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A B S T R A C T

It is challenging to make optimal field development and reservoir management decisions with diminishing
resources and low-emission requirements. For an optimal exploitation of the reservoir fluids, it is necessary
to introduce advanced digital tools and account for geological uncertainty when making decisions. This paper
discusses an ensemble-based probabilistic decision-making workflow for closed-loop reservoir management.
The reservoir model is a synthetic but realistic model with oil, gas, and water. We show how to use ensemble
methods in a workflow for integrated uncertainty prediction, history matching, and robust optimization. The
workflow uses advanced ensemble-based history-matching techniques to update a reservoir model in the annual
maturation process. After the history-matching update, an optimization process decides the best wells to drill
next to gain the highest net present value. An additional robust decision step evaluates the wells over the
ensemble of reservoir models to ensure they lead to a positive ensemble-averaged net present value. The
approach allows for up-to-date predictions, including uncertainty estimates, leading to improved decision
support for field development, well-planning, production strategies, and reservoir management.
. Introduction

Traditionally, we have made field-management decisions based on
single ‘‘best’’ reservoir-model prediction. Sometimes this best model

s accompanied by an ad-hoc P90 and P10 model to represent the
ncertainty in light of the two extreme cases. We can now do better
y introducing ensemble methods, which use model ensembles to rep-
esent the uncertainty. The ensemble methods allow for a consistent
epresentation of uncertainty that propagates from the geological in-
uts to the simulated outputs. Furthermore, by using ensemble history-
atching (HM) methods, such as the iterative ensemble smoothers, we

an use the ensemble correlations between the geological inputs and
he simulated outputs to compute regression updates of the geolog-
cal description. The iterative ensemble smoothers can handle weak
onlinearities and have worked well in many reservoir field cases. An
dvantage of using an ensemble of models is that we avoid defining
‘‘best’’ model to base our decisions. Instead, we can make robust

ecisions based on the whole ensemble of model realizations. E.g., it
s possible to compute which alternative control strategy results in the
aximum net present value (NPV) when averaged over the ensemble

f reservoir models. The existence of an ensemble of reservoir models
nd predictions also provides a basis for robust optimization of model
ontrols that are the best in average over the whole ensemble.

∗ Corresponding author at: NORCE–Norwegian Research Center, Bergen, Norway.
E-mail addresses: yuch@norceresearch.no (Y. Chang), geev@norceresearch.no (G. Evensen).

The ensemble formulation facilitates a framework for integrated
uncertainty analysis, history matching, optimization, and decision mak-
ing. This paper demonstrates such a framework in a closed-loop for-
mulation. We recursively update the reservoir model with new produc-
tion data. Based on the updated models, we recompute the optimiza-
tion of the control variables and re-evaluate the decision alternatives.
This closed-loop ensemble framework is generally applicable to many
prediction problems within and outside the geosciences.

Jansen et al. (2005) formulated the closed-loop reservoir manage-
ment problem, later discussed by Jansen et al. (2009) and Skjervheim
et al. (2015). The more prominent focus on developing methods for
solving the history-matching problem may have delayed the devel-
opment of closed-loop reservoir management systems. Additionally,
closed-loop reservoir management adds another level of complexity as
it involves both HM and optimization loops, which we need to solve
iteratively, and the approach becomes less practical to apply and time
consuming to run. history-matching is a prerequisite for a working
reservoir optimization and further integration into the closed-loop
framework. This paper differs from some other recent publications on
optimization of drilling order and ensemble-based closed-loop reservoir
management, e.g., Silva et al. (2017), Lu and Reynolds (2020), Barros
et al. (2020), Leeuwenburgh et al. (2010, 2016). We also include a
decision process in the workflow, and we point out some weaknesses of
the EnOPT method when used with significant geological uncertainty.
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The ensemble-history-matching formulation has evolved from early
attempts of using the ensemble Kalman filter (EnKF) developed by
Evensen (1994, 2003, 2009) for recursive updating of reservoir mod-
els. The initial approach was similar to the recursive model updating
in weather forecasting, except the focus was on the joint updating
of the model parameters and the model state (Nævdal et al., 2003;
Haugen et al., 2008). In weather prediction, one only updates the
model state before making a new prediction of the future. A break-
through paper by Skjervheim et al. (2011) introduced the ensemble
smoother from Van Leeuwen and Evensen (1996) for parameter es-
timation, using the approach from Evensen (2009, Chap. 10). With
further extensions of the initial smoother method to use iterations for
reducing the impacts of nonlinearity (Chen and Oliver, 2012, 2013; Em-
erick and Reynolds, 2012), iterative ensemble smoothers have become
the method of choice in ensemble history matching. These methods
simplify the history-matching problem by only updating the model
parameters. Furthermore, they compute the solution by integrating
the model from the initial time using the updated parameters, as in
traditional history matching. In this paper, we have used the ensemble-
subspace-EnRML method by Evensen et al. (2019) and Raanes et al.
(2019).

Van Essen et al. (2009) introduced the concept of robust opti-
mization. He showed that optimizing controls over an ensemble of
reservoir models gave superior results to optimization over a single
model realization. A popular robust optimization method in the reser-
voir community is ensemble-based optimization (EnOPT) (see, e.g.,
Lorentzen et al., 2006; Chen et al., 2009). Characteristic of (EnOPT) is a
statistical approximation to the objective function’s gradient computed
from ensemble statistics. Stordal et al. (2016) and Fonseca (2016)
have further developed EnOPT to the version used in the current
paper. Although we have used EnOPT in this paper, we will claim
that the method still has issues handling problems with significant
geological uncertainty as this leads to additional stochasticity in the
gradient calculations. Recent alternative methods may be the learned-
heuristics approach by Wang and Oliver (2019) or the mean-model
method introduced by Wang and Oliver (2021), which both avoid
using a gradient. These methods are promising for robust optimization,
leading to reduced computational requirements and avoiding using an
ensemble gradient.

