
RESEARCH ARTICLE

Exploring time series of hyperspectral images

for cold water coral stress response analysis

Daniel LangenkämperID
1*, Aksel Alstad Mogstad4, Ingrid Myrnes Hansen2,

Thierry BaussantID
3,Øystein Bergsagel2, Ingunn Nilssen4, Tone Karin Frost4,

Tim Wilhelm Nattkemper1

1 Biodata Mining Group, Bielefeld University, Bielefeld, Germany, 2 Ecotone AS, Trondheim, Norway,

3 NORCE Norwegian Research Centre, Randaberg, Norway, 4 Equinor ASA, Research and Technology,

Trondheim, Norway

* dlangenk@cebitec.uni-bielefeld.de

Abstract

Hyperspectral imaging (HSI) is a promising technology for environmental monitoring with a

lot of undeveloped potential due to the high dimensionality and complexity of the data. If

temporal effects are studied, such as in a monitoring context, the analysis becomes more

challenging as time is added to the dimensions of space (image coordinates) and wave-

lengths. We conducted a series of laboratory experiments to investigate the impact of differ-

ent stressor exposure patterns on the spectrum of the cold water coral Desmophyllum

pertusum. 65 coral samples were divided into 12 groups, each group being exposed to dif-

ferent types and levels of particles. Hyperspectral images of the coral samples were col-

lected at four time points from prior to exposure to 6 weeks after exposure. To investigate

the relationships between the corals’ spectral signatures and controlled experimental

parameters, a new software tool for interactive visual exploration was developed and

applied, the HypIX (Hyperspectral Image eXplorer) web tool. HypIX combines principles

from exploratory data analysis, information visualization and machine learning-based

dimension reduction. This combination enables users to select regions of interest (ROI) in

all dimensions (2D space, time point and spectrum) for a flexible integrated inspection. We

propose two HypIX workflows to find relationships in time series of hyperspectral datasets,

namely morphology-based filtering workflow and embedded driven response analysis work-

flow. With these HypIX workflows three users identified different temporal and spatial pat-

terns in the spectrum of corals exposed to different particle stressor conditions. Corals

exposed to particles tended to have a larger change rate than control corals, which was evi-

dent as a shifted spectrum. The responses, however, were not uniform for coral samples

undergoing the same exposure treatments, indicating individual tolerance levels. We also

observed a good inter-observer agreement between the three HyPIX users, indicating that

the proposed workflow can be applied to obtain reproducible HSI analysis results.
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Introduction

Hyperspectral imaging (HSI) originally used for remote sensing [1] has nowadays been estab-

lished in multiple fields and applications, such as medicine [2], agriculture and forestry [3],

food quality [4, 5], structure monitoring [6], material research [7], mining applications [8] and

environmental monitoring [9, 10]. Organisms in particular exhibit a specific reflectance spec-

trum upon illumination, mainly caused by their pigment composition [11]. This is known as

their spectral signature and can be studied using HSI. For non-invasive monitoring of environ-

mental stress, HSI of selected organisms may have the potential to become one of the key

tools. Most of the related studies have been carried out on photosynthetic organisms, especially

on terrestrial vegetation and crop [12, 13] and shallow water coastal habitats. However, there is

limited knowledge on the spectral responses of marine organisms in the deep sea to environ-

mental or physiological stress.

Underwater hyperspectral imagers (UHI) for recording HSI have been implemented on

underwater vehicles in situ for mapping extent and distribution of habitats [14, 15] such as

deep-water corals and coralligenous habitats [16], red calcareous algae and associated fauna

[17] or deep sea megafauna [18]. In recent years, few multivariate image analysis applications

[19] have shown that objects of interest can be identified based on their spectral signatures [20,

21]. Further, UHI has been used to visualize the extent of particulate mud and drill cuttings on

the seafloor [22] with HSI. The UHI system has been utilized to detect changes in the health

condition of Desmophyllum pertusum (Linnaeus 1758) exposed to the hydrocarbon-2-Methyl-

naphthalene in laboratory experiments [21]. This was done in order to establish a basic under-

standing on how a potential subsea oil spill could affect the spectral properties of corals, and

assess if hyperspectral imaging could be a valuable tool to detect such changes in the spectrum.

Although the HSI technology has been established in many fields and a small number of

successful UHI applications have been reported, methodological challenges remain. Marine

environmental monitoring in the field using UHI has mainly been constrained to identifica-

tion and quantification of organisms and habitats, as well as the extent of particle sedimenta-

tion. There are no established methods for monitoring the physiological condition of deep-

water marine organisms in situ using UHI. The rationale behind utilizing UHI for this purpose

is that there must be a link between the health of the organism and its spectral signature. From

nature, it is well known that coloration may be linked to health. For instance, for tropical cor-

als, it is established knowledge that coral bleaching is a process triggered by the loss of the sym-

biotic photosynthetic algae component due to environmental unfavorable conditions, and this

is clearly observable using spectroscopy. The beforementioned study (Letnes et al [21]) showed

a link between spectrum and exposure level to hydrocarbon. Yet there is a limitation that there

is an absence of established health metrics or indices that correlate physiological parameters

with spectral response. Establishing such metrics requires ex situ experimentation with con-

trolled stress exposures, and tools for interpreting resulting spectral images. A second limita-

tion is the absence of an established analytical approach for assessing spectral changes over the

same geographical area over time using UHI. Both of these two knowledge gaps are addressed

by the works presented here.

