
 

Smart meters and messaging 
Task 1.5 in the project “Integrated Renewable Resources and 
Storage: Operation and Management” 

Author: 

Ellen Nordgård-Hansen 

Rapport 7-2022, NORCE Energy and technology 

  

 



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

1 

Revisjoner/Revisions 

Rev. Date Author Checked by Approved by Reason for rev. 

0.1 12.10.2022 ENOR JAKO  Draft 

1.0 27.10.2022 ENOR   Final version, added discussion on spot 
price variations and on storage options 

  

Report title Smart meters and messaging 
Project No 101701 
Institution NORCE Norwegian Research Centre  
Client Research Council of Norway  
Classification: Open 
Report No. 7-2022, NORCE Energy and technology  
ISBN 978-82-8408-171-7 
No. of pages 44 
Date of publ.: October 22 
CC-licence CC BY 4.0 
Citation Nordgård-Hansen, E. (2022). Smart meters and messaging:  Task 1.5 in 

the project “Integrated Renewable Resources and Storage: Operation 
and Management”, report no. 7-2022, NORCE Energy and technology.  

Photo Credit "Installing solar panels" by OregonDOT is licensed under CC BY 2.0. 
Summary  

Monte Carlo-type simulations based on data from the Skarpnes village have been used to assess 
the benefits of smart meters for rooftop PV systems. The results show that when installing PV 
panels on private homes on the south coast of Norway, it is not immediately economically 
beneficial to also install batteries and smart meters. This will change if the present feed-in tariff is 
reduced or removed, and it may also change if the load patterns are changed. 

© NORCE Norwegian Research Centre.  
NORCE is certified in accordance with NS-EN ISO 9001:2015 and NS-EN ISO 14001:2015. 



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

2 

Contents 

1. Introduction .......................................................................................................................................3 

2. Optimal energy use ............................................................................................................................4 
2.1. Method overview..............................................................................................................4 
2.2. Data details .......................................................................................................................4 
2.2.1. Data for loads and PV production .....................................................................................4 
2.2.2. Spot prices ........................................................................................................................5 
2.2.3. Utility prices ......................................................................................................................5 
2.2.4. Normalized years ..............................................................................................................7 
2.2.5. PV electricity production uncertainty ...............................................................................9 
2.2.6. Load uncertainty ...............................................................................................................9 
2.3. Method details ..................................................................................................................9 
2.3.1. Generating random data for PV electricity production ....................................................9 
2.3.2. Generating random data for loads .................................................................................10 
2.3.3. Case A. Solar panels without battery ..............................................................................11 
2.3.4. Case B. Solar panels with battery ...................................................................................11 
2.3.5. Case C. Solar panels with battery and smart meter .......................................................11 
2.3.6. Rules for handling deviations from the plan ...................................................................11 

3. Results and discussion .....................................................................................................................13 
3.1. Overview .........................................................................................................................13 
3.2. Details .............................................................................................................................15 
3.2.1. Use of PV electricity production .....................................................................................15 
3.2.2. Covering the electricity loads .........................................................................................15 
3.2.3. Covering the hot water loads .........................................................................................15 
3.3. Electricity spot price variations .......................................................................................16 
3.4. Storage options ...............................................................................................................20 
3.5. Generalization .................................................................................................................21 
3.5.1. Load and PV electricity production data .........................................................................21 
3.5.2. Prices ...............................................................................................................................21 

4. Conclusions ......................................................................................................................................22 

5. References .......................................................................................................................................23 

Appendix A. Synthetic electricity prices ..............................................................................................24 

Appendix B. Normalized PV production and loads .............................................................................26 

Appendix C. PV production forecast ...................................................................................................29 
D.1. Forecast without smart meters ......................................................................................29 
D.2. Forecast with smart meters ............................................................................................31 

Appendix D. Randomly generated data for PV electricity production and loads ................................33 

Appendix E. Result details ...................................................................................................................36 
E.1. Use of PV electricity production .....................................................................................36 
E.2. Covering of electricity loads............................................................................................38 
E.3. Covering of hot water loads ............................................................................................40 
E.4. Battery SOC .....................................................................................................................42 
E.5. Spot prices ......................................................................................................................43 

 

  



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

3 

1. Introduction 
The present report is part of the project “Integrated Renewable Resources and Storage: Operation 
and Management”, partly financed by the Research Council of Norway as project 285545. More 
specifically, it is part of task 1.5.: 

To develop a tool for data integration, decision making, and messaging based on signals from 
smart meters for roof top PV systems. 