Finally, we should implement the decision alternative if its im-
plementation leads to a positive NPV. The ensemble approach allows
estimating the resulting NPV over the ensemble of updated reservoir
models and provides a foundation for making a robust decision. The
following sections will explain and demonstrate our closed-loop deci-
sion workflow on a simplified reservoir model. The workflow is readily
applicable to realistic reservoir models and can include the geologi-
cal modeling following the approach by Zachariassen et al. (2011),
Skjervheim et al. (2012), and Hanea et al. (2015). Our example below
focuses on optimizing the drilling order of pre-planned wells given a
specific drilling schedule. Thus, we consider a discrete optimization
problem.

2. Methodology

This section introduces the closed-loop reservoir management work-
flow and briefly introduces the ensemble methods used. We define a
model state 𝐱 that characterizes the reservoir model and its uncertain
eological variables. In our example, we assume uncertain porosity and
ermeability fields, and fault multipliers. These are reservoir param-
ters that are important for characterizing the volume of oil and its
istribution in the reservoir. Additionally, the permeability together
ith the fault transmissibilities determine the connectivity and fluid

low in the reservoir. We will use history matching to improve our prior
nowledge of 𝐱. The model controls 𝐮 can be continuous variables such
2

as imposed production and injection rates, but in our example, they
represent the discrete drilling order of the wells. We assume a reservoir
model

𝐲 = 𝐠(𝐱,𝐮), (1)

where 𝐱 ∈ ℜ𝑛 is the vector of 𝑛 poorly known model parameters,
𝐮 ∈ ℜ𝑛𝑐 is a vector of 𝑛𝑐 model controls, and 𝐲 ∈ ℜ𝑚 is a set of 𝑚
predicted measurements.

2.1. The ensemble-based decision workflow

The closed-loop decision workflow in Fig. 1 comprises various
decision steps for reservoir management during the field development.
The workflow is independent of the methods used for history matching
and optimization, although it is ideally suited to ensemble methods.
In other words, closed-loop reservoir management is the standard way
of working. However, traditionally one has used less sophisticated
manual methods for model updating and history matching. Further-
more, as an alternative to advanced optimization methods, one has
used intuition, experience, and model simulations to decide the next
reservoir-development steps and the drainage strategy.

Our robust ensemble workflow uses ensemble history-matching and
optimization methods recursively in time. We condition model param-
eters to all current and past observations to create the best possible
ensemble of geologically consistent models that fits the measurements
within their estimated uncertainty. We robustly optimize decision al-
ternatives over the ensemble of history-matched geological models
and evaluate each alternative’s expected objective function at decision
points.

2.2. Ensemble-based optimization

Given a reservoir, where we use the variable 𝐱 to represent the ge-
ological model state, and a set of control variables 𝐮 defining its devel-
opment and operation, we can define the objective function (e.g., eval-
uating the net present value) as (𝐮, 𝐱). Thus, the objective function is
a function of the control parameters and model state. The optimization
goal is to find the controls in 𝐮 that maximize the expected value of
 (Chang et al., 2019).

We will use EnOPT to maximize the objective function and start
from the pre-conditioned steepest-ascent method

𝐮𝑖+1 = 𝐮𝑖 + 𝜂𝑖 𝐂𝑢𝑢 ∇𝐮 (𝐮𝑖, 𝐱), (2)

where the superscript 𝑖 is the iteration index, 𝜂𝑖 is the step size,
𝐂𝑢𝑢 is a pre-determined symmetric and positive definite matrix, and
∇𝐮 (𝐮, 𝐱) ∈ ℜ𝑁×1 is the gradient of the objective function to the
control variables evaluated at (𝐮, 𝐱).

The EnOPT algorithm (Lorentzen et al., 2006; Chen et al., 2009)
introduces an approximate stochastic representation for the gradient.
The method computes the gradient from an ensemble of controls, 𝐮𝑗 ∼
 (𝐮,𝐂𝑢𝑢) as a linear regression between the controls and the resulting
NPVs. We use the subscript 𝑗 as the ensemble realization index. From
here and onwards, we only discuss the gradient approximation at the
current iteration 𝑖. For the simplicity of notation, we, therefore, skip
the iteration superscript on 𝐮𝑖𝑗 and note that 𝐱 is independent of 𝑖. For
a given geological model 𝐱, we can approximate the gradient as

∇𝐮 (𝐮, 𝐱) ≜ 𝐂−1
𝑢𝑢 𝐂𝑢𝑜

≈ 𝐂−1
𝑢𝑢

1
𝑁

𝑁
∑

𝑗=1

(

𝐮𝑗 − 𝐮
)(


(

𝐮𝑗 , 𝐱
)

− 
)

.
(3)

Here 𝐮 is the arithmetic average of the controls at iteration 𝑖, and

 = 1
𝑁

𝑁
∑

𝑗=1

(

𝐮𝑗 , 𝐱
)

, (4)

is the arithmetic average of NPVs for all controls. Thus, we only need
to compute the sample covariance, 𝐂 , between the controls 𝐮 and
𝑢𝑜 𝑗



Journal of Petroleum Science and Engineering 217 (2022) 110858Y. Chang and G. Evensen
Fig. 1. DIGIRES decision workflow for field development. Drilling two wells per year, we use the workflow to decide on the optimal drilling schedule and how many wells to
drill.
the resulting ensemble of NPVs, 
(

𝐮𝑗 , 𝐱
)

. The previous formulation
defines the original EnOPT algorithm (Lorentzen et al., 2006; Chen
et al., 2009).

