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A B S T R A C T

The complexity of geomodelling workflows is a limiting factor for quantifying and updating uncertainty
in real-time during drilling. We propose Generative Adversarial Networks (GANs) for parametrization and
generation of geomodels, combined with Ensemble Randomized Maximum Likelihood (EnRML) for rapid
updating of subsurface uncertainty. This real-time ensemble method is known to be approximate for non-linear
forward models and might therefore produce inaccurate and/or biased posterior solutions when combined
with a highly non-linear model arising from the neural-network modeling sequences. This paper illustrates the
predictive ability of EnRML on several examples where we assimilate local extra-deep electromagnetic logs.
Statistical verification with MCMC confirms that the proposed workflow can produce reliable results required
for geosteering wells.
1. Introduction

The process of drilling wells for hydrocarbon production represents
a major cost in petroleum reservoir development. However, drilling of
new wells is necessary to increase the total oil recovery. To maximize
the value for each drilled well, it is necessary to optimize the placement
of the well within the reservoir structure. An optimally placed well
will mobilize more of the petroleum resources, and reduce the need for
injected water—reducing the environmental impact of oil production.

To place a well in its optimal position, operators apply geosteering.
Here, the well trajectory is adjusted while drilling in response to real-
time measurement of the geology surrounding the drill bit. The value
of geosteering has been well documented in the literature [1–3].

The main objective with geosteering is to utilize the information in
the measurements to make optimal decisions. Hence, geosteering can
be seen as a sequential decision process under uncertainty and should
be treated in a probabilistic framework [4]. Recently, a workflow
based on the Ensemble Kalman Filter (EnKF) [5] has been employed
to condition the geological model on measurements acquired while
drilling [6,7]. In the EnKF, the uncertainty is represented by an ensem-
ble of equiprobable realizations. This workflow has then been combined
with a global optimization method and applied as a Decision Support
System (DSS) [8].

The DSS framework provides high quality decisions on synthetic
cases, and outperforms most of geosteering experts in a controlled ex-
periment [9]. However, practical challenges should be addressed for it
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to be applicable to real operations [8]. This includes modeling of mod-
ern commercial tool to process real measurements as well as real-time
mathematically updatable earth model that can handle realistic geo-
logical complexity. The forward deep neural network (FDNN) trained
on synthetic data for extra-deep electromagnetic measurements [10]
enabled the real-time ensemble-based update of layered models in
1.5D [11], and 3D [12]. Moreover, [13] showed that the model er-
rors present in the FDNN approximation can be alleviated during the
ensemble based inversion for the layered case.

Fossum et al. [14] proposed a new modeling sequence which com-
bines the FDNN with a generative adversarial network (GAN) to pro-
duce complex geological realizations in real-time to aid geosteering, see
Fig. 1. The premise of the GAN is that it allows to represent the earth
model by low-dimensional model vectors with a Gaussian distribution,
where all produced realizations also maintain geological realism. This
allows using EnKF-like methods to update not only continuous prop-
erties but also complex geological structures, which is required for
geosteering. However, the workflow implementation in [14] converged
only with a little starting uncertainty. [15] improved the results and
demonstrated visually-convincing structural ahead-of-bit prediction on
a selected example. It is known, however, that the approximate ensem-
ble based methods, such as EnKF and its derivatives, can be sensitive
to non-linearities present in complex modeling sequences and thus
predictions may be biased.
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Fig. 1. The proposed DSS workflow. Green boxes highlight the new modeling sequence introduced in [12]. The gray boxes indicate the decision optimization, which is not explored
in detail here.
Fig. 2. The original earth model generated by the commercial tool.
In this paper we present a robust and improved implementation of
the framework presented in [14] that is able to account for an appro-
priate starting uncertainty. Further, we aim to test the convergence
properties of the iterative ensemble randomized maximum likelihood
(EnRML) method when updating the GAN-based geomodels with FDNN
approximation of measurements—denoted the GAN-FDNN modeling se-
quence. The EnRML probabilistic output is compared to a gold standard
Markov Chain Monte-Carlo (MCMC) solution for the same problem
using various metrics. The numerical examples demonstrate that the
EnRML – applied to the GAN-FDNN modeling sequence – generates
posterior samples with excellent predictive capabilities that are good
approximations to the true posterior solution.

