for Bayesianmodel combination

Let h denote a quantity of interest. h may for instance be Net
PresentValueof a givendevelopment strategy for a petroleum
reservoir. It could also be an unknown model parameter.
We assume that the calculation of h is based on subsurface
models, which depend on a number of unknown parameters,
θ ∈ RNθ . We further assume that the models are constrained
by a set of, typically dynamic, data, d ∈ RNd . All quantities
are assumed to be random variables. We will for simplic-
ity use small letters both for the random variables and their
realizations or variates.

The Bayesian average of multiple models is the weighted
average of the model-wise posterior predictive distributions,
p(h|d, Mk), i.e.,

p (h|d) =
∑

k

p (h|d, Mk) w (Mk |d). (1)
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w (Mk |d) is the posterior model weight given the data, and
the estimation of this quantity is the main focus of this paper.
In the following we will denote this by just wk .

2.1 Traditional Bayesianmodel average and
selection, BMA/BMS

As mentioned in the introduction, BMA and BMS are based
on a discrete version of Bayes rule, i.e., an assumption that
one of the models is the true one—an M-closed setting.
The model weight can then be interpreted as the posterior
probability for model k being the true model (the BMP) and
is given by,

wk = p (Mk |d) = p(d|Mk)p(Mk)∑
l p(d|Ml)p(Ml)

= 1
∑

l
p(d|Ml )p(Ml )
p(d|Mk )p(Mk )

,

(2)

where,

p (d|Mk) =
∫

p(d|θk, Mk)p(θk |Mk) dθk (3)

is the marginal distribution or prior predictive distribu-
tion for d under model Mk , also called model likelihood
or model evidence. The ratio of two model likelihoods,
p(d|Ml)/p(d|Mk), is commonly called the Bayes factor for
model Ml compared to model Mk [8].

It is well known that the calculation of BMP is very sen-
sitive and unstable with respect to e.g., small uncertainties
in the measurements, especially in high (data) dimensions. It
was demonstrated in Aanonsen et al. [10] how the BMPmay
quickly approach 0 or 1 when the number of measurements
increases, and it can be shown that BMAwill asymptotically
select the model in the list that is closest in Kullback-Leibler
(KL) divergence [5]. However, if the BMP is considered as
a function of the random variable, d, a sample of the BMP
may be obtained by calculating it for an ensemble of Ne data
realizations generated from the data PDF, and a more sta-
ble estimate of the posterior probabilities may be obtained
by taking the mean of this sample. One model may then
receive 100% probability for each d( j), but which model that
receives 100% probability will typically vary when j varies.
Normally, none of the models will therefore receive 100%
probability when averaging over the ensemble. An example
of this is shown in Fig. 9, right plot. BMP for model k is then
calculated as,

wk = 1

Ne

Ne∑

j=1

p
(
Mk |d( j)

)
, (4)

where d( j) is a realization of the full data set obtained by
adding a realization from the measurement error distribution
to the actual measurements. That is, assuming measurement
errors being normally distributed with zero mean,

d( j) = d + e( j),where e( j) ∈ RNd is a realization from

N (0,Cd). (5)

A similar approach was used by e.g., Hong et al. [9] to
integrate model uncertainty in a probabilistic decline curve
analysis. It is also related to the modified bootstrap method
used by Cheng et al. [11] for probabilistic estimation of
oil reserves from production data. However, if the measure-
ment realizations are generated by adding uncorrelated error
realizations, variations between the individualmeasurements
will typically cancel out, and one model typically becomes
the one closest to the data (measured by the Mahalanobis
distance) for all the realizations. Using correlated error real-
izations, this effect is avoided, and a much more stable BMP
is obtained.

Thus, instead of generating measurement realizations
using Eq. 5, we will use 100% correlated perturbations, i.e.,
define d( j)

i by,

d( j)
i = di + σi e

( j), i = 1, ..., Nd , j = 1, ..., Ne (6)

where σi is the standard deviation of measurement i , and
e( j) is a realization from the one-dimensional standard, nor-
mal distribution,N (0, 1). The difference between using Eqs.
5 and 6 will be discussed further in the examples section
below.

2.2 Bayesian stacking

Yao et al. [5] defines the model weights, w = {wk}, for
stacking of predictive distributions by:

w∗ =argmax
w

1

Nd

Nd∑

i=1

log
∑

k

wk p
(
di |d−i , Mk

)
, wk ≥ 0,

∑

k

wk =1,

(7)

where p (di |d−i , Mk) is the posterior predictive distribution
of di conditioned to all the other data, d−i , given by

p (di |d−i , Mk) =
∫

p(di |θk, Mk)p(θk |d−i , Mk) dθk . (8)

This approach (BSLOO) is based on LOOCV which in
principle requires data to be iid (see e.g., [8] p. 176). We
suggest using a modified version BS along the lines of the
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modified version of BMA described above and define the
weights by

w∗ = argmax
w

1

Ne

Ne∑

j=1

log
∑

k

wk p
(
d( j)|d, Mk

)
, wk ∈ [0, 1] ,

∑

k

wk =1, (9)

where,

p
(
d( j)|d, Mk

)
=

∫
p(d( j)|θk, Mk)p(θk |d, Mk) dθk . (10)

In BSLOO, the full predictive distribution, p
(
d̃|d, Mk

)
,

evaluated at a new dataset d̃ , is replaced with the correspond-
ing LOO predictive distribution. The final equation for the
stacking is derived by using a logarithmic score Eq. 7. In
our modified approach we instead evaluate the full predic-
tive distribution by drawing a new random dataset. These
new datasets can be considered replications, and this method
is described in Chap. 6.3 of [8]. Eq. 10 then corresponds to
Eq. (6.1) in [8]. As a summarizing statistic we have selected
to calculate the mean of the replications.

A natural choice for d( j) would be to use measurement
realizations as given by Eq. 5. However, the issue discussed
in the previous section will also apply here, and thus we will
use 100% correlated perturbations as defined in Eq. 6 also
for the modified stacking.

We will also consider an alternative expression based on
prior predictive distributions:

w∗ = argmax
w

1

Ne

Ne∑

j=1

log
∑

k

wk p
(
d( j)|Mk

)
, wk ∈ [0, 1] ,

∑

k

wk =1. (11)

This approach will be directly comparable with MBMA.
The two alternative formulations of modified stacking will
be denoted as MBS-post and MBS-pri, respectively.