Chen et al. (2009) also used EnOPT in the case with uncertain
geology. They introduced uncertainty in the geological reservoir char-
acterization and represented it by an ensemble of 𝑁 model realizations.
Formally, introducing an ensemble of reservoir models leads to an
ensemble of simultaneous optimization problems, one for each geologic
realization. We can then find one optimal control vector for each geo-
logic realization. An alternative by Van Essen et al. (2009) is to define
an optimization problem where we sum the individual optimization
problems and solve for one common optimal control vector.

It is common to associate only one realization 𝐮𝑗 to each geologic
realizations 𝐱𝑗 as this simplifies the formulation and avoids running 𝑁2

simulations. Stordal et al. (2016) showed that, for a sufficiently large
ensemble size, this approximation does not introduce any bias in the
gradient approximation. Thus, in the case of geological uncertainty, we
can use the following definition for the gradient

∇𝐮 (𝐮, 𝐱) ≜ 𝐂−1
𝑢𝑢 𝐂𝑢𝑜

≈ 𝐂−1
𝑢𝑢

1
𝑁

𝑁
∑

𝑗=1

(

𝐮𝑗 − 𝐮
)(


(

𝐮𝑗 , 𝐱𝑗
)

− 
)

.
(5)

Here we have redefined  from Eq. (4) to use the ensemble of geologic
realizations as

 = 1
𝑁

𝑁
∑

𝑗=1

(

𝐮𝑗 , 𝐱𝑗
)

. (6)

A further modification of the EnOPT algorithm with geological
uncertainty by Fonseca (2016) modifies the averaging of the NPVs in
Eq. (6) with the following definition for the gradient

∇𝐮 (𝐮, 𝐱) ≈

𝐂−1
𝑢𝑢

1
𝑁

𝑁
∑

𝑗=1

(

𝐮𝑗 − 𝐮
) (


(

𝐮𝑗 , 𝐱𝑗
)

− 
(

𝐮, 𝐱𝑗
))

.
(7)

In cases where the geological uncertainty is high, Eq. (7) gives a lower
variance for the gradient estimate than Eq. (5), see Stordal et al.
(2016). Therefore, we will use the EnOPT method with Eq. (7) in
this work. In this version of EnOPT, we must also compute the NPV
using 𝐮 for all geological realizations in each iteration to evaluate the
quality of the updated control and the stopping criteria. We have used
a stopping criteria based on the improvement of objective function
between two iterations. If the objective function fails to improve after
three backtracking trial steps, the optimization algorithm stops. Thus,
each optimization iteration requires 2𝑁 simulations.

2.3. Subspace EnRML

In history matching, given measurements 𝐝 of 𝐲, we estimate the
posterior and conditional probability density function (PDF) of 𝐱 from
3

Bayes’ formula written as

𝑓 (𝐱 ∣ 𝐝) ∝ 𝑓 (𝐱)𝑓 (𝐝 ∣ 𝐠(𝐱)). (8)

Here 𝑓 (𝐱 ∣ 𝐝) is the conditional PDF of the parameters 𝐱 given the
observations 𝐝. This posterior PDF is proportional to the product of the
prior PDF 𝑓 (𝐱) and the likelihood 𝑓 (𝐝 ∣ 𝐠(𝐱)). The prior PDF describes
the prior knowledge of the parameters, while the likelihood describes
the uncertainty in the observations. The proportionality constant is just
one over the integral of the right-hand side of Eq. (8). It ensures that
the posterior PDF integrates to one, but for ensemble methods, it turns
out that we do not need to compute it. For additional information on
this formulation, see the discussion in Evensen et al. (2022, Chap. 2).
Note also that for the history-matching problem, we either treat the
controls 𝐮 as given, or if they are uncertain, we can include them in 𝐱 as
explained by Evensen (2021). Note again that in the current paper, we
do not optimize the controls but rather the drilling sequence, making
it possible to add the controls to the HM state vector.

It is common to introduce the normally-distributed priors

𝑓 (𝐱) =  (𝐱f ,𝐂𝑥𝑥), (9)

𝑓 (𝐝 ∣ 𝐠(𝐱)) = 𝑓 (𝐞) =  (𝟎,𝐂𝑑𝑑 ), (10)

where 𝐱f ∈ ℜ𝑛 is the prior estimate of 𝐱 with error-covariance matrix
𝐂𝑥𝑥 ∈ ℜ𝑛×𝑛, and 𝐂𝑑𝑑 ∈ ℜ𝑚×𝑚 is the error-covariance matrix for the
measurements. We can then write Eq. (8) as

𝑓 (𝐱 ∣ 𝐝) ∝ exp
{

−1
2

(

𝐱 − 𝐱f
)T

𝐂−1
𝑥𝑥

(

𝐱 − 𝐱f
)

}

× exp
{

−1
2

(

𝐠(𝐱) − 𝐝
)T

𝐂−1
𝑑𝑑

(

𝐠(𝐱) − 𝐝
)

}

.
(11)