To construct a reference earth model we generate realizations of a
fluvial geological environment using a commercial software. These re-
alizations are then sub-sampled to form a training dataset for the offline
training of a Generative Adversarial Network (GAN). The GAN is then
used, online, to generate plausible geological realizations from a low-
dimensional Gaussian input vector. The complete earth modeling loop
is described in Section 2. For modeling the extra-deep electro-magnetic
(EM) measurements we use a forward deep neural network (FDNN)
trained on a dataset generated using a commercial simulator (Sec-
tion 3). In Section 4 we discuss the exact and the approximate data
assimilation (DA) methods. The two numerical experiments, designed
to test the applicability of our proposed method, are derived, and the
numerical results are presented in Section 5. Finally, we summarize
and conclude the paper in Section 6.

2. Earth modeling using GAN

GANs are a class of unsupervised machine learning methods which
can learn to generate new formatted data with the same statistics as the
training set. Motivated by successful applications of GANs for modeling
channelized structures for reservoir-simulation workflows [16–20], we
use a GAN for efficient earth modeling.
2

The GAN consists of two deep neural networks (DNNs): a generator
and a discriminator. The generator takes a random Gaussian low di-
mensional vector as input and generates a realization of formatted data:
geological realization. The discriminator takes the formatted data and
gives a probability of it being ‘real’, i.e., belonging to the training set.
During training the DNNs contest each other in a min–max game. They
are trained simultaneously. On each training step the generator creates
(fake) geological realizations from the random vectors. Fake geological
realizations are combined with random samples of the real earth model
and are fed to the discriminator. The loss function for the generator is
proportional to number of ‘fakes’ correctly identified by the discrimina-
tor. The loss function for the discriminator is proportional to the total
misjudged data samples. In our study we use an adapted Wasserstein
GAN [21] with hierarchical deep convolutional networks [22] for the
generator and the discriminator, see [21] for implementation details.

For geosteering we want to reproduce likely geological realiza-
tions of facies and porosity distributions on a 2D vertical geological
section along the well to identify the oil-bearing sands ahead of bit.
For training of the GAN we use a large (compared to the area of
prediction) reference earth model, which should provide a realistic
test case for the present study in terms of scale and actual geological
features and properties. The reference earth model is constructed using
a commercial software that models a synthetic structural framework, a
facies model setup derived from outcrop analogue data, and synthetic
petrophysical properties of individual facies derived from published
literature. The resulting model measures 4000 m × 1000 m × 200 m
(xyz) with cell dimensions set to 10 × 10 × 0.5 m, yielding a regular
grid of size 400 × 100 × 400, see Fig. 2.

The constructed facies model represents a low net/gross fluvial
depositional system. It was chosen since it provides complex 3D archi-
tectures comprising a limited number of facies, which form contrasting
geometries, see Fig. 2. Input numbers for statistical generation of facies

and geometries are derived from a well-documented outcrop of the
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Table 1
Parameter settings for facies models.

Volumetric fraction Value Tolerance Comments

Channel system volume fraction 0.3 0.05
Channel positioning 1 No trends
Crevasse volume fraction 0.1 0.03 Of channel

system vol. frac.

Channel geometry Value SD Min. Max.

Thickness 4.2 1.5
Width 155 50 20 500
Correlation W/T 36
Amplitude 400 50
Sinuosity 1.3
Azimuth 45 10

Form/repulsion Setting

Cross-section geometry Parabolic, basic variability
Channel form Rigid
Repulsion None

Cretaceous lower Williams Fork Formation (Mesa Verde Group) at Coal
Canyon, Colorado, USA [23–25].

Key parameters of the facies model setup are listed in Table 1.
The model is not intended as a rendering of the outcrop itself and is
consequently simplified compared to descriptions of the original out-
crop [24,26–28]. The model contains three facies: Background/shale,
Channels and Crevasse splays. The probability distribution of channel
width in the model is adapted to include ‘‘narrow channel bodies’’, and
stacking of channels accounts for multi-story channels which comprise
more than 80% of the observed channel bodies. The flow direction
of the channel system is set towards 45 ± 10 degrees. No trends were
used to condition the spatial distribution of channels. The details of this
synthetic model are also described in [15].