Since there is no established methodological approach we propose a new software-based

approach for the comparative analysis of such a large number of HSI data sets. The analyses of

HSI data in general is not straightforward due to volume and dimensionality of the data, i.e. the

huge number of wavelength acquired simultaneously, even for a small number of data sets

recorded at one time point. The sheer dimensionality of the data typically makes an ad-hoc

visual analysis with standard methods from exploratory data analysis unfeasible. In order to

reduce the volume of data, it is often (spatially) filtered beforehand, by a heuristics-driven
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selection of e.g. a small number of regions of interest (ROI) in the lateral image domain

(through selection of a polygon or a frame in the pixel grid). While this is a valuable established

approach it limits the chances to find new relationships outside these ROIs. Another way to

make HSI data easier to interpret, is the selective filtering of the high dimensional spectral

domain to a relative small number of bandwidths (intervals), referred to as multispectral imag-

ing [21, 23]. This is usually motivated by the observation that HSI data often feature low intrin-

sic dimensionality. The downside of this strategy is that it requires some domain knowledge

about potentially interesting bandwidths a priori which is often not available. Sometimes

dimension reduction techniques such as principal component analysis (PCA, [24]), multidi-

mensional scaling, isometric mapping, or t-distributed stochastic neighbor embedding (t-SNE,

[25]) are proposed [26, 27]. Due to the low intrinsic dimensionality, the spectral data can be

well embedded in a two-dimensional data space, suitable for visualisation, which additionally

reduces noise. A downside can be that the pixel-associated relation between the original spectral

signal space and the embedding space can be lost if not covered by an appropriate software

solution and that the much lower dimensional representation can be prone to misinterpreta-

tions due to the non-lossless embedding. Thus, a comparative analysis of the spectral signatures

from different HSI data sets recorded at different time points must be supported by a flexible

interactive data visualization tool, integrating the spatial, the spectral and the temporal domain.

And since HSI data is not straightforward to interpret, an interdisciplinary approach to its anal-

ysis, integrating knowledge from disciplines, such as (bio-)chemistry, marine biology, statistics

and computer science is required. As a consequence it is important, that the visualization tool

features good usability and can be used online as a web-tool without technical requirements.

To address the problems described above, we present and analyse HSI data from controlled

dose-response experiments on D. pertusum cold water corals (CWC) in laboratory tanks. The

reef building coral D. pertusum has a wide geographical distribution and can be find in most

part of the world, with the highest reported density in Norwegian waters. The reef offers habi-

tat for a variety of species, and is described as a hot-spot for biodiversity. D. pertusum is

defined as a ‘Near threatened’ species, mainly due to mechanical damages on the reefs caused

by past and ongoing trawling. Further, there are concerns on the species ability to tolerate

increasing ocean temperatures and ocean acidification [28]. D. pertusum is also located in

areas with petroleum activities and several studies have therefore been performed to monitor

potential impact of and to establish threshold for drilling particulates to these corals [29–33].

The objective of this study was to investigate the future potential of non-invasive HSI technol-

ogy for detection of changes in the health status by exploring potential systematic changes in

the spectral composition with various exposure concentrations of drilling particulates of adult

CWC D. pertusum as a response to certain exposure levels of suspended drilling particulates.

Drill particulates are a collective expression for drill cuttings (formation rock particulates gen-

erated during drilling) and weighting agents added to the drilling fluids, such as barite and

bentonite (use to lubricate and control the well during drilling) [34]. To this end coral samples

of both the white and the orange D. pertusum phenotype were exposed to drill cuttings, ben-

tonite and barite in a laboratory setting, mimicking a realistic offshore drilling scenario. After

exposure, a small HSI time series was recorded for the CWC samples.

Following these considerations we developed a new tool for HSI analysis, referred to as

HyPIX, presented in this paper. With this tool we investigated the HSI data collected in our

experiments with the main objective to find response patterns in the coral spectra related

to exposure type, levels and/or time points in the corals. A second objective was to find a

HyPIX—based workflow to spatially locate such responses in the sample (in case these

changes are not observed for all sample pixels) and to describe observations in the HSI that are

reproducible.

PLOS ONE Exploring time series of hyperspectral images for cold water coral stress response analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0272408 August 8, 2022 3 / 19

https://doi.org/10.1371/journal.pone.0272408


Materials and methods

An overview of the Hypix workflow is shown in Fig 1. For details consult the following text.