Maximizing 𝑓 (𝐱 ∣ 𝐝) is equivalent to minimizing the cost function

 (𝐱) = 1
2
(

𝐱 − 𝐱f
)T𝐂−1

𝑥𝑥
(

𝐱 − 𝐱f
)

+ 1
2
(

𝐠(𝐱) − 𝐝
)T𝐂−1

𝑑𝑑
(

𝐠(𝐱) − 𝐝
)

.
(12)

Ensemble methods for history matching tries to sample the posterior
PDF in Eq. (11). The Randomized Maximum Likelihood (RML) method
discussed by Oliver et al. (1996) and Kitanidis (1995) samples Eq. (11)
approximately by minimizing an ensemble of cost functions written for
each realization as

 (𝐱𝑗 ) =
1
2
(

𝐱𝑗 − 𝐱f𝑗
)T𝐂−1

𝑥𝑥
(

𝐱𝑗 − 𝐱f𝑗
)

+ 1
2
(

𝐠(𝐱𝑗 ) − 𝐝𝑗
)T𝐂−1

𝑑𝑑
(

𝐠(𝐱𝑗 ) − 𝐝𝑗
)

.
(13)

Here 𝐱f𝑗 ∼  (𝐱f ,𝐂𝑥𝑥) and 𝐝𝑗 ∼  (𝐝,𝐂𝑑𝑑 ) are realizations of the param-
eters and measurements sampled from their prior distributions. Note
that, in the nonlinear case, the minimizing solutions will not precisely sample
the posterior non-Gaussian distribution, but only provides an approximate
sampling of it.
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Fig. 2. The figure illustrates the history-matching problem assuming a perfect model solved using an ensemble approach. One defines an assimilation time window and updates
the prior model input parameters (blue bullets) such that the posterior ensemble of model realizations (green) better fits the observations (black dots). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Source: The figure is taken from Evensen et al. (2022).
In the standard EnRML method by Chen and Oliver (2013), we min-
imize the cost functions in Eq. (13) by using a gradient descent method.
Characteristic for ensemble methods is the use of a representation for
the model sensitivity (i.e., the tangent-linear operator 𝐆 of 𝐠(𝐱)) defined
by the linear regression

𝐆 = 𝐂𝑦𝑥𝐂−1
𝑥𝑥 (14)

By using this regression, we are replacing the exact model sensitiv-
ities with an average best least-squares fit defined by (14). In the
ensemble methods, we replace the covariances with their ensemble
representations

𝐆 = 𝐂𝑦𝑥𝐂
−1
𝑥𝑥 . (15)

This formulation requires the pseudo inversion of large matrices and is
expensive to compute.

The subspace EnRML was introduced by Evensen et al. (2019),
Raanes et al. (2019), and they discuss its theoretical foundation as well
as the practical implementation. Since, in the ensemble formulation,
the solution is confined to an initially defined ensemble subspace, they
showed that it is possible to formulate the EnRML method to search
for the solution in the ensemble subspace. This formulation leads to a
significantly more efficient and simpler algorithm where the number
of unknowns is the number of ensemble members 𝑁 rather than the
number of parameters 𝑛. While 𝑁 = (100), we often have 𝑛 = (106).
Theoretically, the ensemble subspace RML and the EnRML methods
give identical results, but the subspace variant is more stable when 𝑛 is
large in practice.

Fig. 2 illustrates the ensemble HM concept. The prior input param-
eters (blue bullets) lead to an ensemble prediction with considerable
uncertainty that does not well represent the observations. Then, the
iterative ensemble smoothers converge to a posterior set of parameter
values (green bullets), resulting in an ensemble prediction better agree-
ing with the observations (black dots). For the details of the ensemble
subspace RML algorithm and its implementation we refer to the two
original papers by Evensen et al. (2019) and Raanes et al. (2019), but
see also the discussion in Evensen (2021) and Evensen et al. (2022).

3. Workflow and problem description

This section explains the closed-loop decision workflow illustrated
in Fig. 1 and Table 1 applied to a reservoir model. We will use
it to select the drilling schedule optimally. In the next section, we
briefly introduce the reservoir model before demonstrating the decision
workflow on a reservoir management case.
4

3.1. Reservoir model

We use the REEK reservoir model provided by Equinor and de-
scribed by Hanea et al. (2017). The model simulates three fluid phases
consisting of oil, water, and gas. The model grid has dimensions
40 × 64 × 14 and consists of 35 840 grid cells. On average, the original
oil in place (OOIP) is 4 831 × 107 sm3 (Oguntola and Lorentzen, 2021).
The reservoir has three zones (UpperReek, MidReek, and LowerReek)
with six faults of different transmissibilities, and it has five producers
and three injectors (see Fig. 3). Thus, we use a relatively small but
realistic model to demonstrate the ensemble workflows. The REEK
model was also used in Evensen et al. (2019), Evensen (2021) for
testing iterative ensemble smoothers for reservoir history matching. We
consider porosity, permeability and fault transmissibilities as uncertain
model parameters. A model simulation requires one CPU minute on a
single CPU.