A smart meter is an electronic device that gives practically instantaneous, typically hourly of half-
hourly, information on energy consumption and energy production. These meters can also be 
connected to forecasts on weather and electricity prices. In contrast to when the project proposal 
was written, such meters are now available, and even mandatory, to the general consumer in 
Norway. The popularity of electrical cars in Norway has also created a market for smart chargers, 
see e.g. the solution offered by Haugaland Kraft1. 

It was therefore decided that NORCE’s contribution to task 1.5 should be “how integrating 
information on weather forecasts, electricity prices, and usage predictions influences the energy 
cost for the building”.  

As basis for this work, NORCE’s work on task 1.6 in the same project was used, as published in 
20212. Here, a cleaned data set for a private home on the south coast of Norway from one year is 
presented, the so-called Skarpnes data. The data set consists of PV production, electric loads, and 
hot-water loads. The latter is significant since the house has water-borne heating. The main 
contribution from task 1.6 is however an MILP (Mixed Integer Linear Programming) optimization 
algorithm that can optimize the operation of the house’s energy system. The original house’s 
energy system consists of loads, batteries, a ground source heat pump, a grid connection, and a PV 
panel for electricity production. For task 1.5 no ground source heat pump was included.  

Another data set, the so-called Bergen data, was used for parts of this work. This is daily 
production from a solar power system supplying electricity to a commercial building in Bergen. 
The system consists of 368 panels with 101 kWp installed power, and it produced about 70 000 
kWh per year. Most of the panels are installed facing east of west. The data is from August 2018 to 
February 2022, and it has been supplied by Eviny. 

The method used for task 1.5 is presented in section 2, while results and discussion follow in 
section 3, before conclusions are given in section 4. Details on data, methods, and results are 
given in appendices. 
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2. Optimal energy use 

2.1. Method overview 

Three alternatives are compared to consider the benefits of a smart meter: 

A. A family installing solar panels. The resulting PV production is used to cover the loads as 
far as possible, and excess PV production is sold to the utility if possible. Extra loads are 
covered from the utility.  

B. A family installing solar panels and a battery. The system operation is optimized for one 
year, and this plan is followed as far as possible. Any deviations are handled in a rule-
based manner. The battery is dedicated to the PV electricity, so direct energy storage from 
the grid to the battery is not possible. PV electricity can only be sold to the utility if the 
current production exceeds the current loads. 

C. A family installing solar panels, a battery, and a smart meter. The smart meter allows 
optimizing for the next day, using the weather forecast and day-ahead electricity prices. 
Any deviations are handled in the same rule-based manner as in case B, but the deviations 
in both PV production and loads are significantly smaller. The same limitations for storage 
and sales of energy applies as in case B. 

To compare these alternatives, a Monte Carlo approach was used, where several realisations were 
tested with variations in PV production and loads. To do so, the data summarized below was used. 
Details are given in section 2.2. 

- PV and load data from Skarpnes for the period 1.5.2015 – 30.4.2016. Details on this data 
set is given by Nordgård-Hansen et al.2. 

- Nordpool’s day-ahead spot prices. 
- The net tariff that applied in Agder from April 1st to July 1st 2022. 
- The consumer agreement “LOS Solstrøm” as accessed 30.9.2022. 
- Standard deviation for predicting hourly PV production for a whole year is assumed to be 

116 %, found from the Skarpnes data. 
- Standard deviation for one-day-ahead prediction of hourly PV production is assumed to be 

20 %, as per the model of Campo-Ávila et al.3. 
- Standard deviation for predicting hourly electricity and hot water loads for a whole year is 

assumed to be 280 and 1120 W, respectively, found from the Skarpnes data. 
- Standard deviation for one-day-ahead prediction for hourly electricity and hot water loads 

is assumed to scale in the same way as the PV production data, giving 48 and 193 W, 
respectively. 

The comparison is performed as described in section 2.3. 

2.2. Data details 

2.2.1. Data for loads and PV production 

The year of cleaned data from the Skarpnes data set is from May 1st 2015 to April 30th 2016. The 
Skarpnes house is a near zero-energy building. As explained by Nordgård-Hansen et al.2, the loads 
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are multiplied by a factor of 1.8 to correspond to the standard heat load demands pr m2 for a 
building from 1997 at coastal Southern Norway4. 

2.2.2. Spot prices 

Nordpool’s day-ahead spot prices for the period 2015 – 2016 is used as basis, to keep any relations 
that local weather conditions may have caused between loads, PV production and electricity 
prices. To make the analysis relevant in 2022, synthetic hourly prices for 2020, 2021, and 2022 are 
generated. To do so, each hourly price from 2015 and 2016 is divided by its respective monthly 
mean price. For each year, an average day is then defined from all these relative prices. Synthetic 
hourly prices are then generated for the 2020-2021 and for 2021-2022 by multiplying the average 
day from the “donor year” by the monthly mean for the “recipient year”. 

