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Abstract
Instance Segmentation in general deals with detecting,
segmenting and classifying individual instances of ob-
jects in an image. Underwater instance segmentation
methods often involve aquatic animals like fish as the
things to be detected. In order to train deep learning
models for instance segmentation in an underwater en-
vironment, rigorous human annotation in form of in-
stance segmentation masks with labels is usually re-
quired, since the aquatic environment poses challenges
due to dynamic background patterns and optical dis-
tortions. However, annotating instance segmentation
masks on images is especially time- and cost-intensive
compared to classification tasks. Here we show an
unsupervised instance learning and segmentation ap-
proach that introduces a novel class, e.g., “fish” to a
pre-trained Mask R-CNN model using its own detec-
tion and segmentation capabilities in underwater im-
ages. Our results demonstrate a robust detection and
segmentation of underwater fish in aquaculture without
the need for human annotations. This proof of concept
shows that there is room for novel objects within trained
instance segmentation models in the paradigm of super-
vised learning.

1 Introduction
Underwater imaging can be challenging, due to a num-
ber of factors that affect taken images. Ranging from
light reflection over water particles to contrast lost and
light attenuation [10], labelling data may also be diffi-
cult for humans. At the same time, focusing on pure
image instances and pan-optic segmentation usually re-
quires an exhausting amount of high-quality labelled
data. There is only a handful of available data sets
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which are frequently cited which suggests that the in-
vestment in labour and time to create data sets, for
instance, semantic and pan-optic segmentation is high
[2, 3, 5, 13]. Since supervised learning methods depend
on pre-labelled ground truth data to learn, the objec-
tive of introducing a new novel class is not tradition-
ally approachable without the further investment of re-
sources. We try to alleviate that problem by introducing
a method to fine-tune an existing Mask R-CNN model
with its inference output to detect a novel object in the
same environment.

In summary, we contribute an unsupervised system
with minimal parameter settings that allows a Mask R-
CNN to detect a novel class, i.e. fish.

2 Related Work

2.1 Instance Segmentation
Historically, the Region-based Convolutional Network
method (RCNN) [7] was proposed to achieve an intro-
duction to the concept of regions and therefore locality
to object detection. The first step from image classi-
fication to object detection has been made using con-
volutional layers as the backbone. Fast R-CNN [6] al-
leviated some of the drawbacks of the RCNN, mainly
the time component. The training of the hyperparam-
eters of the region proposal component was trainable
in the next extension, Faster RCNN [15]. Changing
the k-means algorithm behind the region proposals to
a fully connected network (FCN) and the convolutional
neural network (CNN), as well as weight information
sharing between the Deep FCN module and the Fast
R-CNN, led to a decrease of manual hyperparameters
and a better time performance of around factor 10.
Up until that point, only bounding boxes could be as-
signed to image data. By the introduction of the li-
brary Detectron [9] implementing the Mask R-CNN,

https://doi.org/10.7557/18.6791

© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed under the terms and
conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

1

https://doi.org/10.7557/18.6791
http://creativecommons.org/licenses/by/4.0/


Figure 1: The proposed method: A four-step pipeline. Step 1: Extracting instance segmentation masks from
baseline model. Step 2: Unification of the inference masks. Step 3: Filtering unified masks. Step 4: Train
baseline model with instance segmentation masks with label fish.

masks are also generated. With a more concise model
to hold onto local structure information through Region
of Interest-Pooling (RoI-Pooling), the instance segmen-
tation masks are calculated parallel with the classifica-
tion. The Detectron2 [17] was introduced afterwards as
a PyTorch-based modular object detection library as the
successor of Detectron. There are also other approaches
to the marine environment like instance segmentation
in acoustic backscatter data to identify pelagic species
[14].

2.2 Precision Fish Farming

The analogous principle of precision livestock farm-
ing in aquaculture has been defined with some adapta-
tions as precision fish farming [4]. The concept divides
the operation of precision aquaculture into sections:
Observe, Interpret, Decide, and Act. While decision-
making in aquaculture is often machine-aided due to
the rise of artificial intelligence [8], observational chal-
lenges like estimating biomass and lice tracking remain
challenging [12, 16]. Accurate mask measurements for
fish contain more details about the object’s shape com-
pared to fish detection through bounding boxes [1] and
can give rise to more complex analysis.