3.2. Problem description

We have defined a demonstration case with eight preplanned wells,
five producers, and three injectors. Given the constraint of drilling two
wells a year, the goal is to determine the optimal drilling schedule
for the preplanned wells as part of an annual maturation process. We
represent the geological reservoir uncertainty for porosity, permeability
and fault transmissibilities by using 100 geological realizations. Given
a control strategy 𝐮𝑗 on a geological realization 𝐱𝑗 , with 𝑄(𝑡𝑖) represents
the function 𝑄(𝑡𝑖) = 𝑄(𝐮𝑗 , 𝐱𝑗 , 𝑡𝑖), we define the objective function of NPV
as

(𝐮𝑗 , 𝐱𝑗 ) =
𝑁𝑡
∑

𝑘=1

𝑄𝑜𝑝(𝑡𝑘)𝑟𝑜𝑝 +𝑄𝑔𝑝(𝑡𝑘)𝑟𝑔𝑝
(1 + 𝑑)𝑡𝑘∕𝜏

−
𝑁𝑡
∑

𝑘=1

𝑄𝑤𝑝(𝑡𝑘)𝑟𝑤𝑝 +𝑄𝑤𝑖(𝑡𝑘)𝑟𝑤𝑖 +𝐷(𝑡𝑘)

(1 + 𝑑)𝑡𝑘∕𝜏
,

(16)

where 𝑄𝑜𝑝(𝑡𝑘), 𝑄𝑔𝑝(𝑡𝑘), 𝑄𝑤𝑝(𝑡𝑘) and 𝑄𝑤𝑖(𝑡𝑘) are the total oil production,
gas production, water production and water injection volumes (in
SM3) over the time interval 𝑡𝑘, respectively. 𝑟𝑜𝑝, 𝑟𝑔𝑝, 𝑟𝑤𝑝 and 𝑟𝑤𝑖 are
the corresponding oil price, gas price, water disposal cost and water
injection cost (in $/SM3), respectively. 𝐷(𝑡𝑖) is the total well drilling
and completion costs during time interval 𝑡𝑖. 𝑑 is the discount rate per
year and 𝜏 is the number of days per year. We use constant values for
𝑑 and 𝜏 in this case, where 𝑑 = 0.08, 𝜏 = 365.
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Fig. 3. The positions of wells and faults on the initial oil saturation map of the Reek field.
Table 1
Example workflow process. We discuss the results from the various workflow steps in Section 4.
INIENS Generate initial ensemble based on all prior information from well logs, 3D-seismic, and geological interpretation.
ENSPRED0 Initial ensemble prediction used to assess well production potentials

OPT1 Robust optimization to decide which two wells to drill the first year
DEC1 Robust assessment of NPV for drilling zero, one, or two optimal wells
PROD1 Produce reservoir with two first wells for one year
HM1 Ensemble history matching using data for year one
ENSPRED1 Ensemble prediction using history-matched models

OPT2 Robust optimization to decide wells three and four to drill the second year
DEC2 Robust assessment of NPV for drilling zero, one, or two optimal wells
PROD2 Produce reservoir including eventual additional wells for one more year
HM2 Ensemble history matching using data for year two
ENSPRED2 Ensemble prediction using history-matched models

OPT3 Robust optimization to decide wells five and six to drill the third year
DEC3 Robust assessment of NPV for drilling zero, one, or two optimal wells
PROD3 Produce reservoir including eventual additional wells for one more year
HM3 Ensemble history matching using data for year three
ENSPRED3 Ensemble prediction using history-matched models

DEC4 Robust assessment of NPV for drilling zero, one, or both of the final two wells
In the NPV calculation in Eq. (16) we have decided to ignore
possible additional costs from carbon taxes. These taxes vary between
countries, but we can easily add the additional costs from a carbon
tax to the objective function. A carbon tax will reduce the profitabil-
ity of each well, and it might change the decisions. As the energy
companies now have increased emphasis on reducing CO2 releases,
almost regardless of the carbon taxation, it is becoming important to
address multi-objective optimization where we maximize NPV while
minimizing the CO2 emissions. The current workflow will allow for
such future applications.

We are using a twin experiment approach for the geology, but we
do not know the optimal drilling strategy. We could have evaluated the
optimal drilling strategy by a brute force simulation on the reference
model, although with eight wells that would require 40320 simulations,
which is more than we can afford with the current model and computer
resources. Also, the purpose of this work is not to find the absolutely
optimal drilling strategy but to demonstrate a consistent and affordable
workflow that leads to a near-optimal drilling strategy within the
uncertainty in the reservoir knowledge.

Initially, the reservoir uncertainty is significant as we have limited
information to determine the reservoir properties. Thus, when we
5

compute the two initial wells to drill, we do this under considerable
reservoir uncertainty. However, as soon as we start producing the
reservoir, we will obtain dynamic data and use these in the history
matching to improve the reservoir characterization. The subsequent
optimization of the wells’ drilling schedule will be more accurate due
to the reduced reservoir uncertainty. In other words, we propose a
workflow where we recursively introduce new optimal wells to drill
next. We condition the model ensemble on the new dynamic data as
soon as the wells provide new dynamic data. The reservoir model and
the drilling order optimization will improve from one year to another.
Additionally, the accuracy of the ensemble predictions will improve
with each model update and lead to decision-making with reduced
uncertainty.

We start by dividing the reservoir lifetime into different phases:

Initialization: We define the initial reservoir model and its uncer-
tainty and represent it using the ensemble of model realizations
(INIENS). We assigned uncertainty to the porosity, permeabil-
ity, and fault multipliers (see the detailed specification below).
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We then use this model ensemble in ensemble predictions EN-
SPRED1 to define well targets and propose a drainage strategy
for the reservoir.

First year: We must decide which wells to drill first (i.e., assuming
two wells drilled in parallel). Although there are no observation
data at the initial period, we can still robustly optimize on
drilling sequence using the initial ensemble. After deciding on
the two first wells from the optimization in OPT1, we assess
their NPV over the ensemble in DEC1 before drilling them and
producing the reservoir for the first year (PROD1). We acquire
dynamic data from the first year during production and use
these data to history match the model in HM1. From the history-
matched model, we can run ensemble predictions ENSPRED1
to assess future production or even plan new well-targets to
evaluate during the decision process for the following year.