Experimental setup

Samples of coral colonies were collected from Trondheimsfjorden, Trondheim, Norway April

2018 using remotely operated vehicle (ROV). The sampling was carried out outside national

parks or other types of protected areas. The corals were transported to NORCE marine facility,

Fig 1. Overview of the Hypix workflow. a) Corals are kept in glass aquariums. b) Different aquariums are exposed with either barite, bentonite,

drill cutting or kept as is for the control experiment. c) The exposure happens at a timepoint T0.5. Before exposure (T0), directly after exposure

(T0.5) and after 2 (T1) and 6 weeks (T2) of recovery hyperspectral images are taken. d) The images are preprocessed. e) The outline of the corals is

annotated in Biigle 2.0 and the individual corals are cut out for further processing. f) Data mining and machine learning methods are applied and

saved to a file for g) Visualization and analysis of the results in the Hypix system. For more details on each step please have a look at the respective

subsection in the Method section.

https://doi.org/10.1371/journal.pone.0272408.g001
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Mekjarvik, Randaberg where they were acclimatized for three weeks according to Baussant

et al. 2017 [35]. The sampling of corals for current study was done in conjunction with sam-

pling for study reported by Baussant et al. 2022 [29], where further details on sampling are to

be found.

The corals were contained in tanks with running seawater from Byfjord (Rogaland, Nor-

way) in stable temperature conditions (7.5˚C) and dark surroundings. They were fed with

Artemia larvae approximately two times per week. Prior to the experiment, the sampling mate-

rial was distributed to smaller coral nubbins, each nubbin with approximately 5–10 polyps.

Both white and orange morphs were used.

All exposure experiments (controls, barite (bar), bentonite (ben) and drill cutting (DC))

together with the HSI measurements were conducted from June 2018 to February 2019. For

each experiment a separate glass aquarium (50cm × 30cm × 30cm) with a flow rate of

180±10mL �min−1 sea water was used. In each, 5 (bar/ben) or 6 (DC) coral nubbins of both

color morphotypes (white and orange) were placed. Each nubbin was approx. 5–15cm in size

and had 5–10 polyps. The corals needed to be visible for two camera observations (a digital

consumer time-lapse camera and the hyperspectral imaging), and were therefore placed on a

diagonal line (approx. 30˚, S1 Fig in the supplementary). The bottom and backside of each

aquarium was covered with black insulating material to facilitate HSI and time-lapse imagery

analysis.

DC exposure. The exposure to suspended DC particles on the corals was made as

reported in [29]. DC was added in pulses of 4 hours followed by 4 hours with no DC over a

total duration of 5 days. A peristaltic pump added 2mL. DC stock min−1 from two 30L stock

tanks to the experimental aquariums, where DC mixed with the waterflow supplied at 200

±30mL �min−1 to achieve peak exposure nominal concentrations of 10, 30, 50 and 100mg � L−1

(please see Fig 1 of [29] for more details). Actual peak concentrations were measured from

point seawater samples (250mL to 1L, depending on expected concentration) collected each

day from the aquariums during the 4-hour exposure cycle 1 hour after DC pump start to

insure steady-state equilibrium was reached. Samples were filtered over a GF/F Whatman fil-

ter, and the filter was dried (60˚C) overnight or until constant weight to obtain the total parti-

cle weight from which the DC concentrations were derived.

There was a deviation from the nominal to the actual measured DC concentrations by

water filtration. The mean actual DC concentrations were 4, 6, 18 and 41mg � L−1, respectively

corresponding to DC nominal concentrations of 10, 30, 50 and 100mg � L−1.

Barite and bentonite exposure. Barite and bentonite exposure experiments were carried

out with the same experimental setup and exposure scenario as for DC, but the 10mg � L−1 con-

centration was not tested. The actual concentrations measured in the different barite/bentonite

treatments were also lower than the target concentrations: For barite, actual measured concen-

trations were 5.8, 18 and 54.7mg � L−1 (corresponding to respectively 30, 50 and 100mg � L−1)

and for bentonite, this was 9.9, 17.1 and 44.1mg � L−1 (corresponding to respectively 30, 50 and

100mg � L−1).

Hyperspectral imaging. The underwater hyperspectral imager (UHI) applied in our

experiments for recording HSI, is a push-broom type underwater hyperspectral sensor with a

narrow slit, spectrograph, hyperspectral line camera placed in a waterproof housing. Since it is

a push-broom imager, either the object or camera needs to move, to enable imaging of a scene.

This was implemented by using a platform moving the camera along the vertical axis (S2 Fig

in the supplementary), capturing hyperspectral images perpendicular to the direction of move-

ment within the wavelength range 380 − 750nm (Setup modified from [21]). Recording was

controlled through the data acquisition software Immersion on a top -side computer, con-

nected to the sensor through a sub-sea ethernet cable. During image acquisition the scenery
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was illuminated with halogen lamps from above (Osram Decostar 51 TITAN 50 W 12 V 60˚

GU5.3) with constant power supply. Radiometric correction was carried out on the raw hyper-

spectral image in order to correct for dark current and sensor specific noise, resulting in a radi-

ance image. However, for comparability with other studies reflectance was estimated for a

selection of pixels (ROIs) from all exposure treatments (see S1 Text and S3 Fig).