2.3 Computational issues

All the alternative methods for calculating model weight are
based on predictive distributions, i.e., integrals of the same
type as Eq. 3. It is well known that these are challenging to
estimate in the general case, and especially in high dimen-
sions. Assuming that themeasurements represent a particular
realization of the randomvector, d, the integral represents the
value of the marginal distribution of d evaluated at this par-
ticular realization, and it is evident that this will be very
sensitive to uncertainties in this distribution. The various

stacking methods, as well as Eq. 4 aims at stabilizing this
calculation by averaging over data realizations or the indi-
vidual measurements. The goal of this paper is to evaluate
the success of the various methods to produce stable, reliable
and “reasonable” estimates for model weights without hav-
ing to consider uncertainties in the PDF’s and the integrals.
Thus, in the examples, we use only linear, Gaussian models
where the predictive distributions are Gaussian and can be
calculated exactly using the formulas in Appendix A. For
large amounts of data, inversion of the relevant covariance
matrices may also be a challenge. Here, we do not consider
this issue, and in the examples exact inversion has been per-
formed for all matrices.

With respect to the computational time, themethods based
on (full)measurement realizations requires that the predictive
distributions are calculated in Nd -space for each data realiza-
tion. In addition, MBS-post requires one Bayesian inversion
given the full dataset. BSLOO in its basic form requires Nd

Bayesian inversions, which will not be feasible for most real-
life problems. Yao et al. [5] suggest importance sampling to
calculate the integral in Eq. 8 using the posterior distribution
as the importance sampler. The required posterior predictive
distribution is then approximated by,

p (di |d−i , Mk) ≈
(

1

Ns

∑

s

(
1

p(di |θ sk , Mk)

))−1

, (12)

where θ sk are simulation draws from the full posterior
p(θk |d, Mk). It is seen that the distribution is given by the
harmonic averages of likelihoods, a calculation which may
potentially be unstable due to very small tail densities. Yao et
al. suggest resolving this using a Pareto smoothing [12, 13].
A derivation of Eq. 12 is presented in Appendix B, and we
notice that this requires iid data.

An alternative approach for calculating Eq. 8 also utilizing
the iid assumption is used by Höge et al. [7]:

p (di |d−i , Mk) =
∫

p(di |θk , Mk)p(θk |d−i , Mk) dθk

=
∫

p(di |θk , Mk)
p(d−i |θk , Mk)p(θk |Mk)

p(d−i |Mk)
dθk

iid= 1

p(d−i |Mk)

∫
p(di , d−i |θk , Mk)p(θk |Mk) dθk

= p(d|Mk)

p(d−i |Mk)
. (13)

That is, the prior predictive distribution based on all data
divided by the prior predictive distribution based on the
remaining data. With this approach, inversion is not neces-
sary, but the prior predictive distribution must be calculated
in (Nd − 1)-space for each measurement.
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To summarize, neither the basic version on BSLOOEq. 7,
nor the Höge et al. approach Eq. 13 will be feasible for cases
with large amounts of data, like 4D seismic. The approxi-
mate version of BSLOO Eq. 12, requires just one Bayesian
inversion and Nd likelihood calculations in 1D. However,
the amount of additional effort and accuracy involved when
applying the Pareto smoothing suggested by Yao et al. [5]
in the general, high-dimensional case is not quite clear and
needs to be evaluated. In our BSLOO calculations, we have
used a subset of the full dataset, d, and performed an ana-
lytic Bayesian inversion for each measurement in the subset.
Notice that the prior predictive distributions Eq. 8 used in
BSLOO will be univariate versions of Eq. A.2, and conse-
quently, the non-diagonal elements of the covariance matrix,
Ck are not used. However, the full matrices will be used in
the Bayesian inversions when conditioning on d−i . On the
other hand, the predictive distributions to be calculated for
themethods based onmeasurement realizations (Eqs. 4,9,11)
are PDF’s of the full, possibly very high-dimensional random
vector d. Although challenging, these calculations should be
feasible as long as the number of measurement realizations
required is limited. For spatially distributed data, efficient
calculation of the predictive distributions for larger and more
realistic, non-linear models may be performed using multi-
level techniques as shown in a separate paper [14]. However,
the methods based on high-dimensional PDF’s may be more
exposed to the so-called curse of dimensionality, since the
computations typically will involve distances between vec-
tors in high dimensions.

3 Examples

In this section we will compare model weights based on the
variousmethods described above using three synthetic, linear
examples. The first example is anM-open problem based on
aGaussianmixturemodel taken fromYao et al. [5]. The other
two are inspired by the interpretation of data from repeated
(4D) seismic surveys. The first of these is a type of Quasi-
M-closed setting, with two distinct scenarios which both
could explain the data: pressure depletion or water flood-
ing. The true data is based on one of these scenarios, but
the corresponding model is an approximation to the true
data-generating model. The second is an M-open problem
inspired by the case considered by Aanonsen et al. [10].
In [10], the probability of alternative seismic interpretations
of the top reservoir surface was estimated from 4D seismic
measurements of gas-cap thickness.Here,we simplify this by
assuming that the unknown surface is observed directly with
uncertainty. This is an example of a problem which could
have been expanded to a hierarchical problem, defining e.g.,
the mean of the unknown surface as a hyperparameter. For
the last example, we also repeat the weight calculations using

several data realizations to get some information about the
uncertainty in the estimated stacking weights.

In example 2 and 3 θ and d are defined on spatial grids.
The parameter and measurement grids may be different. The
measurements are given on a 2D, regular grid with 50 ×
50 = 2500 cells. This is small enough to allow for exact
calculations, while still being large enough to illustrate the
issues related to the calculation of Bayesian model weights
for large amounts of data. Thus, the number ofmeasurements
Nd = Nx × Ny = 2500. Parameters and measurements are
Gaussian, and the required predictive distributions can be
calculated by the formulas given in Appendix A using the
appropriate expected values and covariances.

In the discussion of example 2 and 3 the expected value of
a quantity will denote the vector of expected values defined
on the corresponding grid, while we will use the term mean
value to denote the average of a quantity over the grid cells.
Thus, the expected value will be a vector with dimension
equal to the number of grid cells, while the mean will be a
single, scalar value.

3.1 Example 1

In the first example we assume Nd independent observa-
tions of a single quantity coming from a normal distri-
bution N (3.4, 1), not known to the data analyst. That is,
d = (di , i = 1, ..., Nd). We assume 8 candidate models,
N (μk, 1), with μk = k for 1 ≤ k ≤ 8, each with equal
prior model probability, P(Mk) = 1/8. This is then an M-
open problem where none of the candidate models is the true
model.