The geological realization is parameterized by a vector of 60 in-
dependent parameters. For each 60-dimensional vector, the generator
outputs a 64 × 64 grid with three values in each grid block. For a
grid block (with dimensions 10.0 m along-well and 0.5 m thickness)
the three values, ‘channels’, represent the probability of the grid-block
belonging to the respective facies class: Background/Channel/Crevasse.
Our generator is also predicting porosity/resistivity distribution within
the geo-bodies, but in this study only the facies classes are used.

For training, the original 3D earth model is sliced across the channel
perpendicular to the north–south direction; see Fig. 2. In each layer,
we move the 64 × 64 2D sampling window across the model pixel per
pixel, resulting in over eleven million training samples over all hundred
layers of the original model. We encode each pixel’s facies index from
the model by a one-hot three-dimensional vector. That is, the vector
represents the probability of facies: the value of the true index is set
to one and other channels to zero. During evaluation, the resistivity of
the facies with the highest probability is applied.

3. Forward DNN model of extra-deep EM logs

To maintain real-time performance of a data assimilation workflow
the forward model should be fast and support batch, preferably parallel
execution. Proprietary forward models provided by measurement in-
strument vendors provide the most accurate results, but they are often
not sufficiently fast, and not always optimized for batch execution.
Instead of using the high-fidelity simulation model that solves the
Maxwels’ equations, we propose approximating it with a DNN. In [10],
the authors developed such a forward DNN model approximation of the
extra-deep tool [29], which we abbreviate FDNN.

The model approximates the output of the extra-deep electromag-
netic well-bore logging instrument. The instrument is configured to
transmit four shallow and nine pairs of deep directional EM mea-
surements, and has sensitivity to boundaries up to 30 m to the side
from the well bore. We emphasize that the tool provides information
3

around, but not ahead of the drilling position. An illustration of the
deep measurements depth of detection is provided in Fig. 11.

The input to the FDNN model is a layered geological media with up
to three boundaries above and below the measurement instrument as
well as the resistivity values of all seven layers. In this study we assume
that the layer resistivity is isotropic and that the well is aligned with
the horizontal axis.

We produce one synthetic set of measurements for every horizontal
position (one per column of cells) of the gridded model which we ‘drill’
through. We choose the most probable facies for each computational
cell within the considered column and use the corresponding resistivity
value (same as in [15]):

1. Background, 𝑅 = 4.0 Ohm m;
2. Channel, 𝑅 = 171.0 Ohm m;
3. Crevasse, 𝑅 = 55.0 Ohm m.

We find the boundaries between layers composed of pixels with equal
resistivities and use the boundaries and the layers’ resistivities as the
input to the forward model.

GAN generator followed by the FDNN model for extra-deep EM logs
forms a data-driven modeling sequence (see Fig. 1), which produces
a full suite of log measurements for a model realization vector in
under 0.12 s. Unlike traditional workflows, which often require user
input, the proposed modeling sequence can be fully parallelized. The
massive parallel executions enable ensemble-based data assimilation in
real time.

4. Data assimilation during geosteering

The DSS for geosteering [8] uses the data assimilation loop (see
green and orange boxes in Fig. 1) to condition the earth model to
measurements made while drilling. The fundamental idea is that if a
poorly known earth model can be made consistent with measurements
in the statistical sense, it will contain non-biased forecasts and, hence,
provide a better basis for decisions (see gray boxes in Fig. 1).

In this paper, the emphasis is placed on the data assimilation part
of the DSS. Specifically, we investigate real-time data assimilation with
the EnRML method utilizing a modeling sequence based on the two
neural networks described above: a GAN-generator for complex earth
modeling and a FDNN models for the synthetic extra-deep EM logs.
The EnRML method is an ensemble-based iterative ensemble smoother
which has received a lot of attention for history matching subsurface
multi-phase flow problem, see [30] and references therein. The method
uses an ensemble approximation to the sensitivity matrix, and provides
a fast and approximate solution to the Bayesian problem. The method
can only be shown to converge for Gaussian posterior distributions.
However, the method is known to also sample accurately from mod-
erately non-Gaussian posterior distributions. To assess the statistical
convergence of the EnRML in this context we compare the method to
samples generated by a Markov Chain Monte Carlo (MCMC) algorithm.
Since the MCMC, when properly converged, generates independent and
identically distributed samples from the Bayesian distribution, several
metrics can be used to assess the statistical error of the EnRML method.
The EnRML and the MCMC method is described in detail in the rest of
the section.