In alternative B, the synthetic prices for the period 2020-2021 is used for optimization. This mimics 
using last year’s prices to optimize next year’s operation. An example of the resulting prices is 
shown in Figure 1, while all prices are shown in Appendix A. 

 

Figure 1. Synthetic el spot prices for 2020, based on details from 2015 

2.2.3. Utility prices 

The net tariff applied is shown in Figure 2. Capacity tariff was introduced in Norway July 1st 2022. 
However, the model chosen (a lump sum depending on the average of the power used during the 
three highest hours from three different days per month) is different from the model chosen for 
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task 1.6 of the present project (a cost per kW applied only to the maximum power used for one 
hour per month).  

 

Figure 2. Agder Energi Nett 1.4.2022 – 1.7.2022 

The consumer agreement “LOS Solstrøm” is shown in Figure 3. This covers energy prices both as 
paid by the consumer for utility use, and energy prices received from the consumer for excess PV 
production.  
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Figure 3. LOS Solstrøm 30.9.2022 

2.2.4. Normalized years 

The registered data has resolution one minute. The data is resampled to hourly resolution, using 
the mean of the values registered for each hour. This is particularly important for the electricity 
load data, which is very spiky. The data is then converted to relative values by dividing by the 
monthly mean values. A normalized day is then identified by averaging these relative values. 
Finally, a normalized year is found as multiplying the hourly values for the normalized day by the 
monthly averages. The result is a data set where the time series for each day has the same shape, 
but is scaled differently for each month. Table 1 gives some properties of the normalized year 
data. 
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Table 1. Some properties of the normalized year data identified from the Skarpnes data 

 PV production Electricity load Hot water load 

Mean of registered data [W] 811 224 1 080 

Mean of normalized year [W] 811 224 1 080 

RMS distance from normalized year [W] 810 280 1 120 

RMS distance from normalized year 
relative to monthly mean1 [%] 

116 126 147 

 

The normalized year for the PV production is illustrated in Figure 4. All the normalized data for 
both PV production and loads are shown in Appendix B, both for the full year and zoomed in to a 
few days. 

 

Figure 4. Registered and normalized data for PV production for the full year 

 

1 100 * np.sqrt(np.mean(((timeseries['D0'] - normal_year[0])/monthly_mean.values[months, 
0])**2)) 
 



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

9 

2.2.5. PV electricity production uncertainty 

Standard deviation for predicting PV production for a whole year can be estimated by different 
methods: 

• The Bergen data contains production data from five years. The average standard deviation 
in daily PV production is 60 % of the daily mean2.  

• Using the concept of a normalized year, the standard deviation in hourly PV production 
data from the Skarpnes data can be estimated to 810 W or 116 % of the monthly mean.   

• Global irradiation data could also be used to estimate this uncertainty. 

It is reasonable that the variation in hourly production is larger than the variation in daily 
production. The value from the normalized year is therefore used in the following, while the value 
from the Bergen data serves to confirm magnitude of the uncertainty. 

Further details on smart meters for PV production forecast, based on the Bergen data, is given in 
Appendix B. 

2.2.6. Load uncertainty 

The standard deviation of the load data for a whole year was found from the concept of 
normalized years. The values are given in Table 1. 

2.3. Method details 

A Monte Carlo approach was used, where several realisations were tested with variations in PV 
production and loads. All optimizations were performed using the actual PV production and loads 
from the Skarpnes data. Then, a number of simulations were run with random deviations from 
these, assuming normal distributions of the deviations with 0 mean and standard deviations as 
given in section 2.1.  

Details on generating the data sets are given in sections 2.3.1 - 2.3.2, while details specific to the 
three cases are given in sections 2.3.2 - 2.3.5. 

2.3.1. Generating random data for PV electricity production 

The PV electricity production varies strongly with time of year. Relative uncertainty is therefore 
used, rather than a fixed value in W. Deviations were only calculated when the sun was above the 
horizon, using data from a dedicated website for determining solar altitude5. When one of the 
randomly chosen deviations resulted in a negative PV production, this deviation was swapped with 
another deviation, positive or less negative, that resulted in a zero or positive PV production for 
both time stamps. To avoid accumulation of large positive deviations during the winter months, 
swapping was only allowed within plus/minus 30 days. Any remaining negative deviations were 

 

2 
np.mean(100*sumdf.groupby(sumdf.index.dayofyear).std()/sumdf.groupby(sumd
f.index.dayofyear).mean()) 
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clipped, resulting in a slightly higher average PV electricity production in some of the Monte Carlo 
realizations than in the starting point.  