To be consistent with the formulation in Section 2, we
define the 8 models as follows:

dk = Gθk + ε, k = 1, ..., 8, (14)

where,

G = {1, ..., 1}T ∈ RNd×1, and ε ∼ N (0, 1), (15)

and

p(θk |Mk) = δ(θk − μk), μk = k. (16)

The prior predictive distribution for the data (BME)becomes:

p(d|Mk) =
∫

p(d|θk, Mk)p(θk |Mk) dθk

= p(d|μk) ∝ exp{−1

2

Nd∑

i=1

(di − μk)
2}. (17)

Furthermore, since there are no parameters to estimate
in this case, the posterior predictive distribution for an
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unobserved quantity, d̃, becomes identical to the prior pre-
dictive distribution, i.e., MBS-pri and MBS-post coincide:

p(d̃|d, Mk) =
∫

p(d̃|θk, Mk)p(θk |d, Mk) dθk

=
∫

p(d̃|θk, Mk)
p(d|θk, Mk)p(θk |Mk)

p(d|Mk)
dθk

= p(d̃|μk)
p(d|μk)

p(d|Mk)

= p(d̃|μk). (18)

In the followingwederive the expressions for posteriormodel
weights for BMA, MBMA, BSLOO and MBS.

wk-BMA= p(Mk |d)= p(d|Mk)∑
l p(d|Ml )

= exp{− 1
2

∑Nd
i=1(di −μk)

2}
∑8

l=1 exp{− 1
2

∑Nd
i=1(di −μl )2}

,

(19)

wk-MBMA = 1

Ne

Ne∑

j=1

p(Mk |d( j)), (20)

wk-BSLOO =

argmax
w

1

Nd

Nd∑

i=1

log
8∑

k=1

wk p (di |d−i , Mk) , wk ∈ [0, 1] ,
∑

k

wk =1,

(21)

where now,

p (di |d−i , Mk) = p(di , Mk) = 1√
2π

exp{−1

2
(di − μk)

2},
(22)

and finally,

wk-MBS=

argmax
w

1

Ne

Ne∑

j=1

log
∑

k

wk p
(
d( j)|d, Mk

)
, wk ∈ [0, 1] ,

∑

k

wk =1,

(23)

where,

p
(
d( j)|d, Mk

)
= p

(
d( j)|Mk

)
= 1

(2π)Nd/2
exp{− 1

2

Nd∑

i=1

(
d( j)−μk )

2
)
}.

(24)

The expressions for BMA and BSLOO are now the same
as given in [5].

Figure 1 shows the posterior predictive distribution p(d̃|d)

= ∑
k wk p(d̃|d, Mk) for the 4 methods from one simula-

tion with sample size varying from 3 to 200 compared to
the data distribution. The distributions jumps back and forth

somewhat following the average of themeasurements, which
varies a lot for small sample sizes. For large sample sizes,
the mean approaches 3.4 for all methods, except BMA. The
behavior of the methods is also illustrated in Fig. 2 show-
ing the mean and standard deviation of p(d̃|d) vs sample
size. Here, the data mean and standard deviation are calcu-
lated from the actual samples. For most of the Nd -values, the
results with MBMA and MBS are almost identical. Except
for small sample sizes, the mean of MBMA, BSLOO and
MBS follow the variations in data mean, while BMA picks
model 3 if data mean is closer to 3.0, or model 4 if data mean
is closer to 4.0. Standard deviation for BMA and BSLOO is
close to data standard deviation, while the predictive distri-
butions estimated by MBMA and MBS have a larger spread
than the data. The reason is that MBMA and MBS are based
on the full ensemble, d( j), and not just the data vector d.

The estimated model weights are plotted versus sample
size in Fig. 3. Again, we see that BMA picks model 3 or
model 4 with 100% probability more and more often as the
sample size increases. BSLOO picks model 3 and 4 with
a slightly larger weight for model 3 for most of the sam-
ple sizes. The weights estimated with MBMA and MBS are
highest for model 3 and 4. However, also model 2 and 5 get
significant weights explaining the larger variances seen in
Figs. 1 and 2. Thus, if the objective is to retain all possi-
ble models with some probability, MBMA and MBS may be
better than BSLOO. Notice also that the spread in weights is
considerably larger for BSLOO than for MBS.

In this case the results with MBS are almost the same
as with MBMA. This will normally not be the case for a
parameter estimation problem,where the posterior predictive
distributions are based on the posterior parameter distribu-
tions. Figure 4 shows model weights estimated with MBMA
and MBS for the same example, but extended to a parameter
estimation problem by defining the prior densities as,

p (θk |Mk) = N (μk, 1) . (25)

With the given prior and measurement uncertainties, the
expected posterior parameter values are almost equal for
all models. Thus, the estimated MBS weights now oscillate
around 0.125 corresponding to almost equal weight for all
the models, while the results with MBMA are very similar
to those without parameter estimation.

3.2 Example 2

3.2.1 Example specification

In this example we consider the problem of discriminating
between pressure and saturation response, which is a com-
mon problem within 4D seismic analysis. We assume that
seismic data is available in a limited area of an oil reservoir
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Fig. 1 Predictive distributions for selected numbers of measurements

and consider two scenarios: 1) the area is water flooded
to residual oil saturation while retaining the initial reser-
voir pressure, and 2) the area is a part of a segment which
has been pressure depleted without changing the oil satu-
ration. We further assume that the seismic data is given as
change in acoustic impedance induced by the water flood-
ing or depletion, respectively. This difference in acoustic

impedance will be denoted DAI. The data is thus DAI given
on a 2D, horizontal grid lying inside a larger reservoir. Mea-
surement errors are assumed to be additive, Gaussian with
zero mean, and can be correlated or uncorrelated. Scenario
1 (water flooding) is assumed to be the true scenario in all
cases, and the data is generated using a quite standard rock
physics model calculating acoustic impedance as a function

Fig. 2 Mean (left) and standard
deviation (right) of the
predictive distributions vs
number of measurements. To
further emphasize the behavior,
the bottom 2 plots show the
results within a limited Nd
interval
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Fig. 3 Model weights vs
number of measurements. For
BMA and BSLOO only weights
for model 3 and model 4 are
shown, since the weights for the
other models are mostly equal to
zero

of pressure, saturation and porosity. For details on the rock
physicsmodel, see [15]. The synthetic, true pressures and sat-
urations are assumed constant over the 4D region, while the
porosity is assumed to be heterogeneous and vary between
cells. The porosity field is taken as a realization of a Gaussian
random field with long correlation length, and a reference
acoustic impedance difference,˜DAI, is calculated from this
porosity field and the homogeneous pressures and satura-
tions.Notice that because of nonlinearities in the rock physics
model,˜DAI will vary between cells even if the same porosity
field is used for the initial and final calculations. Three syn-
thetic datasets are generated from ˜DAI. In Case 1, the data
is equal to˜DAI, while in Case 2 and 3 the data is generated
by adding a realization, Ẽ , from a Gaussian random field
with zero mean and covariance matrix CẼ . CẼ is defined
by a constant standard deviation, σẼ = 0.05 MPa-s/m and
a spherical variogram with range RẼ . RẼ = 1 cell in Case