HSI data. A time series HSI dataset was obtained for all samples at four selected time

points throughout the experiment: Prior to exposure (T0), directly after the exposure (T0.5)

and two weeks (T1) and six weeks (T2) after the exposure, into the recovery period. As the HSI

applied in our setup described above recorded one large hyperspectral image of all corals for

each time point t 2 {T0, T0.5, T1, T2} including a lot of pixels with background a first step was

to split the large HSI showing five (barite/bentonite exporsure) or six corals (DC exposure)

into single HSI (each one showing one sample). Afterwards the individual coral samples were

outlined and annotated in the single HSI using BIIGLE 2.0 [36] annotation software. Each sin-

gle data set is referred to with Hn
t;c, with c denoting contaminant and concentration level, t:

time point (T0, T0.5, T1, T2) and n: sample ID (0, . . ., 4 or 5). Hn
c refers to the time series of all

HSI recorded for sample n in exposure experiment c and Ht,c refers to all HSI recorded at one

time point with the same exposure concentration. The term Hn
t;c;x;y refers to the spectrum at

position (x, y) in the measurement of sample n at time point t and contamination c. The inten-

sity value for a given wavelength s at one position is given by Hn
t;c;x;y;s.

Analysis of HSI data: HypIX

In order to analyse the HSI data, i.e. to find relationships between changes in spectral signature

through time and the exposure levels applied, we present the new HSI exploration webtool

HypIX (Hyperspectral Image eXplorer) that was implemented and employed in this work.

HypIX and the data sets used in this study are available online at https://webserver.biodtmin.

projects.bi.denbi.de/hypix using the username coral and the password hypercoral2020. An

example display of the HyPIX interface is shown in Fig 2 for a first impression and overview.

Fig 2. Screenshot of the HypIX tool: In the top frame (a) the experimental conditions, concentration levels, dimension reduction algorithms and

individual coral samples (0, . . ., 4 or 5) can be chosen by the user. On the right (b) a pseudo image of each HSI of all four time steps is shown in the

image display, in this case the mean spectral response value (see Methods for details). On the right side in frame (b) the user can chose to apply image

normalization or use pseudocolor to change the images visualization. In frame (c), spectral signatures from all four time steps are shown in the spectra

display. This window initially shows the agglomerated spectral signatures from all four data sets color encoded (T0: blue, T0.5: yellow, T1: red, T2:

green. (d) The large frame on the left (d) shows the dimension reduction results for the four HSI data sets in the embedding display using again the

same color code for the four time points.

https://doi.org/10.1371/journal.pone.0272408.g002
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After starting HyPIX, a data set (i.e. experimental run and sample) and other methodological

parameters are selected (see Fig 2a). Afterwards the data set can be explored and filtered in

three different domains simultaneously, namely the spatial (or lateral) image domain (cmp.

Fig 2b), the spectral domain (cmp. Fig 2c) and the data embedding domain (cmp. Fig 2d).

Methodological details behind the HyPIX modules, data pre-processing and the two HyPIX

workflows applied in our study are described in the following. In the formal description of the

processing steps we will from now on omit the experiment index c and time point index t as all

HSI were treated the same. Instead we will use spatial coordinates (x, y) and the spectral wave-

length s to describe the processing steps.

Spectral domain visualization. The spectra display (Fig 2(c)) shows the four spectra of

the four HSI (recorded at T0, T0.5, T1, T2) for one sample n. The spectra Hn
x;y are visualized

either for all pixels or just for a subset of pixels selected in the image display (Fig 2(b)) if partic-

ular morphological / structural elements are of interest. If a selection is made containing more

than a single spectrum an agglomeration spectrum Ĥn
s;� is shown. If no selection is made at all,

an agglomeration spectrum of all spectra per sample n is shown. Different agglomeration

options can be used. When using arithmetic mean as agglomeration option it yields the mean

spectral signal intensity per sample

Ĥn
s;mean ¼

P
x;yH

n
x;y;s

w � h
;

Analogously, instead of the arithmetic mean operation, the max(), min() or medium()

operation can be used for the agglomeration step, i.e. the maximum spectral intensity

Ĥn
s;max ¼ maxx;yðHn

x;y;sÞ, minimum spectral intensity as Ĥn
s;median ¼ minx;yðHn

x;y;sÞ or median spec-

tral intensity respectively Ĥn
s;median ¼ minx;yðHn

x;y;sÞ can be chosen in the HyPIX interface (see

upper left in the frame Fig 2(b)).

Additionally, an optional normalization step can be applied to the spectra using the l1-

norm, i.e. for each spectrum Hn
x;y;s we create a normalized spectrum ~Hn

x;y;s with

~Hn
x;y;s ¼

Hn
x;y;s

P
s0 jHn

x;y;s0 j
:

Image domain visualization. To visualize the data in the image domain, so users can

assess the morphology, we compute different representative pseudo grey-value images I n
t;c for

each HSI Hn
t;c. In the following we will consider the case of one HSI and omit the indices t, c for

the sake of compact writing. Users can select the mean spectral image, i.e.

In;mean
x;y ¼

P
sH

n
x;y;s

S

X

s

max
s
fHn

x;y;sg

or the maximum spectral image In;max
x;y ¼ maxsfHn

x;y;sg or the minimum spectral image

In;min
x;y ¼ minsfHn

x;y;sg, or the median spectral image, i.e. I n;median
x;y ¼ medianfHn

x;y;sg.