4.1. EnRML

The EnRML [31] has recently become one of the most successful
methods for automatic history matching of petroleum reservoirs. The
EnRML is derived by minimization of an objective function using an
ensemble approximation of the sensitivity matrix. Since a wide range of
methods can be applied for the minimization, the EnRML can be formu-
lated in many different ways. In this study we utilize the approximate

form of the Levenberg–Marquardt method, introduced in [32].
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Fig. 3. The rows show the six first realizations from the prior ensemble. The left row shows the facies model with the background as blue, the channel as orange, and the crevasse
as brown; while the right column shows the derived resistivity image. The dotted lines indicate measurement positions.
Fig. 4. Spatial distribution of the probability of sand facies (crevasse and channel) in
the prior model.

Based on the Bayes’ theory, the objective function to be minimized
is
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where 𝜆𝑖 is the Levenberg–Marquardt multiplier, 𝐺 is the sensitivity
of data to the parameters, and 𝜖 ∼ 𝑘
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In the ensemble framework, we approximate 𝐶𝑚 and 𝐺 using the
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𝑛 denotes the ensemble size, 1⃗ is a vector of ones, and 𝐶𝑠𝑐 is a
diagonal matrix for scaling the data, typically containing the mea-
surement variance on the diagonal. We get the approximate version
of the Levenberg–Marquardt update equation by inserting ensemble
approximations of 𝐺 and 𝐶𝑚, neglecting the updates from the model
mismatch term, substituting the prior precision matrix 𝐶−1
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𝑚𝑖

,
and rewriting the equation using the Sherman–Woodbury–Morrison
matrix inversion formula [34]. The steps above gives the following
update equation
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The update equation is simplified, and made computationally more
stable, by inserting the truncated singular value decomposition of 𝛥𝐷
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Fig. 5. Mean and standard deviation in resistivity models derived from the prior. The colorbar is joint for both figures.
Fig. 6. The resistivity of an earth model generated by GAN used as the synthetic truth
for Example 1 (adapted from the numerical example in [15]). The yellow arrows show
the region with measurements and their extent illustrates the maximum sensitivity
range, termed depth of detection. The filled red line is the drilled well, and the dashed
lines indicate the potential for geosteering.
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𝑍 is the matrix of eigenvectors and 𝛶 is a diagonal matrix with the
eigenvalues on the diagonal.

After each application of (8), we assess convergence and we con-
tinue iterations until the scheme is converged. Here, we consider the
method to be converged when the relative difference in the data
misfit (the first term in (1)) is below a given threshold or when the
maximum number of iteration is reached. In the numerical examples,
the threshold is 2×10−2 and the maximum number of iterations are 10.

4.2. MCMC

A reliable method for sampling from a complex posterior distribu-
tion is the MCMC technique. MCMC relates to the general framework
of methods introduced in [35,36] for Monte Carlo (MC) integration.
Firstly, one designs a Markov chain that produce samples from the de-
sired posterior distribution. Secondly, one utilize these samples for MC
integration. In this section, the adaptive Metropolis–Hastings method –
the method utilized in the numerical study – is introduced. For more
information on MCMC we refer the reader to [37], and references
therein.

Suppose we want samples from the un-normalized posterior distri-
bution 𝑓 , which is the general case with the Bayesian method where
the normalizing factor often is very difficult to calculate. Assume that
the current element of the chain is �⃗�, and one proposes a move to �⃗�∗.
The proposal is sampled from the proposal distribution 𝑞
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𝑓 �⃗� 𝑞 �⃗� |�⃗�
This is the basis for the Metropolis–Hastings method, and it can be
shown that the method generates samples from the posterior distribu-
tion 𝑓 .

The Metropolis–Hastings algorithm requires a choice of proposal
distribution, and some distributions work better than others. The opti-
mal would be to draw proposals directly from the posterior 𝑓 . However,
this is not possible since we cannot sample from this distribution. Since
the MCMC converges for any proposal distribution that fulfills some
general conditions, one idea is to gradually adapt the proposal distri-
bution using previous samples from the chain. This adaptive approach
ensures a gradually better proposal distribution as the chain evolves.
To this end we select the following mixture distribution as our proposal
distribution

𝑞
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)
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Here 𝑛𝑚 is the number of parameters, 𝑘 (⋅, ⋅) denotes a Gaussian prob-
ability distribution, �̃�𝑚 is the empirical covariance matrix calculated
utilizing all the preceding iterations of the Markov Chain, 𝑄𝑚 is some
fixed non-singular matrix, and 0 < 𝛽 < 1. Note that we set 𝛽 = 1 until
�̃�𝑚 is well defined. Efficient on-line updating of �̃�𝑚 is achieved by the
recursion given in [38]. This sampling method was applied in [39,40].
It is well known that the MCMC requires a certain burn-in period since
the initial samples are not from the posterior distribution. Hence, it
is necessary to monitor the convergence of the method. In this work,
convergence is monitored by assessing the maximum root statistic of
the multivariate potential scale reduction factor [41].