3 Material and Methods

3.1 Data Collection

The data collection took place at the Austevoll Re-
search Station (Institute of Marine Research, Bergen,
Norway) on 15.06.2021. Atlantic salmon smolts ( 20
cm/ 80 grams) in the sea cage (5x5m) were filmed using
the ARV-i (Transmark Subsea, Bergen), an underwater
drone with a navigation camera. We took a total of 3
videos with the navigation camera. The videos were
recorded with a resolution of 6156x4509 pixels, respec-
tively and varied in length ranging from 160 frames to
637 (368±199). All frames were being used in the pro-
posed method. The recordings were taken at a depth of
2-3.5m.

3.2 The Mask R-CNN model

A baseline of COCO Instance Segmentation with Mask
R-CNN from the library Detectron2 [17] was used,
i.e. the model named R50-FPN with the model id
137849600. The model had been trained on COCO
train2017 and evaluated on COCO val2017 [13]
and uses a residual neural network (ResNet) and fea-
ture pyramid network (FPN) backbone. If not denoted
with other attributes, we mean with Mask R-CNN al-
ways the pre-trained R50-FPN model. We note that
COCO train2017 and COCO val2017 [13] con-
tain no class “fish”.
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3.3 Proposed Method
The algorithmic pipeline for unsupervised training on
instance segmentation is sketched in Figure 1 and con-
sists of four main steps:

1. Extracting instance segmentation results from
baseline model on images with novel objects

2. Unify extracted instance segmentation masks

3. Filter the unified masks

4. Train baseline model with unified masks as la-
belled with class “fish”

3.3.1 Extracting Masks

Mask R-CNN inference gives us three kinds of re-
sults: Bounding box, segmentation and classification.
The output of the classification module was ignored.
Bounding box predictions made by the Fast R-CNN
module of Mask R-CNN are kept if their confidence
score is above 5%. We call this parameter “bound-
ing box confidence threshold”. Lower-scoring bound-
ing boxes were discarded. Theoretically, we could also
choose lower (or even 0%) values as bounding box con-
fidence threshold and thus allow each bounding box
prediction to be kept, but this would increase the in-
ference time significantly. Figure 2 and Figure 3 illus-
trate the difference in lowering the bounding box con-
fidence threshold from 5% to 0.05% which lead fore-
most to many not-usable predictions, but also more in-
stance segmentation of the novel object. Since this step
(see step 1) in Figure 1) just needs to produce at least
one mask per fish individual for the proposed method
to work, we chose 5% as the bounding box confidence
threshold.

In order to increase the number of detection masks,
we resized copies of the input images by scale factor
1 : 10 before running Mask R-CNN inference on them
as well. The resized images had thereby a resolution of
615x450 pixels.

3.3.2 Unify Instance Segmentation Masks

We ran similarity checks on each bounding box (and its
respective segmentation mask) from step 1 by iteration:

1. Collect all bounding boxes that have at least an In-
tersection over Union (IoU) of 80% with the iter-
ating bounding box.

(a) original image (b) segmentation output

Figure 2: Original image (a) and output of Mask R-
CNN at 5% bounding box confidence threshold (b).
The coloured boxes are bounding box predictions by the
Fast R-CNN module of the Mask R-CNN, the coloured
areas inside each bounding box illustrate the instance
segmentation masks, respectively.

2. Use the instance segmentation masks of the kept
group of bounding boxes to calculate an IoU.

3. If the IoU value of the instance segmentation
masks is higher than 50%, apply unification of
masks. Otherwise, continue with the next bound-
ing box.

4. The final mask consists of pixel positions covered
in at least 55% of the instance segmentation masks.
For more insight into the choice of this hyperpa-
rameter, see Section 3.5.

5. Add the final mask to the set of final masks if not
already present (no duplicates).

The pseudo-code is provided in Figure 4.
By selecting only the pixels which are present in at

least 55% of segmentations, this voting strategy sup-
presses outliers. See Section 3.5 for further exploring
the threshold number.

3.3.3 Filtering the Results

We filter novel object instance segmentation masks by
parameters such as extent, solidity, equivalent diame-
ter, mean value and aspect ratio which require human
knowledge about the novel object to tune. At the same
time, the quality of the resulting training data benefits
from filtering.