In addition we provide the option to normalize the images, i.e. to linearly scale the values to

[0, 255] and a pseudocolor visualization option for the pseudo gray-valued image In
x;y;s. In this

case, the gray scale pseudo images are mapped to colors with a lookup table using the matplo-

tlib [37] spectral colormap. Further user options offered in HypIX are to increase the bright-

ness b of the images by multiplying b with the pseudogray/-color image, i.e. b � In
x;y;s. Instead

of showing an agglomerated pseudo grey-value image an image for a certain spectral channel ŝ
can be shown, i.e. In

x;y;ŝ .
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Embedding domain visualization. To visualize the data from an HSI time series in one

scatter plot (see embedding display in Fig 2(d)) each HSI time series is mapped to a two-

dimensional space using dimensionality reduction. Thus, Hn
x;y;s 2 R

w�h�S
is transformed to

Dn
x;y;d 2 R

w�h�2
, referred to as the embedding domain. As the computation of the two-dimen-

sional projection is time-consuming it cannot be done in real-time, so the embeddings must

be computed beforehand, saved and then loaded into HypIX on demand. Because of this the

normalization option mentioned above is used mandatorily. For dimensionality reduction we

use two different state-of-the-art methods namely t-distributed stochastic neighbor embedding

(t-SNE [25]) and Uniform Manifold Approximation and Projection (UMAP [38]). For the

UMAP method we have tested two different metrics, the euclidean metric and the cosine

angular metric. The cosine angular metric in contrast to the euclidean metric is independent

of the length of the vector and thus in our case neglects the amplitude of the spectra, thus look-

ing only at the distribution of the spectra.

HypIX interface and functions. After selecting the HSI data from one time series experi-

ment (i.e. exposure level or control), one sample (see frame (a) in Fig 2), HypIX displays

pseudo gray-valued images of the four HSI data sets in the image display (see (b) in Fig 2), an

agglomerated spectrum for each HSI data set in the spectra display (see (c) in Fig 2) and a

dimension reduction scatter plot that was computed for all spectra from the four HSI data sets

in the embedding display (see (d) in Fig 2). In the embedding display or in the spectral display

the data from different time points can be selected and de-selected in order to focus on the

comparison of for instance only two measurements.

The four displays are functionally linked to allow interactive dynamic selection, filtering

and highlighting of data subsets in one display with a simultaneous highlighting of the same

data in the other displays, which is also referred to as gating or link and brush in the informa-

tion visualization community [39] (cmp. Fig 2a–2c). The (de-)selection of data groups in one

display is propagated to the other different displays, i.e. if a subset of data is selected in the

embedding display (cmp. Fig 2a)) the location of this selection is highlighted as a ROI in the

image domain (Fig 2b)) and the mean spectra are depicted in the spectrum display (Fig 2c)).

The selection of single data points in the embedding display furthermore allows the inspection

of the spectrum of a single hyperspectral pixel (Fig 2d)).

In addition to this functionality, the HypIX tool also offers the possibility to show a PCA

biplot of the data chosen in the embedding display. The PCA biplot shows a PCA dimensional-

ity reduction to the two-dimensional plane as well as a visualization of the PCA loadings. The

dots correspond to individual coral pixels, while arrows correspond to the variable loadings of

individual wavelength variables (pseudo-colored according to the color they represent).

Although PCA is possibly less powerful than, e.g., UMAP when it comes do differentiating

between spectral samples in a two-dimensional data space, it arguably represents a means of

dimensionality reduction that is easier to interpret. By inspecting a biplot, it is for instance pos-

sible to coarsely relate observed spectral differences to the wavelengths causing them. This is a

useful property that potentially may guide more targeted analyses performed subsequently. For

a more in-depth discussion on PCA biplots please have a look at the respective literature [40].

All these HypIX functions can be used to conduct several different approaches to data

exploration. This allows an analysis of the data in three domains simultaneously and to develop

new workflows to guide users in the analysis of HSI data.

HypIX is built using the Dash library and the Python programming language. For data pro-

cessing we use numpy [41], scikit-learn [42], umap-learn [38] and h5py [43].

Morphology-based filtering workflow. This workflow is motivated by the standard

approach of first selecting ROIs in the spatial domain and investigating the average spectra
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from these ROIs and their differences or similarities through the time series. In HypIX, the

ROIs can be selected in the image display by drawing polygons or rectangles. Since the HSI

shown in this study are not spatially aligned (or registered), users need to be very careful to

select ROIs in each of the four pseudo-color images that show corresponding morphological

substructures (like calice) in all four images. After the ROI selection, the other two displays are

updated and the corresponding points are highlighted in the embedding display and the spec-

tra display now shows the agglomerated spectra from the four ROIs.

Embedding driven response analysis workflow. We introduce the concept of embed-

ding-driven ROIs in contrast to anatomy/morphology driven ROIs, as described above. The

idea is to detect areas of spectral shifts and changes not based on a spatial hypothesis but based

on patterns in the spectral data points from two or more time points. One example for results

obtained with such a workflow is shown in Fig 3 and explained in detail in the Results section.