5. Numerical experiments

The numerical experiments investigate how the GAN-FDNN model-
ing sequence can be applied in the data assimilation part of DSS when
data assimilation using EnRML is applied for real-time uncertainty
reduction. We design two synthetic experiments that focus on the
reduction of uncertainty ahead of measurements and the ability of the
algorithm to predict the sand channels in the unexplored part of the
geomodel.

To quantify the quality of the EnRML approximation, when applied
to the GAN-FDNN modeling sequence, we compare the posterior en-
semble of EnRML with true samples from the posterior—acquired by
the MCMC algorithm. The comparison is done by evaluating several
metrics, including visual comparison of standard deviation, and mean,
in every point of the domain, point-wise Kolmogorov–Smirnov two-
sample test, and visual inspection of kernel density estimates of the
marginal distribution of the GAN-input vector.

We perform two numerical tests. In both tests we utilize the gener-
ative neural network, introduced in Section 2, to represent the earth
model with uncertainty. Hence, our goal is to condition the poorly
known 60-dimensional input vector, �⃗�, to measurements. The prior
realizations of the earth model are generated by applying the generative
network to parameters sampled from a multivariate Gaussian distribu-
tion, �⃗� ∼ 𝑘

(

�⃗�∗
0 , 𝐶𝑚

)

. The distribution is slightly shifted to simulate
conditioning on pre-drill information. The �⃗�0 represents the shifted
mean and is defined by the equation:

(

𝑚∗
0
)

𝑖 =

{

0, 𝑖 = [20..44],
(16)
0.25𝑚0𝑖, otherwise,
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Fig. 7. Mean (top) and standard deviation (bottom) in resistivity models derived from the posterior ensembles of EnRML (left column) and MCMC (right column).
Fig. 8. Probability of sand facies (crevasse or channel) from the posterior ensembles of EnRML (left column) and MCMC (right column). The white contour gives the outline of
the sand facies from the truth model.
Fig. 9. p-value from the Kolmogorov–Smirnov two-sample test of sand facies (crevasse
or channel). The black contour line gives the significance level of 0.05, and the white
contour line outlines the sand facies from the truth model.

where �⃗�0 is the synthetic truth from [15], see Fig. 6. We use uncor-
related covariance matrix with marginal variance of

(

𝐶𝑚
)

𝑖,𝑖 = 1 for
all parameters, similar to the GAN training. Fig. 3 shows six gener-
ated earth model realizations from the prior model. From the figure,
we observe that this setup provides significant variation in the earth
model, which is reflected in the relatively flat mean and the standard
deviation derived from the full ensemble of 500 realizations, see Fig. 5.
At the same time, all the realizations are consistent with the chosen
channelized geological setting. We emphasize, that we use the same
prior for both numerical experiments (see Fig. 4).

We conduct two numerical experiments, that differ with respect to
the synthetic truth. In the first experiment, the truth model from [15]
is applied. In the second experiment, the synthetic truth depicted in
Fig. 11 is applied. Hence, for experiment 2, the prior is biased towards
a wrong model (indicating erroneous pre-drill information) making the
data assimilation problem harder.

The numerical study is performed in the same manner for both
experiments. Firstly, we sample the true posterior with the MCMC.
Here, 8 Markov chains, starting from different initial points, were
run for 106 steps. At that point, based on assessing the multivariate
potential scale reduction factor, the MCMC was found to be converged.
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Samples from the posterior were then extracted by removing the burn-
in phase, and by thinning. For each of the 8 chains, the first half of
the chain was removed, and every 100th iteration from the second half
of the chain was retained, leaving 4 × 104 samples from the posterior
distribution. Secondly, we estimate the posterior distribution using the
EnRML method introduced in Section 4.1. Due to the fast simulation
time, we utilized an ensemble size of 𝑛 = 500, and in addition, we
applied the correlation-based localization technique introduced in [42].
Finally, we assess the result from the EnRML by comparison with the
samples from the MCMC.