3.3.4 Training the Network

In the end, we fine-tune the Mask R-CNN model with
the extracted training data, starting at the pre-trained
weights of the R50-FPN model. The hyper-parameters
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(a) high saturation (b) unmodified

(c) blue light

Figure 3: Example output of Mask R-CNN at 0.05%
bounding box confidence threshold for the three differ-
ent recording modes (high saturation, unmodified, blue
light). The coloured boxes are bounding box predic-
tions by the Fast R-CNN module of the Mask R-CNN,
the coloured areas inside each bounding box illustrate
the instance segmentation masks, respectively.

are: We trained 750 epochs with a learning rate of
0.001, decaying the learning rate with the factor 0.1
at one quarter and at half of the total training, respec-
tively. Training time was consistently below 15 min-
utes for each run under the usage of a Quadro RTX
4000 (NVIDIA, California, USA) graphics card.

3.4 Negative Background Detection

We try to emulate an automatic negative background de-
tection. A prerequisite for that is that the initial video
files actually contain frames where no novel objects are
on. The detection as the background is the absence of
detection of any kind. Otherwise, we use humanly pre-
extracted backgrounds with no novel objects on them,
since our research focus is not on background detec-
tion. Filtered segmentation will be pasted into those
backgrounds and become images in our artificial train-
ing data set. Not pasting on the background without the
novel object could otherwise lead to failed training and
non-detection.

3.5 Overlap of Segmentations

One can decide on different parameters when a pixel
does belong to the final masks or not. We propose the

Algorithm 1 Pseudo-code for mask unification
Data: Set of bounding boxes B
Result: Final mask set M
for n ∈ B do

for k ∈ B do
if IoU(n, k) ≥ 80% then

Add k to group Gn

end
end
if IoU(Gn) ≥ 50% then

m = take55%(Gn)
Add m to M

end
end
Delete all duplicates in M .

Figure 4: Pseudo-code for mask unification with IoU
thresholds. Let IoU(·) be the IoU function (calcu-
lates IoU of the input) and take55%(·) a function with a
group of segmentation masks as input and a segmenta-
tion mask as output where every pixel position is cov-
ered in at least in 55% of the input mask group.

following strategy: If more than a certain percentage
of masks have one pixel in common, this pixel will be
included in the final mask.

In Figure 5 and Figure 6 we compare the different
mask results with different percentage thresholds, rang-
ing from 5% to 90%. 100% of the masks is equivalent
to the intersection of all masks for that novel object.
Our findings indicate that the best percentage lies at
55%. Since we forbid self-intersecting and other invalid
shapes (shapes with hull), the highest percentages of
100% and 95% are not yielding results. That means that
needing all mask to contain certain pixels result in mis-
fits for the final mask. On images as in Figure 5, where
the initially segmented masks for different classes show
low variability, the percentage threshold does not mat-
ter. Figure 6 shows that both over-detection on too-low
bounds and under-detection on too-high ones can hap-
pen on more challenging images. Therefore, the per-
centage threshold has to be chosen with care.

3.6 Experimental Design

We ran our proposed method on three videos, respec-
tively. One video was filmed with high saturation, one
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(a) 5% overlap (b) 25% overlap (c) 45% overlap

(d) 55% overlap (e) 75% overlap (f) 90% overlap

Figure 5: Detection results on the easier image on dif-
ferent mask overlap percentages.

(a) 5% overlap (b) 25% overlap (c) 45% overlap

(d) 55% overlap (e) 75% overlap (f) 90% overlap

Figure 6: Detection results on the more challenging im-
age (fish overlap) on different mask overlap percent-
ages.

in natural light without image processing and the last
one with a blue light source. We use the term “recording
mode” later to refer to the “high saturation”, “unmodi-
fied” or “blue light” video respectively. We used boot-
strapping for training: 10, 25 and 50 images were taken
from the bag of frames of each video for the proposed
method and training, respectively. In testing, a sample
of 25 images was randomly chosen out of the out-of-
bag sample frames. Training images, therefore, do not
appear in the testing set, respectively. The confidence
threshold for detection of 80% was chosen for testing
(after training the network, see Section 3.3.4), and we
counted the number of correct detections, overlaps and
incorrect detections and the total number of fish on each
test image (see Section 3.7). In total, we did the test-
ing procedure n = 5 times per recording mode (high
saturation, unmodified, blue light) and number of train-
ing images (10, 25, 50) in order to report the mean and

standard deviation of correct, overlapping and incorrect
detections as statistics.