First, a group of points is selected in the embedding display using the mouse and a lasso or

rectangle selection tool. Sometimes it is beneficial to limit the embedding display to data from

two time points only (e.g. comparing the spectral data recorded at T0 to that recorded at T2).

The average spectra from these selections are presented in the spectra display and the locations

of these spectra are highlighted in the image display. Using this workflow, regions in the

embedding display that are populated by data from only one time point can be selected. This

causes the image display to highlight these points. Now we can select the same regions for the

other time points in the image display. This in turn causes the embedding display and the spec-

tra display to be updated, showing local spectral differences over time.

HyPIX application experiment. Three users (one bioinformatician, two marine biolo-

gists), independently applied HypIX and the workflows described above to investigate the col-

lected HSI times series. Each time series was rated regarding the changes observed between the

initial time point T0 to the other time points T0.5 (right after exposure), T1 (after two weeks)

and T2 (after six weeks). Since many ROIs described only small parts of the samples, these

changes cannot be found using a holistic approach, e.g. by comparing average spectra com-

puted for entire samples. Therefore, a tool such a HypIX is required to find these changes.

Fig 3. Local changes revealed with the interactive subselection of the hyperspectral viewer, otherwise shadowed by global analysis. Shown is the

bentonite sample with 100mg � L−1 concentration using a UMAP with cosine metric and coral 3. The normalization of spectra was activated and the

aggregation option was set to mean.

https://doi.org/10.1371/journal.pone.0272408.g003
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Each user independently rated each HSI data Hn
t;c with t 6¼ T0 regarding the degree of change

in comparison with its initial pre-exposure state HSI Hn
T0;c. All changes appeared only in spe-

cific parts of the corals, so the ROI Hn
t 6¼T0;c describing this part showed a spectral signature con-

siderably different to the signature from the same ROI in the T0 measurement. The users’

rating decision was noted as rðHn
c Þ 2 f1ðno changeÞ; 2; 3ðaverage change levelÞ; 4; 5ðhighest

change levelÞg and the detailed rating result is given in S1 and S2 Tables in the supplementary.

After all HSI have been evaluated by the users for each sample’s time series Hn
c the average

change rating r̂ nc 2 ½1; . . . ; 5� was computed from the three users’ ratings. In Fig 4 the average

change rates for the control group experiments and each exposure level experiment for ben-

tonite, barite and DC exposure are summarized as one star glyph per experimental condition,

i.e. exposure concentration (see graphical explanation of the star glyph in the box in Fig 4).

Results

The first observation in Fig 4 was that the users did not find many changes in the control

group but identified stronger changes in the exposure experiments. Although, the corals did

not all react with the same intensity for one exposure level, the trend that there were at least

two corals reacting stronger to the exposure is visualized by a larger area in Fig 4. In the control

group of the DC experiments some users noted a change in the embedding display for one

coral sample (see “Coral 5” in the upper right starplot in Fig 4). A re-investigation of this case

showed that in this case, the shift in the embedding space was caused by a mistake in the

description of coral mask in the T0 data set, which was not noted by some users. In T0, the

coral mask was too large and included non-coral pixels from the ground. As this was only the

case in one time point, this resulted in two shifted groups of points outside the main point

cloud in the embedding display. We decided not to repeat the experiment with a corrected

mask in order to follow the planned experimental set up as strictly as possible so the workflow

could be evaluated rigorously. Instead, in the supplementary S4 Fig we show the embedding

results with and without the wrong part of the mask.

The second observation in the bentonite/barite experiment was that not all five corals in

one exposure experiment showed a reaction to the exposure in the spectral signatures. Just a

subset of three to four corals showed an average change rate rðHn
c Þ > 2:5. This kind of individ-

ual response behavior was an interesting observation as it motivates the investigation of single

samples instead of analysing all spectra from all samples together, which is usually the case.

The third observation was that the exposure concentration did not seem to impact the

degree of change in the barite exposure experiments but it seemed to play a role in the benton-

ite experiments.

In addition we observed a trend for the reaction speed of the corals for bentonite and barite

on the one hand and DC on the other hand. Many corals treated with bentonite and barite

showed an immediate reaction to the exposure at time point T0.5 but no further change at the

following time points. The corals exposed to DC solution reacted at T0.5 and then seemed to

go back to a state with lesser change when compared to T0.