5.1. Example 1—Verification of convergence on an example from literature

The first numerical example tests the sampling capabilities for the
EnRML on an example from the literature. The synthetic true log is
generated from the true model 6. Hence for this case, the prior mean
is slightly shifted towards the true model.

Fig. 7 shows the mean and standard deviation of the posterior
resistivity model. Compared to the prior mean and standard deviation
(shown in Fig. 5) it is clear that the uncertainty around the well is
significantly reduced. Moreover, the same reduction is observed for
both the EnRML and the MCMC. Apart from slightly sharper boundaries
for the MCMC, the EnRML approximation to the posterior mean and
standard deviation is almost indistinguishable from the true posterior
mean and standard deviation.

A similar conclusion can be drawn from the plots showing the
estimated point-wise probability of the sand facies, plotted in Fig. 8.
Around the well, the EnRML and the MCMC are almost indistinguish-
able. Ahead of the bit, there are small differences. However, the pre-
dictive capability, as described in [15], is also present in the MCMC
solution. Hence, this is a true feature of the posterior solution with the
GAN-FDNN modeling sequence.

To evaluate the statistical distance between the samples from the
EnRML and the samples from MCMC we perform a Kolmogorov–
Smirnov two-sample test. This is a non-parametric test of equality for
one-dimensional probability distributions. The earth model is a 2D
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Fig. 10. Marginal and bi-variate statistics of selected elements from �⃗�.
Fig. 11. a. The resistivity of an earth model generated by GAN used as the synthetic
truth for Example 2. The yellow arrows show the region with measurements and their
extent illustrate the maximum sensitivity range, termed depth of detection. The filled
red line is the drilled well, and the dashed lines indicate the potential for geosteering.
b. Measurements in the eight extra-deep geophysical EM logs from the highlighted
region (scaled to 0..1). The other five shallow logs not shown.

image, and not one-dimensional. Hence, we perform the test on the
marginal distribution for each cell. The p-values from the test of the H0
hypothesis of equal distributions are shown in Fig. 9. The significance
level of 0.05 is given by the black contour line. Hence, for all p-
values higher than 0.05 one cannot differentiate between the marginal
distributions and the H0 hypothesis hold.

As a final evaluation of the results, we plot a selection of marginal
and bi-variate elements of the input vector �⃗�. To highlight the effect
7

of the pre-drill information, we selected two elements that was shifted
(𝑚1 and 𝑚52) and two that were not shifted (𝑚23 and 𝑚37). In Fig. 10
the kernel density estimate of the selected elements is plotted along
the diagonal, the scatter plot of the pairwise elements is given in the
top corner, while the contours of the 2D Kernel density estimate of the
pairwise elements are given in the lower corner. The true model is given
as a black line in the 1D plots and a black star for the 2D plots.

The numerical experiment shows that the EnRML can successfully
approximate the true posterior solution for the GAN-FDNN modeling
sequence. The numerical results show a convincing similarity between
the exact samples from the posterior, acquired by the MCMC, and the
approximate samples, acquired by EnRML. The EnRML provides good
approximations of both the posterior earth model and the posterior
input vector. Moreover, from inspection of selected elements from �⃗�
it is clear that the posterior distribution can be well approximated by
a Gaussian.

5.2. Example 2—Prediction of a sand-channel sequence

The second numerical example tests the ability of the workflow to
predict the targets ahead of measurements in the case where the well is
already landed into a sand channel, and when the pre-drill information,
embedded in the prior model, is biased toward a wrong solution. The
synthetic truth for this example with the depth of detection is shown
in Fig. 11.

Fig. 12 illustrates the posterior mean and standard deviation of the
resistivity model. It is clear that conditioning to measurements resolves
the sand channel ahead of the well position. Moreover, the EnRML does
a reasonably good job in approximating the true posterior, despite the
prior being slightly misspecified.