Second year: We repeat the procedure from year one for the second
year. However, we start by using the now improved history-
matched models with reduced geological uncertainty from the
first year to make predictions and optimize for the two sub-
sequent wells to drill in OPT2. After that, we evaluate if the
two optimal wells give a positive NPV in DEC2, and if they
are economical, we decide to drill them. Following the reservoir
production, we condition the model on all the newly acquired
data in HM2, and we are ready to plan new wells and optimize
their drilling order for the third year.

Third year: We repeat the procedure from the second year to decide
on the subsequent two wells.

Fourth year: In the current example, there are only two wells left to
decide on for the fourth year, so we do not need the optimization
process; we can perform the decision-making DEC4 directly
through ensemble scenario studies. However, we could have
used reservoir ensemble from the third year to plan additional
well-targets to select from in an optimization process OPT4.

The above division into an annual process is quite common in
reservoir units. It is called an annual maturation process (AMAP) and
follows a natural business process with yearly budgeting and eco-
nomic predictions. The AMAP includes model updating, the planning
of new wells and their evaluation, and the decision to drill or not to
drill. Our ensemble workflow is a complete workflow supporting the
AMAP and includes advanced history-matching and optimization tools
in the process. And the workflow is robust, accounting for the total
uncertainty.

Our experiment follows the steps given in Table 1. We start with
an ensemble of 100 model realizations with different porosities, per-
meabilities, and fault multipliers.

The porosity fields have an average value equal to the average
porosity from core data, and the variance should reflect the variability
between the cores. We sampled the porosity fields from a distribution
with mean equal to 0.18 and standard deviation of 0.1, restricted to
the interval [0.00001, 2.7]. For the logarithm of the permeability we
sampled the random fields from a distribution with mean equal to 2.4
and standard deviation of 0.8, with permeability values restricted to the
interval [0, 2000]. For both porosity and permeability, we used an non-
isotropic decorrelation scale of 1.0 km in the 𝑥-direction and 2.0 km in
the 𝑦-direction. The vertical correlation between the sampled fields is
0.6, while the correlation between porosity and permeability is 0.75.

In addition to having uncertainty in the porosity and permeability,
we assume the fault transmissibilities to be uncertain, and we sample
them as log-uniform between zero and one.

We also define one model realization to represent the true reservoir
geology. Given a drilling order, we simulate this model to obtain the
‘‘observed data’’ on which we condition the ensemble. Thus, we use a
twin-experiment approach.
6

4. Results

Following the workflow shown in Fig. 1 and Table 1, we will focus
on the results of the optimization, history matching, and the final
decision. To have a more straightforward comparison, we discuss the
optimization steps OPT1, OPT2, and OPT3 together. After that, we will
discuss the results from the history-matching steps HM1, HM2, and
HM3, and finally we discuss the final decision DEC4. As the ensemble
methods used for robust optimization are less mature than the ensemble
history matching, we will discuss the drilling order optimization in
more detail.

4.1. Drilling order optimization

To use EnOPT with discrete variables, we define an underlying
continuous variable, drilling priority that varies between zero and one,
to estimate. Then the well with the highest drilling priority is drilled
first. Initially, we generate a sequence of drilling priorities between zero
and one for all the wells, defining our starting drilling sequence. After
that, we generate an ensemble of drilling priorities by adding random
numbers drawn from a normal distribution  (0, 𝜎2) to generate per-
turbed drilling sequences. The variance parameter allows for tuning the
magnitude of the perturbations in the ensemble of drilling priorities to
ensure that the resulting drilling sequences differ from each other, but
not too much. In our experiments we used 𝜎 = 0.1.

To determine which wells we should drill first, we optimized the
drilling priorities over the reservoir lifetime. Given an ensemble of
drilling priorities, the mean priorities define the current iteration’s
best drilling sequence. We then compute the NPV values over the
geological ensemble from the production of the reservoir lifetime for
all geological realizations. The average NPV is used to evaluate which
drilling sequence is the best.

We could use EnOPT on a case without geological uncertainty,
i.e., only one realization of the reservoir model. We would then have
a gradient evaluated as the regression between the ensemble of pre-
dicted NPVs and the ensemble of controls. When adding a stochastic
component to the reservoir model, we reduce the correlation between
the control variables and the predicted NPV, and this causes problems
for the EnOPT method. We can imagine cases where the geological
uncertainty is so considerable that it completely masks any correlation
between the NPVs and controls, and in this case, the method will fail.
Thus, we restrict using EnOPT to cases of modest geological uncer-
tainty. In the current example, we also expect the impact of uncertain
geology to be the largest in the first iteration before we have started to
condition the geological ensemble to dynamical measurements.

We have plotted the results from the three optimization steps OPT1,
OPT2, and OPT3 in Fig. 4 from the upper to the lower rows of plots.
We show the mean NPV values versus the optimization iterations in the
left column and the NPVs for the best run in the boxplots in the right
column. In Table 2 we list the starting and resulting drilling sequences
for all the optimization experiments. We also note that we might run
several trials in each iteration until we obtain a new sequence that leads
to a higher NPV.