3.7 Counting Strategy

Figure 7: Test image from the recording mode unmod-
ified with several overlaps. Yellow box: A masks con-
taining two fish even though the two fish are respec-
tively in an instance segmentation already. Black box:
One part of one fish is mixed up in the instance segmen-
tation mask of another fish, leading to a wrong mask.
Red box: Two fish are in one overlapping instance seg-
mentation mask even though they do not touch each
other pixelwise.

We counted the total number of fish on the test im-
ages and categorized segmentation masks into different
categories: Detection, overlap and incorrect. Fish with
only the caudal fin (fin at the end of the fish) on the
test images were not counted as fish. A mask fell under
the category “detection” if the mask covers at least the
whole main fish body (body without fins). The category
“overlap” was used when a mask spanned over multiple
fish since it is no longer an instance segmentation. Such
masks can appear multiple times, as shown in Figure 7.
“Incorrect” was the label for a mask if it did not con-
tain the main body of the fish (e.g. head is not included
in the mask) or other objects (not fish). By this count-
ing strategy, the number of total instance segmentation
masks on one test image equals the sum of the cate-
gories “detection”, “overlap” and “incorrect”. We note
that the number of instance segmentation masks does
not necessarily coincide with the counted fish in total on
test images. One example is shown in Figure 7 (yellow
box), where two correct instance segmentation masks
contain one fish respectively, but another partially con-
tains both fish. The overlap mask, therefore, increases
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the number of total masks without increasing the num-
ber of fish on the image.

4 Experimental Results
Across the bootstrap tests (25 test images from the
out-of-bag samples), an average of 70.8(±7.3) fish
in total were counted for the high saturation record-
ing mode, 132.3(±34.5) for the unmodified one and
232, 5(±49.1) for the blue light one.

4.0.1 Recording Mode as Factor for Detection

Figure 8 illustrates the testing results with boot-
strap. The detection percentage varies across record-
ing modes. While average detection results for the high
saturation/unmodified recording mode mark around
80%/60% depending on the number of images, respec-
tively, the average detection results for the blue light
recording mode never get higher above 40%. Testing
on the high saturation recording mode video frames
yielded the best results in terms of detection, but we
also report the highest percentage of overlaps among
the recording modes across the number of images.

Figure 8: Bootstrap testing results with error bars di-
vided in the categories detection (full line), overlap
(dotted line) and incorrect (dashed line) for the record-
ing modes high saturation (blue), unmodified (red) and
blue light (green). The x-axis describes the number of
training images, and the y-axis describes the occurrence
percentage of each category relative to the number of
fish on test images.

4.0.2 Number of Training Images

We calculated Pearson correlation coefficients between
the number of training images and the different detec-

tion categories for every recording mode. We report
two significant correlations (p < 0.05): For the blue
light recording mode, the number of training images
and the percentages of overlap masks have a strong pos-
itive correlation (r = 0.78). For the unmodified record-
ing mode, the number of training images and the per-
centages of incorrect masks have a moderate negative
correlation (r = −0.62). There is no significant corre-
lation between the number of images and the percent-
ages of masks in the category “detection” for the dif-
ferent recording modes, respectively. The analysis was
based on a sample of N = 5 observations respectively
(number of repetitions in the bootstrap testing).

5 Discussion
Our proposed method worked best in the high satura-
tion recording mode, then in the unmodified, and then
in the blue light recording mode as illustrated in Fig-
ure 8, which is revealing for the image quality needed.
It seems to be beneficial to have a high gap in the colour
values for instance segmentation.

Since the number of images is not correlated with
the detection results, we interpret that the pre-trained
Mask-RCNN model does not profit from additional im-
ages above 10 images as a training basis before being
operational for the specific lighting recording mode in
our study case. We want to note that other factors may
play a role which would potentially increase the number
of training images needed for training, such as rapidly
changing environments in one video.

The relative number of incorrect is relatively low,
suggesting that the method is more a “hit-or-miss” ap-
proach, meaning that we either get proper segmentation
or not at all. In our testing neither background, marine
snow, nor foreign objects seemed to have been fused
with the fish instance segmentation masks, which we
would have marked as “incorrect”.