In addition to these general observations based on the subjective ratings rðHn
c Þ we found

more specific patterns through the interactive nature of HypIX, i.e. the link and brush between

embedding, image and spectra displays. In Fig 3 we showed an example where the subselection

of data in the embedding display and linkage between different displays led to the identifica-

tion of a local change. In the initial state (no filtering applied and all data from T0, . . ., T2 is

shown) the embedding and the spectral displays showed only small differences in point distri-

butions and the spectral composition looked exactly the same (cmp. Fig 3(a) and 3(d)). Hiding

data from two time points, i.e. T0.5 and T1 (cmp. Fig 3(b)) hinted to a ROI in the embedding

PLOS ONE Exploring time series of hyperspectral images for cold water coral stress response analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0272408 August 8, 2022 10 / 19

https://doi.org/10.1371/journal.pone.0272408


Fig 4. Subjective rating results of the changes from initial time point T0 to final time point T2 of the bentonite,

barite and DC experiment after six weeks. All values represent the average over all subjective ratings. Ratings range

from 1 (no change) to 5 (strong change). Analogues to the color scale of the Hyperspectral Viewer, yellow is T0.5

(directly after exposure), red is T1 (two weeks after exposure) and green is T2 (six weeks after exposure). The titles of

the subgraphs are the concentrations in mg � L−1 of the exposure depicted as the row title.

https://doi.org/10.1371/journal.pone.0272408.g004
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display (see Fig 3b upper left), where the data distributions differed between T0 (blue) and T2

(green). In a subsequent step we selected this suspicious area in the data display (cmp. Fig 3

(c)), which triggered the link and brush of the location view (cmp. Fig 3(e) and 3(f)), as well as

of the spectral view (cmp. Fig 3(g)). From the Fig 3(e) and 3(f) we saw that the data distribu-

tion represented indeed the same location, however, the spectral composition (cmp. Fig 3(g))

differed significantly from T0 to T2. The curves cross at approx. 630 nm, suggesting a change

in spectral properties towards a less red and more flattened spectrum. This example showed

that these changes cannot be analysed with a technique using a single modality. When we only

looked at the unfiltered spectra (cmp. Fig 3(d)) we could not point out any difference, because

it was shadowed by the mean of spectra. When we looked at the original data view (cmp. Fig 3

(a)), we could probably see a change in data distribution, although this was already quite hard

to see, because of the huge amount of data. Even if we could observe the change in data distri-

bution, we could only state that there might be a change and there is still the slight possibility

of a misleading embedding of the data causing this change in distribution. What this change

looked like in the spectral domain or where it was located is hidden from a mono-modal analy-

sis. In addition using t-SNE or UMAP with euclidean metric this change in data distribution

could not be spotted as clearly as with the UMAP using a cosine metric. In contrast our results

showed the potential of the multi-modal HypIX functions in HSI analysis.

Another option to quickly generate a hypothesis about changes from time point to time

point was the pseudocolor option (cmp. Fig 5). A change in color meant that there was likely a

change in the spectral composition, which could be validated using the spectral and the data

view in successive steps. Furthermore a single channel could be selected to be presented as a

pseudocolor image to analyse changes in a specific spectral band of interest.

Discussion

Hypix was evaluated by a focus group of users and they liked the look and feel. Problems that

arose were fixed in the final version of Hypix. Users particularly appreciated the link and

brush functionality, i.e., interactive filtering of data in one modality that links changes in the

other modalities. This opened new ways of exploratory data analysis in hyperspectral imaging,

which can lead to the generation of future research hypotheses.

The two proposed workflows led to results that were mostly consistent between the users

(standard deviation 0.39, also cmp. S5 Fig in the supplementary). The low degree of variation

Fig 5. Pseudocolor images of each timepoint. We can clearly spot differences between time point T0 and the other time points. a) start of

experiment (T0); b) immediately after exposure (T0.5); c) after 2 weeks of exposure (T1); d) after 6 weeks of exposure (T2).

https://doi.org/10.1371/journal.pone.0272408.g005
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indicates that the software and the proposed workflow can be applied for HSI analysis to

achieve results that are reproducible.

The fact that the method is vulnerable to mistakes in the definition of the mask (cmp.

“Coral 5” in the Control experiment of the DC exposure in Fig 4) may be considered accept-

able as any kind of analysis that uses a mask description would potentially suffer from such

kinds of error. One may even consider it a strength of this interactive visualization-based

approach that this imprecise mask definition was detected in the experiment.

A clear defined exposure-related spectral change was not ubiquitously observed for all the

coral samples in any of the treatments. It is therefore difficult to model a relationship with

respect to specific exposure levels and their general impact on coral color based on our experi-

mental output. A notable pattern, however, was that exposure to bentonite and barite had a

higher effect on the spectral properties of white corals than on orange ones (cmp. Fig 4). This

is particularly interesting considering that findings from a recent study by Büscher et al. [44]

indicate that the white D. pertusum phenotype may be less stress-resistant than the orange phe-

notype. For the white corals where a spectral change was observed, the change was typically

manifested as a red-shifted spectrum (i.e., lowered blue values and elevated red values, cmp.

Fig 6). The ultimate cause of this spectral shift is yet to be determined, and consequently a

topic that warrants further investigation.

Provided that our observed spectral shift is a response to the exposure treatment, the non-

uniform response of coral samples undergoing the exact same treatment indicates that individ-

ual corals may have individual tolerance levels. Further studies should seek to identify the rea-

son for these differences in tolerance. One can speculate if factors such as age, reproduction,

feeding availability and integrity of the coenosarc layer contributes to the fitness of the individ-

ual polyp.