2 and 0.75 times the length of the area (i.e., 37.5 cells) in
Case 3. The measurement error distribution is defined by a
measurement error standard deviation, σd , and a spherical
variogram model with range Rd . In Case 2 the measurement
error covariance matrix, Cd , is diagonal (Rd = 1 cell). In
Case 3 it is non-diagonal with Rd = 37.5 cells. For Case
1 Cd is either diagonal (Case 1a) or nondiagonal (Case 1b).
All parameters used to generate the true models are listed in
Table 1. The 3 different sets of measurements are shown in
Fig. 5. Distributions of the measurements over the 2500 grid
cells are shown in Fig. 6. Here, we have also plotted the dis-
tributions of 400 realizations of the data obtained by adding
realizations from the error distributions. It is seen that in Case
1a and 1b the spread in DAI over the grid cells is much less
than the spread over all measurement realizations, while in
Case 2 and 3, the spread is similar. Thus, it could be expected
that BSLOO,which utilizes the spread in DAI over grid cells,

Fig. 4 MBMA and MBS model
weights vs number of
measurements. With parameter
estimation
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Table 1 Example 2. Parameter
settings for the true model Reference model,˜DAI:

Reservoir pressure (MPa) 24 .0

Initial oil saturation, Soi 0.8

Residual oil saturation, Sor 0.3

Porosity, φ Realization from N (φ,Cφ)

φ 0.3

σφ 0.02

Cφ Spherical variogram; range 37.5 (0.75Nx ) cells

Measurements:

d = DAI Case 1: DAI =˜DAI

Case 2 and 3: DAI =˜DAI + Ẽ ,

Ẽ being one realization from N (0,CẼ )

σẼ (MPa-s/m) 0.05

CẼ Case 2: Diagonal.

Case 3: Spherical variogram; range 37.5 (0.75Nx ) cells

Measurement error: N (0,Cd )

σd (MPa-s/m) 0.05

Cd Case 1a and 2: Diagonal.

Case 1b and 3: Spherical variogram; range 37.5 (0.75Nx ) cells

will behave similarly as MBS-post in Case 2 and 3, but not
necessarily in Case 1a and 1b.

In both the two alternative model scenarios the porosity
is assumed to be constant. To speed up the calculations, lin-
ear approximations are applied to the rock physics model,
and the example then also reflects that models may not be
exact. The linear approximations are relatively accurate in
the relevant parameter intervals as shown in Fig. 7. In the
models the residual oil saturation, Sor , may be constant over
the 4D area, or vary between the cells due to e.g., a hetero-
geneous permeability. Thus, model 1 has either 1 parameter
or 2500 parameters. Constant reservoir pressure would nor-
mally be assumed over the 4D area, i.e., model 2 has one
unknown parameter, the reservoir pressure after depletion, p.

However, we will in this investigation also allow the pressure
to vary between grid cells. In the cases where a parameter is
equal in several grid cells, the predictions will be correlated
between these cells. For instance, if the number of parame-
ters for model k, Nθk = 1,Gk = {1, 1, ..., 1}T (cf. Appendix
A ). In this case, the covariance of the predicted data will be
proportional to a matrix with all entries equal to 1. Input to
the prior models is listed in Table 2.

The main objective of this example is to evaluate the sen-
sitivity to prior model assumptions, which are known to be
large for BMA. Thus, we will estimate model weights for
varying parameter prior mean and variance for Scenario 1,
while keeping everything constant for Scenario 2. Figure 8
shows the distribution of prior predictions for Scenario 1 and

Fig. 5 Synthetic measurements, DAI (Mpa-s/m)
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Fig. 6 Measurement (data)
distribution over the 2500 grid
cells, and distribution of the
measurements plus 400
realizations from the error
distributions

Scenario 2 compared to Case 2 data distributions for prior
mean, Sor -pri = 0.2 and 0.3. Prior mean pressure for Sce-
nario 2 is equal to 21.9 MPa in both cases. As can be seen,
the prior model predictions are almost overlapping with the
data distributions when prior mean Sor -pri = 0.3, and both
scenarios would then be expected to get almost the same
weight. When Sor -pri = 0.2, there is still a significant over-
lap between the data distribution and the distribution of prior
predictions for Scenario 1, so although Scenario 2 should
get a higher weight, we would normally not want to discard
Scenario 1 completely for predictions. Thus, a good method
should produce a non-zero weight for Scenario 1 also in this
case. The plot shows distributions for Nθ1 = Nθ2 = 1. How-
ever, the behavior is similar in the other cases.

3.2.2 Evaluation of method performance

In this section we first demonstrate how the traditional BMA
may be improved by averaging BMP over many data realiza-
tions. Then we illustrate how the original Bayesian Stacking
introduced by Yao et al. [5] may fail for correlated measure-
ments. Finally, we compare the sensitivity with respect to
prior assumptions for the different Bayesian model combi-
nation methods presented in Section 2. There will, of course,
always be some dependency on prior probabilities, and the
strength of that dependencywill vary frommethod tomethod.
Our aim is just to illustrate how the methods we have con-
sidered behave in this respect.

Fig. 7 Rock physics model with
linear approximations plotted in
the relevant intervals. Acoustic
Impedance (AI) vs pressure and
saturation for porosity = 0.30

123



Computational Geosciences

Table 2 Example 2. Parameter
setting for prior model scenarios Model 1 (flooded):

Reservoir pressure (MPa) 24.0

Initial oil saturation, Soi 0.8

Residual oil saturation, Sor N (Sor -pri ,Cpri-1)

Sor -pri Varying

σpri-1 0.03

Cpri-1 {σpri-1
2}, Nθ1 = 1

diag{σpri-1
2}, Nθ1 > 1

Porosity, φ 0.3 (constant)

DAI (MPa-s/m) 0.4487 − 0.964(Sor − 0.2)

Model 2 (depleted):

Initial reservoir pressure (MPa) 24 .0

Final reservoir pressure N (ppri ,Cpri-2)

ppri (MPa) 21.9

σpri-2 (MPa) 0.3

Cpri-2 {σpri-2
2}, Nθ2 = 1

diag{σpri-2
2}, Nθ2 > 1

Oil saturation, Soi 0.8

Porosity, φ 0.3 (constant)

DAI (MPa-s/m) 0.4192 − 0.102(p − 21.1)

Figure 9 shows two examples of BMP calculated from
Eqs. 4 and 6 for increasing values of Ne compared to the
BMP calculated from the individual data realizations (i.e.,
Eq. 2). The plot illustrates the behavior seen in all cases
tested: although the individual calculations are unstable and
very sensitive to themeasurements, a relatively small number
of measurement realizations is required to get a stable value
for the average. Notice that although Cd is diagonal, Ck in
Eq. A.3 is non-diagonal because of the correlations in the
prior predictions when Nθ = 1.

