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1 Introduction 
 

Different data types carry different information about the subsurface, so there should be advantages 

in combining information from different data types when seeking to infer subsurface properties such 

as changes in CO2 saturation and pressure with time. We have considered the following data types: 

conventional seismic data; gravimetric data, and; distributed acoustic sensors (DAS) data. These data 

types, and the corresponding forward-modelling techniques, are described in Vandeweijer et al., 2021, 

Bhakta et al., 2023.  

An important aim for the DigiMon project is to qualify a cost-efficient monitoring system for use with 

large-scale CO2 sequestration. It is therefore of particular interest to assess if it is possible to obtain 

satisfactory monitoring results without using the most acquisition-expensive data type(s). Acquisition 

of conventional seismic data is considerably more costly than acquisition of gravimetric and DAS data 

combined. In addition to comparing the monitoring performances of the individual data types, we have 

therefore also compared the performance of gravimetric and DAS data combined, to that of 

conventional seismic data. 

We have developed a modelling framework for geophysical monitoring with the abovementioned 

geophysical data types that in addition to a best estimate of the monitoring target also quantifies the 

uncertainty in that estimate. The framework uses an ensemble-based implementation of Bayesian 

(and sequential Bayesian) statistics to achieve this at an affordable computational cost for the 

numerical examples studied. If the correct monitoring results are known, which they will be if a study 

with synthetic data is conducted, we can therefore assess with what certainty a particular data type 

produced better results than another data type for the study example in question.  

We test the performances of the different data types (including relevant data-type combinations) by 

applying this framework on a sector of the Smeaheia reservoir model with synthetic data. Smeaheia is 



a saline aquifer offshore Norway (Mulrooney et al., 2020) under development for long term CO2 

storage, see Figure 1.  

 

 

Figure 1: Location of the Smeaheia CO2 storage site offshore Norway (modified after Fawad et al., 

2021) 

 

2 Inversion methodology 
The main ingredients of the inversion methodology applied for the modelling of the monitoring is 

described below in a high-level fashion, that is, avoiding details. A full description of the methodology 

can be found in Bhakta et al., 2023.  

2.1 Bayesian inversion 

When facing a problem where some data are to be inverted, there is often information available about 

the problem in addition to the data. With Bayesian inversion, this additional information is utilized to 

build a statistical model of the unknown quantities before the data is applied, i.e., a prior model. Both 

the data and the unknown quantities are considered as random variables. Subsequently, the data are 

inverted, taking also the prior model into account, resulting in the posterior model for the unknown 



quantities. The posterior model is thus a statistical model from which a best estimate (the mean) and 

a measure of the uncertainty in that estimate (the standard deviation) can be extracted.  

2.2 Sequential Bayesian inversion 

With sequential Bayesian inversion of two data types, Bayesian inversion of one of the data types is 

performed first, resulting in the posterior model for that data type. That posterior model then becomes 

the prior model for Bayesian inversion of the second data type, resulting in the final posterior model. 

(If there had been more than two data types available, the posterior model after inversion of two data 

types would have become the prior model for the third data type, and so on.)  

It is good practice to invert the different data types according to their expected resolutions, i.e., 

starting with the data type with the lowest expected resolution and finishing with the data type with 

the highest expected resolution. The idea is then that inversion of a data type with a coarser resolution 

provides an improved starting point for the inversion of a data type with finer resolution, see, e.g., 

Tveit et al., 2020, Tveit &Mannseth, 2022. We note that sequential Bayesian inversion is a particular 

instance of co-operative inversion (Lines et al., 1988).  

2.3 Ensemble-based Bayesian inversion 

An analytical expression for the posterior model is only feasible when the prior model is Gaussian and 

the forward model is linear (with more than a single data type, all involved forward models must be 

linear). If this is not the case, the posterior model must be characterized through sampling. Markov-

chain Monte Carlo methods can sample correctly from the posterior model, but they are prohibitively 

computationally expensive for realistic geophysical problems. Ensemble-based methods (see, 

Aanonsen et al., (2009) for a review of ensemble-based methods), where all calculations and 

inferences are based on samples (i.e., an ensemble) from the relevant distributions, represent a 

computationally much less expensive, approximate alternative.  

We have applied the iterative ensemble smoother (Chen&Oliver, 2012, Luo et al., 2015) in our work. 

The computational challenge is still considerable for realistic geophysical problems, which means that 

we cannot apply an ensemble that is sufficiently large to avoid unwarranted uncertainty reduction. 

The conventional remedy for a too small ensemble is localization (Houtekamer&Mitchell, 1998). We 

have applied a correlation-based localization technique (Luo et al., 2018). To handle the huge amount 

of data present in geophysical inversion we have applied a wavelet-based data compression (Luo et 

al., 2017) that removes redundant information before inversion.  