Similarly, the estimated point-wise probability of the sand facies,
plotted in Fig. 13, shows that the EnRML provides excellent predictive
capabilities as the sand facies is correctly forecasted to the right of the
geomodel, more than 500 m ahead of the bit. There are slightly larger
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Fig. 12. Mean (top) and standard deviation (bottom) in resistivity models derived from the posterior ensembles of EnRML (left column) and MCMC (right column).
Fig. 13. Probability of sand facies (crevasse or channel) from the posterior ensembles of EnRML (left column) and MCMC (right column). The white contour gives the outline of
the sand facies from the truth model.
Fig. 14. p-value from the Kolmogorov–Smirnov two-sample test of sand facies (crevasse
or channel). The black contour line gives the significance level of 0.05, and the white
contour line outlines the sand facies from the truth model.

differences between the EnRML and MCMC in this example. However,
the approximate posterior is still very close to the MCMC posterior,
especially around the well.

The measure of statistical distance between the samples from the
EnRML and the samples from MCMC indicates similar performance.
The p-values from the test of the H0 hypothesis of equal distributions
are shown in Fig. 14. The significance level of 0.05 is given by the
black contour line. Hence, for all p-values higher than 0.05 one cannot
differentiate between the marginal distributions and the H0 hypothesis
hold. Compared to example 1, there are more areas where the H0
hypothesis fails. This demonstrates that, for the more challenging ex-
periment, there is a larger statistical distance between the approximate
posterior from the EnRML and the true posterior.

As a final evaluation of the results, we plot a selection of marginal
and bi-variate elements of the input vector �⃗�. Similar to experiment 1,
we highlight the effect of the biased pre-drill information by selecting
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two elements that were shifted (𝑚14 and 𝑚53) and two that were not
shifted (𝑚20 and 𝑚342). In Fig. 15 the kernel density estimate of the
selected elements is plotted along the diagonal, the scatter plot of the
pairwise elements is given in the top corner, while the contours of
the 2D Kernel density estimate of the pairwise elements are given in
the lower corner. The true model is given as a black line in the 1D
plots and a black star for the 2D plots. The effect of the biased prior
can be observed in the MCMC results, where the marginal posterior is
bi-modal.

The numerical experiment shows that the EnRML can successfully
approximate the true posterior solution for the GAN-FDNN modeling
sequence, even when the prior model is slightly biased. The numerical
results show convincing similarity between the exact samples from
the posterior, acquired by the MCMC, and the approximate samples,
acquired by EnRML. There is however a larger discrepancy than was
observed in example 1. From inspection of selected elements from �⃗� we
can observe that the biased prior results in a more non-Gaussian poste-
rior distribution. Despite this, we claim that the EnRML provides good
approximations of both the posterior earth model and the posterior
input vector.

6. Conclusions

In this paper, we have demonstrated that two essential parts, the
earth model and the simulated extra-deep EM logs, of an ensemble-
based DSS system can be substituted with neural networks. For the
earth model, we utilize the GAN trained with images from a realistic
geological setting, for the simulated logs we use a forward deep neural
network (FDNN) trained using a large set of simulations from a com-
mercial tool. The setup redistributes the computational cost from online
to offline calculations, enabling complex earth models and deep-sensing
EM logs to be evaluated in a fraction of a second, giving rise to real-time
ensemble updates.
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Fig. 15. Marginal and bi-variate statistics of selected elements from �⃗�.
The numerical results illustrate that the GAN-FDNN modeling se-
quence provides excellent probabilistic predictions ahead of drilling
capturing both continuous and discrete features when conditioning to
only measurements with sideways sensitivity. Moreover, the numerical
results show that the computationally efficient EnRML algorithm can
sample the true Bayesian posterior confirmed by the MCMC algorithm.
This conclusion is valid even when the prior model is slightly biased
towards a wrong solution.

The proposed approach has many beneficial factors. Firstly, a GAN
provides large flexibility for defining the geological setting. Here, we
consider three different facies, but one can easily imagine including
features like faults and pinch-outs as well as smoothly-varying prop-
erties. Secondly, we only need to condition a few parameters with
Gaussian distribution to the measurements, which is very beneficial
for the ensemble-based DA approach. Thirdly, since we are utilizing a
neural network model to generate the simulated log, the computational
cost of simulating a single ensemble member is milliseconds. Hence, the
proposed approach can utilize a large ensemble for the DA part.

The numerical experiments illustrated that the posterior has a pre-
dictive capability for both MCMC and the faster EnRML method. The
future work is to integrate the DA developed in this paper with the
decision framework developed in [8], allowing DSS under a much more
complex geological setting. Furthermore, the method can be extended
to account for model errors present in machine learning approximations
in real-time [13].
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