BMP calculations using Eq. 4 and the MBS , Eq. 9 or Eq.
11, require that the predictive distributions are calculated for
Ne data realizations. In Fig. 10 we have plotted estimated
weight of model 2 versus Ne for a typical example. The plot

also shows the weight estimated with BSLOO using subsets
of the full dataset. Here N∗

d denotes the number of data-
points used, and every 2nd datapoint is used if N∗

d = Nd/2,
etc. Using only a subset of the data will greatly speed up the
calculations with BSLOO as defined in Eqs. 7 and 8, since a
Bayesian inversion is required for each individual measure-
ment. However, it will still be much slower than MBS. We
never ranBSLOOwith all 2500measurements. It would have
taken an impractically long time, and the results seemed to
converge with lessmeasurements in all cases tested. It should
be noted that, when Nθ = 1, the data realizations (measure-
ments for BSLOO) need to be split between the models for
all the methods. This is because the parameters, and thus the
predicted data, are the same in all cells, and the predictive

Fig. 8 Distribution of prior
predictions for Scenario 1 and 2
compared to data distributions.
Nθ1 = Nθ2 = 1. Case 2 data
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Fig. 9 Stabilizing effect of
BMP averaging. Individual
realizations (blue dots) and
cumulative average over
realizations (orange). Data Case
2. Nθ1 = Nθ2 = 1. Left: Based
on full matrix Eq. A.3. Right:
Based on diagonal
approximation to Eq. A.3

distributions will be 100% correlated if the same data real-
izations, or datapoints for BSLOO, are used for both models.
Thus, when e.g., Ne(or N∗

d ) = 1000, 500 data realizations
(or measurements) are used to estimate weights for each of
the twomodels.Wewill in the following use 400 realizations
for BMA andMBS, and 500 datapoints for BSLOO to ensure
that the results of the method evaluations are not influenced
by the number of data realizations or datapoints used.

The effect of BMP-averaging on prior model sensitivity
is illustrated in Fig. 11. Here we plot BMP for model 2 vs
Mean[Sor -pri ] for 3 different values of σpri-1. The traditional
BMP-calculation yields either zero or one and is very sensi-
tive to the prior assumptions. The results using Eqs. 4 and 5
are slightly better, but still not satisfactory. The results using
Eqs. 4 and 6, however, looks much better considering that a
BMP around 0.5 is to be expected for Mean[Sor -pri ] around
0.3. The sensitivity to prior model assumptions is also much
lower.

Consider again Fig. 5. Although the data fields look quite
similar in the 3 cases, the data in Case 1 will be highly

Fig. 10 Estimated weight model 2 vs Ne or, for BSLOO, N∗
d . Data

Case 2. Nθ1 = Nθ2 = 2500

correlated. The data in Case 2 are truly iid, while the data in
Case 3 are Gaussian with a relatively long correlation length.
For all the tests performed, BSLOO performs well for the
cases 1a, 2 and 3. However, it fails for Case 1b data. While
the other methods (MBMA, MBS-pri and MBS-post) give
results which are consistent with the model parameters used,
the weights calculated with BSLOO then typically become
either 0 or 1. Remember that the measurements are the same
in Case 1a and 1b. However, Cd is diagonal in Case 1a and
non-diagonal in Case 1b. In general we have experienced that
BSLOO is very stable also for correlated data when a real-
ization from the error distribution is added to the data before
doing the analysis, while it is less stable if not.

In the following we will consider only Case 2 and 3.
To investigate the performance of the methods, we have

estimated model weights while varying the parameter prior
mean and standard deviation of model 1, i.e., Mean[Sor -pri ]
and σpri-1; with and without correlated data, and with a vary-
ing number of parameters and measurement uncertainty. The
measurement error realizations, d( j), required for MBMA
Eq. 4 and MBS Eqs. 9,11 are generated by adding 100%
correlated error realizations as specified in Eq. 6.

In the following, the main results are summarized and
illustrated with some selected plots of w2 vs Mean[Sor -pri ]
and σpri-1.

Consider first the sensitivity with respect toMean[Sor -pri ]
(Fig. 12).

When Nθ1 = Nθ2 = 1 (left column) the amount of data
is very large compared to the number of parameters, and
the posterior parameter estimates are almost independent
of prior properties and with very small posterior uncer-
tainty. Thus, the calculatedweights are almost independent of
Mean[Sor -pri ] for BSLOO and MBS-post. The results with
MBMA are very similar to those obtained with MBS-pri,
indicating that averaging BMP over many data realiza-
tions have a similar stabilizing effect as stacking over prior
distributions—a result we have seen in all cases tested.

The middle column shows the case with Nθ1 = 2500 and
Nθ2 = 1.We see that when themeasurement errors are corre-
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Fig. 11 Estimated BMP model 2 vs Mean[Sor -pri ] and σpri-1. Nθ1 = Nθ2 = 2500. From Eq. 2 (left); from Eqs. 4 and 5 (middle); from Eqs. 4 and
6 (right)

lated,w2 = 0 independently ofMean[Sor -pri ] for allmethods
except BSLOO. This is because the heterogeneous fields
will be closer to the data field when measured by the Maha-
lanobis distance, more or less independently of the mean. As
commented by Stewart et al. [16] positive error correlations
reduce weight given to the average of observations, but give
more weight to differences between observed values. This
illustrates a challenge when using methods which are based
on the Mahalanobis distance in high dimensions: the esti-
mated predictive densities become very sensitive to the shape
of the surfaces, and also to small, long-range correlations,
which normally are not well known. With Case 2 data, the
measurement errors are uncorrelated. However, in this par-
ticular case, the calculations are dominated by correlations

in the prior predictions for Scenario 2 (second term in Eq.
A.3). Remember that since Nθ2 = 1, the predicted data for
model 2 will be 100% correlated, and the determinant, Ck ,
will be much smaller for model 2 than for model 1. The dis-
tance between predictions and data is not very different, and
thus the determinant will dominate the BME calculation Eq.
A.2 giving w2 = 1 for MBMA and MBS-pri independently
of Mean[Sor -pri ]. On the other hand, the large number of
parameters for model 1 allows for a much better posterior
match to both the mean and shape of the measurements than
model 2. Thus, w2 is lower for MBS-post than for the other
methods. Notice also that when Nθ1 = 2500, and the data
are uncorrelated, the matrices G,Cpri and Cd are all diago-
nal, and consequently, there will be no Bayesian update with