A sample realisation is illustrated in Figure 5 for a few days, while data for the whole year is shown 
in Appendix C. 

 

Figure 5. Planned and actual PV electricity production for a few days in December. The former is 
the true, registered data, while the latter is generated by adding random deviations to this. 

2.3.2. Generating random data for loads 

Absolute, rather than relative, deviations were used to generate load data, and no limitations 
were set on the time of day. Otherwise, the same procedure was used as for the PV electricity 
production. Without the swapping procedure, cases A and B with high uncertainties, resulted in 
more than 20 % higher loads than case C, which has lower uncertainties. 

A sample realisation is illustrated in Figure 6 for a whole year. Samples for both hot water and 
electricity loads for the full year and for a few days are shown in Appendix C. 



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

11 

 

Figure 6. Planned and actual electricity loads for the whole year. The former is the true, 
registered data, while the latter is generated by adding random deviations to this. 

2.3.3. Case A. Solar panels without battery 

The simulations were run with the uncertainties given for a whole year in section 2.1 and the 
synthetic spot prices for 2021 and 2022. 

2.3.4. Case B. Solar panels with battery 

The simulations were run with the uncertainties given for a whole year in section 2.1. The 
synthetic spot prices for 2020 and 2021 were used for optimization, while the synthetic spot prices 
for 2021 and 2022 were used for the realisations. 

2.3.5. Case C. Solar panels with battery and smart meter 

The simulations were run with the uncertainties given for one-day-ahead predictions in section 
2.1. The synthetic spot prices for 2021 and 2022 were used for both optimization and for the 
realisations. 

2.3.6. Rules for handling deviations from the plan 

Several kinds of deviations could occur. Some could happen at the same instant, like higher PV 
production and lower electricity load, and some only at different time steps, like higher and lower 
PV production. The rules used to handle each kind of deviation are listed in prioritized order 
below: 

 



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

12 

• Higher PV production than planned 
o Reduce electricity bought from the grid to cover loads 
o Increase storage to battery 
o Increase PV electricity sale to the grid 

• Lower PV production than planned 
o Reduce electricity sale to the grid 
o Reduce storage to battery 
o Reduce use of PV electricity to cover loads 

• Lower loads than planned 
o Reduce electricity bought from the grid to cover loads 
o Reduce battery usage 
o Reduce use of PV electricity, and sell any resulting PV electricity excess 

• Higher loads than planned 
o Reduce sales of PV electricity and use more PV electricity to cover loads 
o Increase electricity bought from the grid to cover loads 

• Resulting battery SOC (state of charge) out of bounds 
o Reduce storage prior to too high SOC 
o Reduce usage prior to too low SOC 
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3. Results and discussion 

3.1. Overview 

An overview of the costs for 100 simulations of each of the three cases studied is given in Table 2 
and Table 3. Case B was optimized using lower electricity prices than case A and C. If case B is 
optimized with the same electricity prices as the others, the result would be as for case C. 

Table 2. Overview of costs for the three cases studied 

Case 
Cost [NOK] 

Optimized Average Minimum Maximum Standard dev. 

A, no battery 16 600 16 600 15 800 17 200 240 

B, battery  16 500 15 900 17 100 230 

C, battery and smart meter 16 440 16 600  16 470  16 720  46 

Table 3. Percent-wise improvement of costs for the three cases studied 

Case 
Cost reduction from simpler case [%] 

A, no battery B, battery 

B, battery 0.8  

C, battery and smart meter 0.1 -0.7 

 

These simulations indicate that neither adding a battery nor adding a smart meter gives any 
significant change in the energy cost for the system. 

In the present case, without ground source heat pumps, the cost consists of three terms: 

• PV-based profit, i.e. the profit made from selling electricity to the grid 
• Time-based cost, i.e. fixed monthly rates for buying electricity from the grid 
• Util-based cost, i.e. the cost for buying electricity from the grid 

Figure 7 shows how these three parts contribute to the whole for the three cases studied.  
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Figure 7. Top: the mean values of the different parts of the cost for the three cases studied 
plotted together with the total cost. Note the negative PV cost, which is profit from selling PV 
produced electricity. Middle: The same data, zoomed in on the PV-based cost, with error bars 

indicating two standard deviations for the PV-based cost. Bottom: The same data, zoomed in on 
the util-based cost, with error bars indicating two standard deviations for the util-based cost. 

The time-based cost is constant for all cases. 

By far the largest part of the cost is util-based. This is larger for case A than for the other cases, 
since case A has no battery available and must therefore buy electricity to cover any loads that 
exceed the current PV electricity production.  