The biggest source of instance segmentation error
originates from the category “overlap”. We want to
also emphasize that it seems to be a tendency from the
trained model to seek proximity between multiple fish
individuals, leading to multiple fish being marked as
one fish via masks, even though they are separated by
the background, as in Figure 7 (red box).

To counter non-detection, one could think to decrease
the bounding box confidence threshold during the de-
tection under testing. Lowering the bounding box con-
fidence threshold is not practical though; it introduces
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both instance segmentation masks which are sensible
and not-sensible, which are not tolerable during testing.
Therefore, we preferred to use the resized images as du-
plicates to produce more input images, leading to more
masks for the proposed method.

5.0.1 Special Case Of Aquaculture

The case of aquaculture poses fewer challenges to ob-
jects when changing the background or lighting of the
recorded footage. The recordings are on a sea cage
farm, resulting in a quasi-non-changing and closed spa-
tial environment per video, a controlled number of fish
species and meta information about them (husbandry
data). On the other hand, physical phenomena such
as changing light conditions and changing light reflec-
tion, light attenuation, fish hiding behaviour and the fish
physiology (reflective skin, blending in with the envi-
ronment) pose challenges in data collection [11]. The
background environment and colouring are subject to
change between videos, as well as changing light con-
ditions, which causes performance differences in our
method (see Figure 8).

5.0.2 Limitations

We had consistent overlap across all three recording
modes (see dotted line in Figure 8), suggesting a bigger
underlying problem. Fish shoals or in general fish in
higher density are bound to overlap from a 2D camera
perspective, but our method only works if instances are
cut off by the background. Otherwise, we can observe
results as in Figure 7, where the two fishes on the left
share a mask. This phenomenon is highly dependent
on the image. If the fish are not crowded like in Fig-
ure 9, no overlap problems occur and all available in-
stance segmentation masks are all separated and solely
contain one fish.

Another limitation comes from the data collection:
The lack of variation in the videos. If the environment
in a video surprisingly changes which can occur in the
real world, our model probably cannot keep up with its
segmentation task, since the first extracted images may
not mirror the environment correctly and corrupt model
results. We are also prone to detect other foreign ob-
jects. Even in this sea cage example, we cannot guaran-
tee that the novel object is a fish, it could also be waste
or plastics/machinery. So, while we claim to have an al-
gorithmic pipeline to segment fish, the knowledge that
the desired object exists in a given video is needed.

Figure 9: Mask R-CNN model prediction of a test im-
age with after our method. All but one fish instance
are marked with an instance segmentation mask, and no
overlap occurs.

6 Conclusion

In this work, we proposed a low-cost method for un-
supervised underwater fish instance segmentation using
video frames. We showed varying results for different
lighting recording modes and discussed the number of
images needed for the proposed method.

One promising improvement could entail the imple-
mentation of a tracking algorithm for the fish masks to
consider the temporal nature of the videos. This may
lead to minimising overlap detection and significantly
improving results.

All in all, we hope that this proof of concept shows
that the current apparent paradigm “more annotated
data, more knowledge” is not necessarily true; we
would rather pledge for that that we already have
enough annotated data but need to tickle out a little
more info for our tasks.

7 Funding

We are grateful to the Norwegian Research Council,
Project number 32330, for funding.

8 Acknowledgments

Acknowledgement to SubC3D AS for providing the
original video/images taken with the underwater drone
ARV-i (Transmark Subsea, Bergen).

7



References
[1] M. Buric, M. Pobar, and M. Ivašić-Kos. Ball de-

tection using yolo and mask r-cnn. pages 319–
323, 12 2018. doi: 10.1109/CSCI46756.2018.
00068.

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld,
M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele. The cityscapes dataset for se-
mantic urban scene understanding. In Proc. of the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. doi: 10.1109/CVPR.
2016.350.

[3] A. Dai, A. X. Chang, M. Savva, M. Halber,
T. Funkhouser, and M. Nießner. Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition
(CVPR), IEEE, 2017. doi: 10.1109/CVPR.2017.
261.

[4] M. Føre, K. Frank, T. Norton, E. Svendsen, J. A.
Alfredsen, T. Dempster, H. Eguiraun, W. Wat-
son, A. Stahl, L. M. Sunde, C. Schellewald, K. R.
Skøien, M. O. Alver, and D. Berckmans. Preci-
sion fish farming: A new framework to improve
production in aquaculture. Biosystems Engineer-
ing, 173:176–193, 2018. ISSN 1537-5110. doi:
10.1016/j.biosystemseng.2017.10.014.