Fig. 12 Estimated weight model 2 vs Mean[Sor -pri ]. Top row: Data Case 2 (uncorrelated). Bottom row: Data Case 3 (correlated; Rd = 37.5 cells).
Left column:Nθ1 = Nθ2 = 1. Middle column: Nθ1 = 2500, Nθ2 = 1. Right column: Nθ1 = Nθ2 = 2500
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Fig. 13 Estimated weight model 2 vs Mean[Sor -pri ]. Data Case 3. Weight calculations for MBMA and MBS based on diagonal approximation to
Eq. A.3. Left column:Nθ1 = Nθ2 = 1. Middle column: Nθ1 = 2500, Nθ2 = 1. Right column: Nθ1 = Nθ2 = 2500

BSLOO. Here this applies to model 1, and the weights esti-
mated with BSLOO become higher than for MBS-post, but
not equal to 1.

When Nθ1 = Nθ2 = 2500 (right column), there is no
update in any of the models with BSLOO when the data
are uncorrelated, and the BSLOO results are very similar
to the case with Nθ1 = 2500 and Nθ2 = 1. Also, since
correlations are neglected with BSLOO, the results for Case
2 and Case 3 data will be very similar. For Case 2 data all
methods give similar results since the Bayesian parameter
updates are onlyminorwith this relatively largemeasurement
uncertainty.With Case 3 data,w2 = 1 for all methods, except
BSLOO. This is because the shape of prior model 2 matches
the data slightly better than model 1 giving a high weight to
model 2, and this again illustrates the challenge when using
high-dimensional probability distributions.

Figure 13 illustrates the effect of neglecting off-diagonal
terms in the matrix Ck in Eq. A.3. Comparing to the bottom
row of Fig. 12 we see that when Nθ1 = Nθ2 = 1 the differ-
ence is small, since the prior and posterior surfaces are flat.
However, the calculation of model weights using MBMA,
MBS-pri and MBS-post is now dominated by the difference
betweenmean surfaces and measurements and not the shape,
and when Nθ1 = Nθ2 = 2500, the results become almost
identical to those of BSLOO and also to those with Case

2 data. They are also similar to the BSLOO results when
Nθ1 = 2500 and Nθ2 = 1, but now w2 is lower with MBS-
post since it is based on the Bayesian update.

Figure 14 shows estimated w2 vs σpri-1 for the differ-
ent methods. When Nθ1 = Nθ2 = 1 (left plot), w2 will be
independent of prior uncertainty for MBS-post and BSLOO
because the posterior estimates are then almost independent
of prior assumptions. For MBMA and MBS-pri, estimated
weight for a given model will depend on its prior confidence,
and thus w1 decreases (and w2 increases) with increasing
σpri-1. When Nθ1 = 2500 (middle and right plot), the sensi-
tivity to prior uncertainty is even larger forMBMAandMBS,
and because there is no Bayesian update of θ1 with BSLOO
in this case, also BSLOO show the same sensitivity. With
MBS-post, however,w2 decreases with σpri-1. This example
illustrates the complexity involved in model weight calcula-
tions, and to understand the behavior, consider the expression
for the predictive distributions, Eq. A.2. The main factors
influencing the predictive distributions are the weighted mis-
match between data and predictions and the determinant of
thematrix,Ck . For the prior predictive distribution, the effect
of an increase in detC1 with increasing σpri-1 is larger than
the effect of a slightly decreased mismatch (due to a changed
weight). For the posterior predictive distribution, however,
the effect of a decreased mismatch when σpri-1 increases is

Fig. 14 Estimated weight model 2 vs σpri-1. Data Case 2
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Table 3 Example 3. Properties of the prior surface interpretations, I1
and I2

Model 1 Model 2

Mean, M̃ (m) 1000 1010

Standard deviation (m) 5 5

Variogram model Spherical Spherical

Variogram range, R̃ (grid cells) 5 50

larger than the effect of an increased detC1, since increasing
σpri-1 will increase the weight of the data, and thus give a
significantly lower posterior mismatch.

3.3 Example 3

3.3.1 Example specification

In this example we assume that the unknowns are depths
(in each grid cell) of an underground surface, and for sim-
plicity, the data are assumed to be uncertain measurement
of the same surface. That is, the forward model is given
by a unit matrix, and the number of parameters and the
number of measurements is both equal to 2500. We further
assume that there exist two alternative prior seismic inter-
pretations of this surface, I1 and I2, each defined by a single
realization of two corresponding Gaussian random fields.
Spatial correlations are defined by a spherical variogram
model.Mean, variance and variogram rangemay be different
for the two interpretations. Here we have one interpretation
with a short correlation length reflecting an interpretation

Fig. 15 Prior interpretations

Fig. 16 Prior interpretations. Cross sections through all 50 rows

philosophy following small scale variations, and one with a
long correlation length reflecting an interpretation philoso-
phy favorizing smooth surfaces. Input data to generate the
prior interpretations are listed in Table 3. The prior surface
interpretations are plotted in Fig. 15. Cross sections of the
surfaces along each row of the grid are plotted in Fig. 16 illus-
trating the effect of different variogram range. These two
prior interpretations are then assumed to be expected val-
ues for two prior statistical models. These models are also
assumed to be Gaussian random fields, where the uncertainty
now represents uncertainty in the interpretations. Input data
for the prior statistical models are listed in Table 4.

The main focus of this example is stability of the weight
calculations with respect to data. Thus, we have generated a
set of measurements varying between the two prior interpre-
tations. This example also demonstrates how an inherently
hierarchical model can be approximated by a small number
of scenarios.

The measurements are generated in the same way as
the prior interpretations, but several datasets are made with
mean and correlation length being linear combinations of
those of the prior interpretations. That is, for each value
α = 0.0, 0.1, 0.2, ..., 1.0 and β = 0.0, 0.5, 1.0 a surface,
d̃(α, β), is generated as a realization of a Gaussian random
field with mean, M̃d(α), given by,

M̃d(α) = αM̃1 + (1 − α)M̃2, (26)

Table 4 Example 3. Properties of the prior models

Model 1 Model 2

Expected value, E[θ] I1 I2

σpri (m) 5 5

Covariance matrix, Cpri Diagonal Diagonal
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Fig. 17 Mean depths of prior
interpretations and data

and a covariance matrix, C̃d(β), with a variance (10m)2 and
a spherical variogram with variogram range, R̃d(β), given
by,

R̃d(β) = β R̃1 + (1 − β)R̃2. (27)

Again we assume that the measurement error is additive,
Gaussian with zero mean. Given these surfaces, d̃(α, β),
measurements, d(α, β), are generated by adding a realiza-
tion from the measurement error distribution. Notice that the
measurement error covariance matrix, Cd , may be different
from C̃d . Four datasets were made for each α, β correspond-
ing to diagonal Cd and correlated Cd with range, Rd = 10
cells. σd = 2m or 10m.