It is seen that the PV-based profit is larger for case A than for the other two cases. This is also 
caused by the lack of a battery, meaning all excess PV production is sold to the grid.  

The time-based cost is constant and equal for all cases. It is only included here for completeness. 

Finally, it is noted that all error bars are much smaller than the costs themselves. 95 % confidence 
intervals can be estimated from the mean values plus/minus two standard deviations. Zooming in, 
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as is done in the middle and bottom plots in Figure 7, it is seen that these intervals overlap 
between cases A and B, but not between A and C.  

Both the PV-based profit and the util-based cost are thus significantly higher with neither battery 
nor smart meter installed than with both. For the prices used in these simulations, these 
differences balance out, making the net cost independent of the installation of both battery and 
smart meter. 

3.2. Details 

In the following, the power flows for three cases are compared for a randomly chosen date, 
November 20th. This is a day with only minor spot price variations through the day, but where the 
average price increased from below 0.1 NOK/kWh in 2020 to about 1 NOK/kWh in 2021.  

Plots PV electricity production, loads, battery SOC, and spot prices for all three cases are given in 
Appendix E. 

3.2.1. Use of PV electricity production 

Note that the planned PV production, used for optimization, is the same in all three cases, while 
the actual production is the same for cases A and B. For case C, the actual and planned production 
are closer, meaning the optimal plan can be followed more closely.  

As expected, case A results in the most selling of PV produced electricity to the grid (red bars), 
while cases B and C make use of the battery (green bars). With the close to constant spot prices 
for this day, the difference between selling the electricity or using the battery to avoid buying 
electricity later is small.  

3.2.2. Covering the electricity loads 

As for PV electricity production, the plans used for optimization are identical for all cases, and the 
actual loads are the same for cases A and B.  

For case B, the reduction in electricity load at 9 am results in selling PV production to the grid. The 
deviation rules used, see section 2.3.6, do not suggest filling up the battery in this situation. 

Also for case B, the battery is used from 2 pm, i.e., earlier than planned. This is because the 
battery is filled more than planned from 12 am. 

3.2.3. Covering the hot water loads 

As for PV electricity production, the plans used for optimization are identical for all cases, and the 
actual loads are the same for cases A and B.  

Due to changes prior to November 20th, the battery is empty at 9 am for case B. Therefore, 
electricity must be bought from the grid to cover the hot water load at this time, even though the 
load at 9 am is significantly smaller than the planned battery use. 
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3.3. Electricity spot price variations 

If the electricity spot prices were low when PV electricity was produced and high when loads 
occurred, a battery would be useful. Some days, like November 20th, the spot prices were close to 
constant. Other days, like July 3rd, 2021, actually had the highest synthetic prices when the sun 
was shining, as shown in Figure 8. 

 

Figure 8. Electricity spot prices for July 3rd, 2021 

January 21st had highest synthetic electricity spot prices when the sun was not shining, as seen by 
comparing Figure 9 and Figure 10. The different handling of this situation in cases A and C are 
shown in Figure 10 - Figure 13. 
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Figure 9. Electricity spot prices for January 21st, 2022 

 

Figure 10. Optimized use of PV production January 21st in case A, no battery 

 

Figure 11. Optimized use of PV production January 21st in case C, battery and smart meter 
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Figure 12. Optimized coverage of the hot water load January 21st in case A, no battery 

 

Figure 13. Optimized coverage of the hot water load January 21st in case C, battery and smart 
meter 

By comparing cases A and C in Figure 10 - Figure 13 it is seen that it is economically beneficial to 
store energy in the battery from noon to avoid buying expensive electricity at 6 pm. This feature of 
having to sell electricity at a low price, just to buy the same amount later at a higher price, is called 
capture cost. The fact that the battery and smart meter do not result in a benefit for the year as a 
whole, indicates that the capture cost is small, i.e., that few days have a price profile as seen in 
Figure 9. 

To quantify the potential for cost savings by optimizing the use of PV produced electricity, the 
standard deviation of the spot price for each day was calculated. Only the hours when the sun was 
above the horizon were considered. A large price variation indicates that it could be beneficial to 
store energy for later user, rather than selling it when it is produced. A summary of the results is 
shown in Table 4, where the variation is grouped in small, medium, and large. A significant change 
is seen between 2020 – 2021 and 2021 – 2022. On the other hand, the price synthetization did not 
have a strong influence on the average daily spot price variation.  
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Table 4. The number of days with various magnitude of daily spot price variation during the time 
when the sun was above the horizon. Small variation is defined as standard deviation less than 