In a recent tank study [29], D. pertusum was also exposed to various concentrations of parti-

cles associated with drilling operations. Notably, the study reported a significantly increased

ratio of organic carbon to organic nitrogen (OC:ON ratio) in the mucus of corals exposed to

bentonite concentrations >20mgL−1. Furthermore, a study on the effects of drilling particles

Fig 6. Screenshot of the spectral view of Hypix. Example for a red-shifted spectrum due to the exposure with a barite

concentration of 30mg � L−1 for coral 0. The blue part of the light spectrum is lowered while the red part is elevated at

T0.5, T1 and T2 compared to before the exposure at T0.

https://doi.org/10.1371/journal.pone.0272408.g006
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on D. pertusum larvae found that bentonite affected larval behavior at lower concentrations

than both barite and DCs [31]. This was attributed to the bentonite particles being finer, mak-

ing them stick to the coral mucus more easily. The findings from both the aforementioned

studies are interesting, as the greatest spectral changes in the current study also were observed

for corals exposed to bentonite (see results obtained for the Bentonite 100 experiments, illus-

trated in Fig 4). A possible explanation for these observations is that the finer bentonite parti-

cles interfered with the coral mucus to a greater extent than both barite and DCs, and that this

manifested itself as a detectable spectral shift. However, as the trend was not ubiquitous

among coral samples exposed to high bentonite concentrations, this interpretation should cur-

rently be treated with caution. In the future, we recommend conducting particle exposure

studies of D. pertusum where hyperspectral signatures and coral mucus properties are mea-

sured simultaneously. This could provide further insight into D. pertusum’s response to dril-

ling operations and possibly help substantiate the observations related to bentonite exposure

made in the current study.

In general, the shifts observed in the HSI of the corals can be described as colour shifts

towards a more reddish colour. However, the shifts are too small to be recognized in the RGB

image by the human eye. Colour shifts in D. pertusum corals have been reported before by

Osterloff et al. [45], however on a much longer time scale (from May to September 2015) and

with another possible explanation, i.e. a seasonal difference in the food supply (copepods). In

the RGB images in this study of 2019, the colour shift was strong enough to be perceived com-

paring images recorded at time points four months apart. The underlying mechanisms of

color changes in this species are not well known and only a small number of studies have been

published on the topic so far. Letnes et al. [21] found a correlation between hydrocarbon expo-

sure, coral mortality, and coral color change. Elde et al. [11] found different concentrations of

pigments in the morphotypes. A color morph specific bacterial assemblage is reported by Neu-

linger et al. [46].

Besides the effects observed in the HSI data mentioned above, the rationale behind the

application of hyperspectral imaging to assess the health status of cold water corals, is that I)

the spectral properties of corals have been observed to change with declining health, and that

II) these changes are observable with underwater hyperspectral imaging. In the following we

will address these two points to provide more context for our findings.

Point I) is supported by the work of Letnes et al. [21] who showed a correlation between

coral mortality and colour of the species. The corals undergoing mortality exhibited a loss of

absorption properties at specific wavelength (560nm), which suggests a loss of pigment func-

tion. However the link between colour and levels of non-lethal health change is not well stud-

ied. Hyperspectral assessment from air is much used to assess the health of shallow water

tropical corals. These corals form a symbiotic relationship with dinoflagellates, and with the

loss of this dinoflagellate due to increasing water temperatures, the process of coral bleaching

occurs. The process is reversible to a certain point, however if the symbiosis is not restored the

coral will eventually die and the remaining carbonate skeleton will typically be inhabited by

macro algae. HSI is used to monitor the extent of live corals, bleached corals and macro algae

covered corals [47–49]. This is a related yet different scenario than health monitoring of the

azooxanthellate D. pertusum. We have a fairly good overview of the typical live spectrum and

the dead spectrum of the species [11, 21, 23, 50, 51], however, there is limited knowledge on

spectral properties of the intermediate health, which would be equivalent to the bleached, but

not dead tropical coral. Establishing further knowledge on the spectral responses is crucial if

HSI is to give an early warning of changes in environmental conditions.

Point II) is motivated by the observation that knowledge on how coral spectral properties

change with a declining health is rather limited. Thus, the discussion on the capability of HSI
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to detect these changes, should be taken with precaution. However, the fact that HyPIX can be

applied to produce reproducible results obtained from visualizations can be interpreted as a

new step towards increasing the significance of HSI data by improving the HSI data interpreta-

tion. Hence, we propose that HSI does have a potential to function as a tool for monitoring

changing physiological conditions of marine organisms. Future studies should seek to under-

stand the actual mechanisms involved in color change of corals. Emphasis should also be put

on bringing the methodology from lab to field. An HSI field tool for detection of health

changes in deep-water marine organisms could be utilized for monitoring of effects of offshore

drilling operations and is also likely to be be valuable for other industries, for instance for

monitoring of environmental footprints from sea based aquaculture production, where there

are concerns regarding the the effects of organic wastes on filtering benthic fauna.

We show that this software-driven workflow shows great potential in the analysis of hyper-

spectral imagery. Although in this case the Hypix tool was tailored for this use case the method

can be applied to other hyperspectral or multispectral data as well. The two workflows pro-

posed in this research led to a streamlining of methods thus to reproducible results. We think

that therefore not only the software is a valuable asset but also the workflows and methodology

in general.
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