[5] A. Geiger, P. Lenz, and R. Urtasun. Are we
ready for autonomous driving? the kitti vision
benchmark suite. In Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2012. doi:
10.1109/CVPR.2012.6248074.

[6] R. Girshick. Fast r-cnn. In 2015 IEEE Inter-
national Conference on Computer Vision (ICCV),
pages 1440–1448, 2015. doi: 10.1109/ICCV.
2015.169.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Ma-
lik. Rich Feature Hierarchies for Accurate Ob-
ject Detection and Semantic Segmentation. In
2014 IEEE Conference on Computer Vision and
Pattern Recognition, pages 580–587 TS – Cross-
Ref. IEEE, 62014. ISBN 978-1-4799-5118-5. doi:
10.1109/CVPR.2014.81.

[8] E. Glikson and A. Woolley. Human trust in arti-
ficial intelligence: Review of empirical research.

academy of management annals (in press). The
Academy of Management Annals, 04 2020. doi:
10.5465/annals.2018.0057.

[9] K. He, G. Gkioxari, P. Dollar, and R. Girshick.
Mask R-CNN. IEEE transactions on pattern anal-
ysis and machine intelligence, 42(2):386–397,
2020. doi: 10.1109/ICCV.2017.322.

[10] M. Jian, X. Liu, H. Luo, X. Lu, H. Yu, and
J. Dong. Underwater image processing and anal-
ysis: A review. Signal Processing: Image Com-
munication, 91:116088, 02 2021. doi: 10.1016/j.
image.2020.116088.

[11] I. Kjerstad. Underwater imaging and the ef-
fect of inherent optical properties on image qual-
ity. 2014. URL http://hdl.handle.net/
11250/245550. [Accessed Sep 08th, 2022].

[12] B. Kvæstad, T. Nordtug, and A. Hagemann. A
machine vision system for tracking population
behavior of zooplankton in small scale experi-
ments: a case study on salmon lice (lepeoph-
theirus salmonis krøyer, 1838) copepodite popu-
lation responses to different light stimuli. Biology
open, 9, 06 2020. doi: 10.1242/bio.050724.

[13] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Per-
ona, D. Ramanan, P. Dollár, and C. L. Zit-
nick. Microsoft COCO: Common objects in
context. In Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioin-
formatics), volume 8693 LNCS, pages 740–755,
2014. ISBN 9781479951178. doi: 10.1007/
978-3-319-10602-1 48.

[14] T. Porto Marques, M. Cote, A. Rezvanifar,
A. Branzan Albu, K. Ersahin, T. Mudge, and
S. Gauthier. Instance segmentation-based identifi-
cation of pelagic species in acoustic backscatter
data. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops
(CVPRW), pages 4373–4382, 2021. doi: 10.1109/
CVPRW53098.2021.00494.

[15] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-
CNN: Towards Real-Time Object Detection with
Region Proposal Networks. IEEE transactions
on pattern analysis and machine intelligence, 39
(6):1137–1149, 2017. doi: 10.1109/TPAMI.2016.
2577031.

8

http://hdl.handle.net/11250/245550
http://hdl.handle.net/11250/245550


[16] M. Saberioon, A. Gholizadeh, P. Cisar,
A. Pautsina, and J. Urban. Application of
machine vision systems in aquaculture with
emphasis on fish: state-of-the-art and key issues.
Reviews in Aquaculture, 9(4):369–387, 2017. doi:
10.1111/raq.12143.

[17] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and
R. Girshick. Detectron2. https://github.
com/facebookresearch/detectron2,
2019. [Accessed Sep 08th, 2022].

9

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

	Introduction
	Related Work
	Instance Segmentation
	Precision Fish Farming

	Material and Methods
	Data Collection
	The Mask R-CNN model
	Proposed Method
	Extracting Masks
	Unify Instance Segmentation Masks
	Filtering the Results
	Training the Network

	Negative Background Detection
	Overlap of Segmentations
	Experimental Design
	Counting Strategy

	Experimental Results
	Recording Mode as Factor for Detection
	Number of Training Images


	Discussion
	Special Case Of Aquaculture
	Limitations


	Conclusion
	Funding
	Acknowledgments