0.2 NOK/kWh, medium variation as between 0.2 NOK/kWh and 1.0 NOK/kWh, and large 
variation as standard deviation above 1.0 NOK/kWh 

Period Price source 
Days with spot price variation of magnitude 

Small Medium Large 

1.5.2020 – 30.4.2021  Actual 275 90 0 

1.5.2020 – 30.4.2021   Synthesized 264 101 0 

1.5.2021 – 30.4.2022 Actual 6 332 27 

1.5.2021 – 30.4.2022   Synthesized  9 326 30 

 

The results in Table 4 indicate a potential for cost savings by storing PV produced electricity. To 
look deeper into this, the daily correlation coefficient between the PV electricity production and 
the synthesized el spot price for 1.5.2021 – 30.4.2022 was calculated, again using only the hours 
when the sun was above the horizon. A summary of the results is shown in Figure 14. It is seen 
that far more days have a positive correlation than have a negative correlation. It is also seen that 
the most common correlation coefficient value is between 0.6 and 0.8. In other words, with the 
data set used here, the el spot price is usually high when the PV electricity production is high. 
Consequently, as long as the PV produced electricity can be sold at spot price, big savings cannot 
be expected from selling this electricity at another time than when it was produced. 
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Figure 14. Daily correlation coefficients between PV production and synthesized el spot price for 
the period 1.5.2021 – 30.4.2022 

3.4. Storage options 

As mentioned in section 2.1, the simulations presented here assume that PV electricity can only be 
sold to the utility if the current production exceeds the current loads. An alternative interpretation 
of the “LOS Solstrøm” agreement is that energy stored in a battery can be used to cover some of 
the current loads, so PV electricity can be sold if it exceeds the remaining, net loads. Optimizing 
cases B and C for this interpretation gave only minute differences from the original optimizations. 
In the present model, energy cannot be stored directly from the utility to the battery. 
Consequently, this battery usage only allows a time shift in when PV produced electricity is sold to 
the utility. As discussed in section 3.3, the el spot price is often high when the PV electricity 
production is high. When there is a small energy loss related to charging and discharging of the 
battery, such shifting is clearly not very beneficial. 

As mentioned in the introduction, the model used here was developed for an energy system with 
geothermal energy storage. This storage was available from the utility, while the battery was 
reserved for PV electricity usage. Allowing energy storage directly from the utility to a battery 
would clearly reduce operational costs, since there are significant variations in the el spot price 
each day, as shown in Table 4. However, further discussion of such usage is outside the scope of 
the present task, which has smart meters for rooftop PV systems as focus. 

Even though the daily spot price variation does not encourage short-term storage of PV electricity, 
the sunshine hours in Norway are very few when the loads are high, in winter. Consequently, 
seasonal storage may be cost-efficient, in particular if the feed-in tariff is lower than used in the 
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present simulations. Since the focus of the present task is smart meters, which are not required 
for optimal use of seasonal energy storage, this topic is not discussed further. 

3.5. Generalization 

The present simulations have considered data from one specific house, using prices for one 
particular region for one particular time period. An important question is therefore if and how the 
results can be generalized. In the following, each of the factors mentioned are discussed in more 
detail. 

3.5.1. Load and PV electricity production data 

As discussed earlier, the capture cost is small for the scenarios simulated here. Higher loads during 
times with no PV electricity production would favour batteries and smart meters. It would 
therefore be interesting to do similar simulations for other cases, using either typical data sets or 
actual measurements from other parts of Norway or e.g., from India. 

3.5.2. Prices 

That the utility company pays the customer for produced electricity is called feed-in tariff. As 
discussed previously in this project2, this is a political instrument, designed to encourage 
installation of PV panels. If the feed-in tariff is removed or reduced, the benefit of batteries and 
smart meters will increase significantly. 

The analyses presented here are based on utility prices on the south coast of Norway during the 
period 1.5.2020 – 30.4.2022. The period was chosen to be relevant at the time of writing this, in 
October 2022. As illustrated in Appendix A, this is a period when the average spot price increased 
dramatically, from below 0.02 NOK/kWh in July 2020 to 2-2.5 NOK/KWh in April 2022. The error 
introduced by using last year’s prices to optimize the system operation is therefore high, 
compared to times and places with more predictable electricity prices. Looking into the future, an 
increased reliance on uncontrollable renewable energy sources is planned in Europe. Combined 
with a possible growth of energy-intensive industry in Norway, this indicates that the present 
situation, with high and varying spot prices, may very well be representative for the next few 
years. 
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4. Conclusions 
Simulations on data from the Skarpnes village have shown that when installing PV panels on 
private homes on the south coast of Norway, it is not immediately economically beneficial to also 
install batteries and smart meters. This will change if the present feed-in tariff is reduced or 
removed, and it may also change if the load patterns are changed. 
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Appendix A. Synthetic electricity prices 
Synthetic electricity prices are shown in Figure 15 - Figure 18. 