The result of a successful ensemble-based Bayesian inversion is an ensemble of representatives for the 

unknown quantity that adequately approximates a sample from the (correct) posterior model for that 

quantity. Figure 2 illustrates the workflow with a single data type (time-lapse DAS data) when the 

unknown quantity is the time-lapse CO2 saturation. As indicated on the figure, the prior-model 

realizations of time-lapse CO2 saturations are generated from reservoir simulations with an ensemble 

of reservoir properties. 

 



 

 

Figure 2: The proposed ensemble-based inversion framework with a single data type (time-lapse DAS 

data). 

 

 

3   Numerical experiments 

3.1 Setup 

We give a high-level description of the setup of the numerical experiments. All details of the setup of 

the numerical experiments can be found in Bhakta et al., 2023. 

The numerical experiments are conducted on a sector model of the Smeaheia saline aquifer. CO2 is 

injected in a single well, and data are acquired right before injection starts (base survey, year 2022) 

and after 13 years of injection (monitor survey, year 2035). The data types used for the study are: 

conventional seismic data; gravimetric data, and; gravimetric and DAS data in combination. The prior 

ensemble of 100 CO2 saturation and pressure changes is generated by running 100 reservoir 

simulations with different realizations of the subsurface rock properties (permeability and porosity).  

Synthetic data to be applied in the inversions are generated as follows: First, an additional realization 

of the rock properties is used to generate the reference CO2 saturation and pressure changes. Then, 

the reference CO2 saturation and pressure changes are run through the respective domain-specific 



forward models to obtain domain-specific reference forecasts. Finally, synthetic data (gravimetric, 

conventional seismic, and DAS) are generated by adding random errors drawn from domain-specific 

statistical error models to the respective reference forecasts. The domain-specific error models is 

obtained from collaboration with project-partner specialists on gravimetry (Octio) and seismics (TNO).  

We use full-waveform (FW) seismic modelling for accuracy. Running FW seismic modelling on 100 

ensemble members (which would be required as part of the inversion) in 3D is computationally too 

expensive. We therefore perform the seismic inversions (conventional and DAS) on a 2D slice of the 

Smeaheia sector model. The gravimetric modelling is computationally much less expensive. We 

perform gravimetric inversion in 3D and extract results on the 2D slice where the seismic inversions 

were performed for comparisons, and for building the prior model for the DAS inversion part of the 

combined gravimetric and DAS inversion.  

3.2 Summary of results 

In Bhakta et al., 2023, we compare the following quantitative measures of the inversion results: Data 

mismatch and root mean squared error (RMSE) between reference and estimated CO2 saturation and 

pressure changes. Furthermore, we compare plots of means of the CO2 saturation and pressure 

changes from the prior and posterior ensembles to the corresponding reference quantities. Finally, we 

compare plots of standard deviations of the CO2 saturation and pressure changes from the prior and 

posterior ensembles, to assess changes in the uncertainty. Below, we give a summary of these results. 

All details of these results can be found in Bhakta et al., 2023. Additional results with these data types 

can be found in Bhakta et al., 2021, Bhakta et al., 2022.  

Gravimetric data provides a direct measurement of the mass changes in the reservoir and is not 

sensitive to pressure changes alone. Hence, gravity provides a tool to separate saturation and 

pressure changes during the injection. Inversion of gravimetric data resulted in a clear improvement 

of both the data match and the RMSE with respect to the prior model when inverting for saturation 

changes. The results showed robust toward different degrees of geological uncertainty. This is 

supported by visual inspection of the plots.  

To reduce the impact of geological uncertainty in the forward modelling in the inversion of 

conventional seismic data, also the porosity field was estimated in addition to CO2 saturation and 

pressure changes. The best results with conventional seismic data were obtained when first using the 

data from the base survey to update porosity, and then use the estimated porosity when inverting 

time-lapse conventional seismic data for CO2 saturation and pressure changes. These results (data 

match improvement, RMSE, and plots) were generally better than those obtained with gravimetric 

data. 

Sequential inversion of gravimetric and DAS data improved the gravimetric results, and they were 

comparable to conventional seismic results. For the examples considered, sequential inversion of 

gravimetric and DAS data therefore seems a less costly, viable alternative to conventional seismic data 

for monitoring of CO2 sequestration. The investigation considered is, however, far from 

comprehensive, and more work is needed before any conclusion with some generality can be drawn. 

The inversion framework developed in the project is well suited to be applied in a more comprehensive 

investigation, aiming for more general conclusions.  
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