For the first optimization step, OPT1 shown in the upper row of
Fig. 4, we ran five optimization experiments using two different starting
points. As the initial geological uncertainty is significant, performing
several experiments searching for the best possible initial drilling se-
quence makes sense. The runs initialized with different random seeds
for generating the control perturbations result in different optimization
results, even when the geological ensemble is the same. In addition
to solving a problem with multiple local maxima, the EnOPT method
uses a stochastic gradient. Hence, there is a possibility of finding
different results when rerunning the optimization using other random
seeds or starting points. The gray line in the upper-left plot shows a
trend of declined NPVs from iteration two because this experiment
had a slightly different stopping criterion compared with other runs.
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Fig. 4. The plots show the optimization steps OPT1, OPT2, and OPT3 from the upper to the lower plots. In the left column we show the ensemble-mean NPV as a function of
the iterations with the orange lines representing the results of the best runs. The labels, stp1, stp2, and stp3, denote starting point 1–3, for the optimization, and run1_stp1 and
run2_stp1 denote two runs from the same starting point but with different random seeds for the control perturbations. The boxplots in the right column show the NPVs for the
best runs’s mean strategy evaluated on all geological realizations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
Fig. 5. Cost function values as a function of the iteration number for the history-matching steps HM1, HM2, and HM3.
To avoid the EnOPT algorithm getting trapped at a local optimum,
we perform backtracking, i.e., we recompute the optimization with a
smaller step size but using the same gradient, which sometimes allows
us to find a drilling order with higher NPV. The stopping criteria
for optimization is when the objective function fails to improve after
several trial steps of backtracking. For the experiment represented by
7

the gray line in the upper left plot of Fig. 4, if the backtracking fails
five times, we re-sample the ensemble of drilling priorities with reduced
variance. If this procedure fails three times, the algorithm stops. This
approach is a time-consuming process, even for minor problems. For
other experiments, with limited computational resources, we assume
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Table 2
The drilling sequences obtained from the different optimization runs. Blue color marks the experiments and results that give the highest mean NPV
values. Red color marks the starting points.
Runs Year 1 Year 2 Year 3 Year 4 NPV

($106)

OPT1
spt1 WI-2 OP-5 OP-1 WI-3 OP-4 WI-1 OP-2 OP-3 3 061
run1-spt1 OP-1 WI-2 OP-4 WI-3 OP-5 WI-1 OP-2 OP-3 3 299
run2-spt1 OP-1 WI-2 OP-2 OP-5 WI-1 WI-3 OP-4 OP-3 3 253
run3-spt1 OP-1 WI-3 OP-5 WI-2 OP-4 WI-1 OP-2 OP-3 3 104
spt2 WI-1 WI-3 OP-1 OP-5 OP-3 OP-4 OP-2 WI-2 2 561
run4-spt2 OP-3 WI-3 OP-1 WI-1 OP-4 OP-5 OP-2 WI-2 2 823
run5-spt2 OP-5 WI-2 WI-1 WI-3 OP-3 OP-2 OP-1 OP-4 2 626
OPT2
spt1 OP-1 WI-2 OP-5 WI-1 OP-2 WI-3 OP-4 OP-3 3 227
run1-spt1 OP-1 WI-2 OP-2 WI-3 OP-5 WI-1 OP-4 OP-3 3 350
run2-spt1 OP-1 WI-2 OP-3 WI-3 OP-4 OP-5 OP-2 WI-1 3 283
spt2 OP-1 WI-2 OP-4 WI-3 OP-3 WI-1 OP-2 OP-5 3 405
run4-spt2 OP-1 WI-2 OP-4 WI-3 OP-3 WI-1 OP-2 OP-5 3 405
spt3 OP-1 WI-2 OP-5 WI-3 OP-2 WI-1 OP-3 OP-4 3 251
run3-spt3 OP-1 WI-2 OP-5 WI-3 OP-2 WI-1 OP-4 OP-3 3 251
OPT3
spt1 OP-1 WI-2 OP-4 WI-3 WI-1 OP-3 OP-2 OP-5 3 187
run1-st1 OP-1 WI-2 OP-4 WI-3 OP-2 OP-3 OP-5 WI-1 3 294
spt2 OP-1 WI-2 OP-4 WI-3 OP-3 OP-5 WI-1 OP-2 3 153
run2-st2 OP-1 WI-2 OP-4 WI-3 OP-2 WI-1 OP-3 OP-5 3 246
DEC4
p5w1 OP-1 WI-2 OP-4 WI-3 OP-2 OP-3 OP-5 WI-1 3 231
p5 OP-1 WI-2 OP-4 WI-3 OP-2 OP-3 OP-5 3 228
w1 OP-1 WI-2 OP-4 WI-3 OP-2 OP-3 WI-1 3 255
nowells OP-1 WI-2 OP-4 WI-3 OP-2 OP-3 3 257
a

the optimization converges if the backtracking trial steps fail three
times.

For OPT2 and OPT3, we used only three backtracking steps when
he algorithm stops at a local optimum. After three trial backtracking
teps, we assume that the algorithm converges to a local optimum if
he algorithm cannot find a better solution. For OPT2 we used three

different starting points, with SPT2 giving the best result. We generated
the starting sequences for the optimization randomly.

The boxplots in the right column show a significant improvement
with a reduced spread of the NPVs from OPT1 to OPT3. In the boxplots,
we evaluate the NPV of each iteration’s best drilling strategy over the
geological ensemble, and we illustrate the minimum and maximum
values together with the first quartile, the third quartile and median
represented by the lower and upper edge of the box, and the orange
line inside the box, respectively.