 

Figure 15. Synthetic el spot prices for 2020, based on details from 2015 

 

Figure 16. Synthetic el spot prices for 2021, based on details from 2016 
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Figure 17. Synthetic el spot prices for 2021, based on details from 2015 

 

 

Figure 18. Synthetic el spot prices for 2022, based on details from 2016 



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

26 

Appendix B. Normalized PV production and loads 
Registered and normalized data for PV production and loads are shown in Figure 19 - Figure 24. 

 

Figure 19. Registered and normalized data for PV production for the full year 

 

Figure 20. Registered and normalized data for PV production for a few days 
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Figure 21. Registered and normalized data for electricity loads for the full year 

 

Figure 22. Registered and normalized data for electricity loads for a few days 
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Figure 23. Registered and normalized data for hot water loads for the full year 

 

Figure 24. Registered and normalized data for hot water loads for a few days 
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Appendix C. PV production forecast 
The Bergen data set is not from a system with smart meters, and the data set only has daily 
resolution. Consequently, it was interesting to investigate to what degree a smart meter is 
required to give forecasts for PV electricity production. 

D.1. Forecast without smart meters 

Place, date, and time are static information, readily available anywhere. Using this to predict PV 
electricity production serves as a baseline for evaluating smart meter methods. 

The following is known: 

• The transfer function from light falling on a horizontal plane on the ground with irradiation 
𝐼𝐼ℎ, to light falling on a PV panel at any angle with irradiation 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, is given in equation 
(1), 
 

𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
(cos(90° −𝜙𝜙) ⋅ cos(𝛼𝛼 − 𝛾𝛾)) + (sin(90° − 𝜙𝜙) ⋅ tan(𝜃𝜃))

tan(𝜃𝜃) ⋅ 𝐼𝐼ℎ (1) 

where  

o 𝜙𝜙 is the panel’s inclination, where 0° is a flat plane, e.g., mounted on a flat roof, 
and 90° is a vertical panel, e.g., mounted on a wall 

o 𝛼𝛼 is the azimuth of the incoming light, i.e., the angle between due north and the 
projection of the incoming light beam on the ground. Incoming light from the east 
thus has 𝛼𝛼=90° 

o 𝛾𝛾 is the orientation of the PV panel, i.e., the angle between due north and the 
projection of a normal to the panel on the ground. A west-facing PV panel thus 
has 𝛾𝛾=270° 

o 𝜃𝜃 is the solar altitude, where any value below 0° indicates that the sun is below 
the horizon. In practice, a minimum angle of 3.5° is used 

Negative values for 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 indicates that light hits the panel from behind.  

• The solar angles altitude and azimuth as a function of position, date, and time. These can 
e.g. be obtained from the web site of Sustainable By Design5 

• Typical incoming radiation as a function of position, date, and time. These can e.g. be 
obtained from the web site PVGIS6 

Global incoming radiation consists of direct radiation and diffuse radiation. Diffuse 
radiation is light spread by the atmosphere, clouds, etc., as well as light diffusely reflected 
by the ground. As exemplified in Figure 25, diffuse irradiance (orange line) can be of the 
same magnitude as direct irradiance (blue line).  
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Figure 25. Solar irradiance on an eastwards oriented solar panel with 40° slope Bergen in 
20056 

Figure 26 shows the daily PV energy production from the Bergen data as blue dots, taken as the 
maximum value registered for each day of the year during the period the data is from, i.e., August 
2018 to February 2022. In the same plot, a monthly estimate of the irradiance hitting the panels is 
shown as red stars. This estimate is found as the monthly average of the daily direct irradiance 
hitting a horizontal plane in Bergen from PVGIS6, combined with equation (1). In equation (1) it is 
assumed that half the panels are oriented eastward and the other half westward, all with slope 
40°. It is seen that the overall shape of curve is well described by this simple estimate. However, 
the production was often lower than predicted from the estimate. Also, the fit is less good in May 
– September than for the other months. 
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Figure 26. Daily PV energy production as the maximum value registered in the period 2018 – 
2022 in the Bergen data, plotted together with average direct irradiation per month estimated 

from average direct irradiation per month from PVGIS6 and equation (1), assuming half the 
panels being oriented eastward and the other half westward, all with slope 40°. 

Consequently, place, date, and time can only give rough estimates of the maximum PV electricity 
production that can be expected. 