Figure 17 shows mean of the prior surfaces and data vs
α for different values of β, and it would be expected that
the estimated weights should to some degree follow these
variations in data mean when α and β are varied. The mean
values are calculated from the generated realizations andmay
be slightly different from M̃d , M̃1 and M̃2. The variationwith
α is relatively smooth for the uncorrelated case (β = 0), but
with more and more variations when β increases.

Using the generated prior interpretations and datasets,
model weights were calculated using MBMA, MBS-pri,
MBS-post and BSLOO. The models are given by Eq. A.1
with Gk = I , and the integrals Eqs. 3, 8 and 10 are calcu-
lated from Eqs. A.2 and A.3 using the appropriate prior or
posterior properties.

For non-diagonal Cd we have used both the full matrix
and adiagonal approximationwhen calculating the predictive

distributions forMBMAandMBS.The fullCd is alwaysused
in the Bayesian inversion prior to MBS-post. Notice again
that for BSLOO, since the matrices G andCpri are diagonal,
there will be no update of θi with d−i in the cases where Cd

is also diagonal. The weights calculated with BSLOO are
based on 500 measurements, i.e., every 5th measurement is
used.

Results with MBMA and MBS are based on using Eq. 6
with 400 realizations. If Eq. 5 is used, all measurement real-
izations will typically give a higher value for the predictive
distribution to one of the models, and the estimated weight
will be 0 or 1 as shown in the left plot in Fig. 18. On the
other hand, using Eq. 6 gives a relatively smooth variation
in weight increasing with increasing values of α (Fig. 18,
right plot). The variations then mainly reflects the variations
in Mean[d] (cf. Fig. 17). Like in example 2 above, the tradi-
tional BMA using only one dataset, always yields just 0 or 1
for BMP.

3.3.2 Evaluation of method performance

Some selected weight calculations illustrating the behavior
of the alternative methods are shown in Fig. 19. Estimated
weights for the second interpretation (model 2) are plotted
vs α for different values of β, and since the variation with α

and β is believed to follow the variation in the data mean as
shown in Fig. 17, we have plotted the estimated w2 together
with the data mean. Much larger variations in the weight
calculations with α and β than in the corresponding data
mean may indicate a less stable method. To further quantify

Fig. 18 Weight model 2
estimated with MBS-post vs α

and β. Rd = 1 cell. Based on
Eq. 5 (left). Based on Eq. 6
(right)
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Fig. 19 Estimated weight model 2 (left axes) and mean depth of measurements (right axes) vs α for different values of β for each of the 4 datasets
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Table 5 Distance between estimated weights vs α and shifted mean
depth vs α for different values of β for each of the 4 datasets

β σd (m) / Rd (cells) 2 / 1 10 / 1 2 / 10 10 / 10

0.0 MBMA 0.99 0.09 2.62 4.31

MBS-pri 0.94 0.11 2.59 4.29

MBS-post 0.07 0.09 0.89 2.75

BSLOO 0.23 0.46 0.14 0.31

0.5 MBMA 0.76 0.06 2.45 4.20

MBS-pri 0.74 0.08 2.43 4.20

MBS-post 0.10 0.09 0.65 2.85

BSLOO 0.64 0.56 0.42 1.32

1.0 MBMA 0.98 0.06 1.71 4.54

MBS-pri 0.93 0.06 1.72 4.50

MBS-post 0.05 0.07 1.04 2.77

BSLOO 0.73 0.50 1.08 0.71

the results, the data mean depth vs α was shifted to the same
axis as the weights (i.e., (990,1025) → (0.0,1.0)), and the
distance between this depth and w(α) was calculated. The
results are listed in Table 5.

Again, the results with MBS-pri and MBMA are almost
identical in all cases. The general trend is that the degree of
instability increases for all methods when β increases, i.e.,
themeasurements getmore correlated.MBS-post follows the
data more closely than MBS-pri and MBMA, and the differ-
ence increases when σd decreases, as expected. Comparing
MBS-post and BSLOO, MBS-post is better than BSLOO in
the two cases where Rd = 1. For the case with σd = 2m and
Rd = 10 cells, the results are quite similar. For σd = 10m
and Rd = 10 cells, BSLOO apparently is better than MBS-
post according to the measure in Table 5. However, when the
data surface is highly correlated, one would expect a higher
weight for model 2 which is based on a Gaussian realization
with long correlation length, independently of α. This is also
predicted with MBS-post as seen in Fig. 19. BSLOO, on the

other hand does not take the correlations into account and
also seems to be more unstable. In this case w2 calculated
with MBMA and MBS-pri becomes equal to 1 for all values
of α and β.

Figure 20 and Table 6 show the same case using a diag-
onal approximation to Eq. A.3 in the analysis. Compared to
the corresponding case based on the full matrix the weights
calculated with MBMA, MBS-pri and MBS-post now fol-
lows the data mean closely because less weight is given to
the shape of the data field. For BSLOO, there is no change
as expected.

3.3.3 Uncertainty in stacking weights

To evaluate the uncertainty in the estimated stackingweights,
we calculated weights with MBS-pri and MBS-post for 50
realizations of the data generated by adding realizations from
the error distribution for α = 0.3 and β = 0.2. Thus,
these data realizations were generated using Eq. 5. TheMBS
weights calculated for each of these data realizations, how-
ever, where still based on Eq. 6. Mean and standard deviation
of the 50 calculatedweights for the 4 alternativemeasurement
error covariance matrices are listed in Table 7. The standard
deviation is relatively small in all cases. Diagonal approxi-
mations toCd are used in the weight calculations. With a full
Cd the standard deviation is similar or smaller.

4 Summary and conclusions

While uncertainty in model parameters is commonly taken
into account when solving subsurface-related inverse prob-
lems, the uncertainty related to the model itself is most often
ignored.More robust forecasting can be obtained by employ-
ing several models in the analysis and apply Bayesian model
combination.