D.2. Forecast with smart meters 

The model of Campo-Ávila et al3 was found after a brief, simple literature search. They combined 
expert knowledge, data-driven modelling, and weather forecasts to make one-day-ahead 
predictions of hourly global solar radiation. Doing so, they found a relative root mean square error 
of prediction of less than 20 %. 

Figure 27 shows the PV production for each of the inverters in the Bergen data, plotted against the 
sum of registered global irradiation on east- and west-oriented planes at slope 40° from PVGIS6. 
Note that the PVGIS measurements are not available after 31.12.2020. A clear correlation is seen, 
and as expected, the different inverters exhibit different proportionality constants. Statistical 
properties of these correlations are given in Table 5. 
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Figure 27. PV production from the Bergen data and measured global irradiance from 2018 – 
2020. The global irradiance is the sum of irradiance hitting east- and west-oriented panels at 

slope 40° taken from PVGIS6. 

Table 5. Statistical properties of linear regression on the data in Figure 27 

Inverter R2 RMSEC [kWh] 

Solis 2 0.95 10 

Solis 1 0.95 10 

Fronius 2 0.95 10 

Fronius 1 0.95 10 

Solis 3 0.95 1.5 

Solar edge 0.96 2.3 

 

From Figure 27 and Table 5 it is seen that global irradiance can be used to estimate PV electricity 
production with high accuracy. The global irradiation values can either be forecast directly, or they 
can be predicted from weather forecasts, e.g. by the model of  Campo-Ávila et al3. A calibration 
period is required before the PV production can be predicted directly. 
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Appendix D. Randomly generated data for PV electricity 
production and loads 

Sample realisations are illustrated in Figure 28 - Figure 33. 

 

Figure 28. Planned and actual PV electricity production for the whole year. The former is the 
true, registered data, while the latter is generated by adding random deviations to this. 

 

Figure 29. Planned and actual PV electricity production for a few days in December. The former 
is the true, registered data, while the latter is generated by adding random deviations to this. 
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Figure 30. Planned and actual electricity loads for the whole year. The former is the true, 
registered data, while the latter is generated by adding random deviations to this. 

 

Figure 31. Planned and actual electricity loads for a few days in November. The former is the 
true, registered data, while the latter is generated by adding random deviations to this. 
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Figure 32. Planned and actual hot water loads for the whole year. The former is the true, 
registered data, while the latter is generated by adding random deviations to this. 

 

Figure 33. Planned and actual hot water loads for a few days in June. The former is the true, 
registered data, while the latter is generated by adding random deviations to this. 
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Appendix E. Result details 

E.1. Use of PV electricity production 

Examples of the use of PV electricity generation for the three cases for November 20th are shown 
in Figure 34 - Figure 36. 

 

Figure 34. Optimized (top) and actual (bottom) use of PV production in case A, no battery 
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Figure 35. Optimized (top) and actual (bottom) use of PV production in case B, battery 

 

Figure 36. Optimized (top) and actual (bottom) use of PV production in case C, battery and smart 
meter 
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E.2. Covering of electricity loads 

Examples of the use how the electricity loads are covered for the three cases for November 20th 
are shown in Figure 37 - Figure 39. 

 

Figure 37. Optimized (top) and actual (bottom) coverage of the electricity load in case A, no 
battery 

 

Figure 38. Optimized (top) and actual (bottom) coverage of the electricity load in case B, battery 
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Figure 39. Optimized (top) and actual (bottom) coverage of the electricity load in case C, battery 
and smart meter 
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E.3. Covering of hot water loads 

Examples of the use how the electricity loads are covered for the three cases for November 20th 
are shown in Figure 40 - Figure 42. 

 

Figure 40. Optimized (top) and actual (bottom) coverage of the hot water load in case A, no 
battery 

 

Figure 41. Optimized (top) and actual (bottom) coverage of the hot water load in case B, battery 



N O R C E  N o r w e g i a n  R e s e a r c h  C e n t r e  A S   w w w . n o r c e r e s e a r c h . n o  

41 

 

Figure 42. Optimized (top) and actual (bottom) coverage of the hot water load in case C, battery 
and smart meter 
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E.4. Battery SOC 

Examples of the battery SOC for the two cases with battery for November 20th are shown in 
Figure 43 - Figure 44. 

 

Figure 43. Optimized (top) and actual (bottom) battery SOC in case B, battery  

 

Figure 44. Optimized (top) and actual (bottom) battery SOC in case C, battery and smart meter 
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E.5. Spot prices 

The electricity spot prices used for November 20th are shown in Figure 45 and Figure 46. 

 

Figure 45. Electricity spot prices for November 20th, 2020 

 

Figure 46. Electricity spot prices for November 20th, 2021 
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