Fig. 20 Estimated weight model 2 (left axes) and mean depth of measurements (right axes) vs α for different values of β. Diagonal approximation
to Eq. A.3 used in the weight calculations with MBMA and MBS
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Table 6 Distance between estimated weights vs α and shifted mean
depth vs α for different values of β diagonal approximation to Eq. A.3
used in the weight calculations with MBMA and MBS

β σd (m) / Rd (cells) 10 / 10

0.0 MBMA 0.09

MBS-pri 0.05

MBS-post 0.04

BSLOO 0.31

0.5 MBMA 0.06

MBS-pri 0.05

MBS-post 0.05

BSLOO 1.32

1.0 MBMA 0.09

MBS-pri 0.09

MBS-post 0.06

BSLOO 0.71

Formally, Bayesian Model Averaging, BMA, which is
based on a discrete form of Bayes rule, is only appropriate
for the M-closed case where the true data is generated by
one of the candidate models. Reservoir modelling problems
will typically be M-open with the true reservoir being far
more complex than any of the models. With large amounts
of data, like seismic data, BMAwill typically select one of the
candidate models with probability one and predicted uncer-
tainty in parameters or future data may then be biased and
too small. The calculation of model probabilities from the
predictive distributions may also be unstable. We suggest
to avoid these problems using a modified BMA (MBMA),
where the model probabilities are averaged over a range of
data realizations.

Model stacking is a method that is directly focused
on the performance of the combined predictive distribu-
tion. The original version of Yao et al. [5] (BSLOO) is
based on Leave-One-Out Cross Validation and requires a
Bayesian inversion for each data point. We suggest a mod-
ified Bayesian stacking method (MBS), which is based
on predictive distributions using an ensemble of measure-

Table 7 Mean and standard deviation of estimated stacking weights
model 2 from 50 measurement realizations α = 0.3, β = 0.2

Error covariance MBS-pri MBS-post
σd (m) Rd (cells) Mean[w2] Std[w2] Mean[w2] Std[w2]

2 1 0.043 0.012 0.403 0.025

10 1 0.373 0.026 0.394 0.025

2 10 0.295 0.056 0.214 0.049

10 10 0.316 0.056 0.317 0.062

ment realizations. This modified stacking can be applied
both with prior and posterior predictive distributions. With
MBS-post, only a single Bayesian inversion is needed for
each model. Thus, the computational effort with MBS-
post is much less than for the basic BSLOO method. In
addition, correlated measurement errors may be taken into
account.

Using three synthetic, linear examples, MBMA, MBS-pri
and MBS-post have been compared to the traditional BMA
and BSLOO. The first example is a Gaussian mixture model
taken from [5]. The other two are inspired by the interpre-
tation of data from repeated (4D) seismic surveys. In one of
these there are two distinct model scenarios, one of which
is an approximation to the true data-generating model. The
other is a case which could have been expanded to a hierar-
chical model.

We demonstrate that all the methods, MBMA, MBS-pri,
MBS-post and BSLOO avoid the problem that the proba-
bility of one model approaches 100% when the number of
measurements inceases. Also, the sensitivity to prior model
assumptions are lower than with BMA. The MBS-pri results
are very similar to those obtained with MBMA. The results
using MBS-post are generally quite good, with lower sen-
sitivity to the prior assumptions and more emphasis on the
data than MBMA and MBS-pri. When measurement errors
are correlated, MBS may be used with the full Cd or a
diagonal approximation depending on whether the emphasis
should be put on matching the shape of the data field or the
mean. With respect to stability, MBS-post seems to perform
equally good, or better, than BSLOO, especially with corre-
lated data. The results with BSLOO become more unstable
when correlations between measurements increase, even if
data correlations are always neglected in the weight calcula-
tion. A disadvantage with MBS-pri, MBS-post and MBMA
is that the predictive distributions are defined on the full data
space, and for large dimensions the results withMBS-pri and
MBS-post may be sensitive to small, and often very uncer-
tain, correlations. These methods may be also more prone to
the so-called curse of dimensionality than BSLOO, which is
based on distributions defined in 1D.More investigations are
needed to clarify this.

Appendix A: Predictive distribution for the
linear, Gaussian case

In the linear, Gaussian case (i.e., the prior models are Gaus-
sian, the forward model is linear and the measurement error
is additive, Gaussian with zero mean), the posterior is also
Gaussian for each model, and an analytical expression can

123



Computational Geosciences

be derived for the predictive distribution or BME (see e.g.
Bishop [17], Section 2.3.3). That is,

d = Gkθk + ε, ε ∼ N (0,Cd ) , (A.1)

p (d|Mk) = N (Gkθk ,Ck)

=
(
(2π)Nd detCk

)−1/2
exp

{
− 1

2
(d − Gkθk)

T C−1
k (d − Gkθk)

}
,

(A.2)

Ck = Cd + GkCθkG
T
k . (A.3)

Here θk and Cθk are the prior mean and covariance matrix
for θ within model k, Gk is the forward model operator for
model k and Cd is the measurement error covariance matrix.
The weighted mismatch term appearing in the exponent is
the Mahalanobis distance corresponding to the matrix Ck .
This expression may also be applied to the other relevant
predictive distributions by using the appropriate means and
covariance matrices.

AppendixB: Predictivedistribution forBSLOO

Yao et al. [5] suggests importance sampling to calculate
the integral Eq. 8 required for BSLOO using the posterior
distribution—given all the data—as the importance sampler.
That is,

p (di |d−i , Mk) =
∫

p(di |θk , Mk)p(θk |d−i , Mk) dθk

=
∫
p(di |θk , Mk)p(θk |d−i , Mk) dθk∫

p(θk |d−i , Mk) dθk

=
∫
p(di |θk , Mk)

p(θk |d−i ,Mk )
p(θk |d,Mk )

p(θk |d, Mk) dθk
∫ p(θk |d−i ,Mk )

p(θk |d,Mk )
p(θk |d, Mk) dθk

=
∫
p(di |θk , Mk)

p(d−i |θk ,Mk )/p(d−i )
p(d|θk ,Mk ,Mk )/p(d)

p(θk |d, Mk) dθk
∫ p(d−i |θk ,Mk )/p(d−i )

p(d|θk ,Mk )/p(d)
p(θk |d, Mk) dθk

=
∫
rsi,k p(di |θk , Mk) p(θk |d, Mk) dθk∫

rsi,k p(θk |d, Mk) dθk

≈
∑

s r
s
i,k p(di |θ sk , Mk)∑

s r
s
i,k

, (B.1)

where θ sk are simulation draws from the full posterior
p(θk |d, Mk), and

rsi,k = p(d−i |θ sk , Mk)

p(d|θ sk , Mk)

iid= 1

p(di |θ sk , Mk)
. (B.2)

That is, for iid data

p (di |d−i , Mk) ≈
(

1

Ns

∑

s

(
1

p(di |θ sk , Mk)

))−1

. (B.3)
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