We see that EnOPT benefits from a reduced geological uncertainty
induced by the history-matching steps. In OPT3 the stochastic gradient
becomes more stable, and the NPV estimation more accurate, leading
to improved robustness of the method. We have a sound improvement
from one iteration to the next for the two cases with different start-
ing points. Still, the two starting points results in different drilling
sequences, and we might improve the results further by running from
additional starting points.

From the results displayed in Fig. 4, we notice that for OPT1, the
three different starting sequences result in different solutions. Changing
the initial well-priority ensembles result in other solutions even with
the same starting point. We improved the drilling sequence compared
to the random starting sequences, but we would assume that the best
solution we found is still sub-optimal solution or near-global-optimal
solution.

In our experiment, the first two wells drilled contribute most
strongly to the total NPV. The reason is that these wells gain benefit
first, and we produce them for the longest time. When we have multiple
wells in the optimization sequence, we will have many local optima.
From OPT1, all the solutions have a producer and injector pair for
the first year. Thus, the first optimization OPT1 is about finding the
best injector–producer pair for year one. Depending on the starting
8

point, the optimization locks on to a producer–injector pair and then f
continues exploring the wells for the subsequent years. Hence, if EnOPT
locks on to a sub-optimal producer–injector pair for the first year,
this corresponds to a local optimum. Therefore, it is important to run
the optimization from different starting points to reduce the risk of
converging to a local optimum.

4.2. History matching

We drill the two new wells having the highest priority and produce
them along with the existing wells for a year after each optimization
step. After a year’s production, we use the produced and injected rates
to history-match our ensemble of models. The additional observations
obtained during the last year’s production provide new information
about the reservoir and lead to better reservoir characterization and
lower geological uncertainty. For the history matching, we use the
subspace EnRML method introduced above. Note that we initialize
the history matching with the same initial ensemble and conditions
to all observations available from the start of production. And for
the reservoir simulations, we integrate the model ensemble from the
initial time. A sequential updating of the reservoir using only the newly
acquired observations is possible using the ensemble Kalman filter but
introduces additional computational issues as discussed by Skjervheim
et al. (2011).

In Fig. 5, the average cost-function values as a function of the
iteration number illustrates the convergence of the subspace EnRML
method. The additional observations introduced every year lead to a
higher initial cost-function value. However, after a few iterations, the
updated model parameters result in a cost-function value reduced to a
level similar to the number of measurements.

4.3. Case analysis

The initial ensemble allows us to run ensemble simulations
(ENSPRED0) with different drilling-order and well configurations,
and we can assess the production uncertainty consistently with our
prior-uncertainty assumptions. The optimization step OPT1 takes this
ssessment one step further and computes the optimal wells to drill
irst. The optimization (see the upper plots in Fig. 4 and Table 2)
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Fig. 6. Production profiles for OP-1 following the different history-matching steps HM1 (upper), HM2 (middle), and HM3 (lower). Gray curves, blue curves and red dots represent
production data for the prior ensemble, posterior ensemble and the observation data respectively. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
tells us that the producer OP-1 and the injector WI-2 have the highest
drilling priorities. As they also have a positive NPV, the decision
DEC1 is to drill these wells. We then produce the wells for one year
(PROD1) and acquire the oil, water, and gas production rates for each
well (WOPR, WGPR, and WWPR), and the injection rates (WWIR) as
monthly observation data. Hence, we have 48 observations from the
first year to use in the history-matching step HM1.

Fig. 6 shows the results from HM1 for the firstly drilled producer in
the upper plots (the middle and lower plots show the results after HM2
and HM3, discussed below). The plots present the prior and posterior
ensembles of production profiles and the observations. After the history
matching, there is a clear improvement in the ensemble prediction’s
match to the observed production rates. Similarly, in Fig. 7, the upper
left plot shows the improvement in the results for the water injector WI-
2. Thus, the history-matching step has updated the reservoir porosity,
permeability, and fault transmissibilities, such that OP-1 and WI-2 can
produce and inject the imposed observed rates. We also expect that
the updated ensemble of reservoir models will lead to a more accurate
optimization and decision, with less uncertainty on the subsequent
wells to drill due to the conditioning on observations by the HM.

Next, we use the history matched ensemble from HM1 to optimize
the subsequent two wells to drill. After the optimization step OPT2, the
producer OP-4 and the injector WI-3 have the highest drilling priorities,
and as these wells lead to a positive NPV, we decide (DEC2) to drill
them next.

In PROD2, we produce the reservoir while including the new wells
and the ones drilled initially. Hence, for the second year, we have
the two producers, OP-1 and OP-4, together with the two injectors,
WI-2 and WI-3. We produce the reservoir until the end of the second
year while acquiring the monthly production and injection data, lead-
ing to a total of 144 observation data that we use in the following
history-matching step, HM2.
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We present the results from HM2 in the second row of Fig. 6, the
second row of Fig. 7 and the first row of Fig. 8. In Fig. 6, we see that the
history matching further reduces the uncertainty of the prediction for
OP-1 and that we obtain an excellent match to the observations. In par-
ticular, the history matching eliminates some problematic realizations
that produce too much gas in the initial ensemble. We also obtained
good results for the water injectors shown in Fig. 7 and the producer
OP-4 presented in Fig. 8.

Again we follow the history-matching step with another optimiza-
tion step OPT3, and we decide (DEC3) to drill the producers OP-2 and
OP-3 with the highest drilling priorities next, as their production also
leads to a positive NPV.

We then produce all drilled wells until the end of the third year
while acquiring the monthly observation data. We now have 312
observation data on which we condition the model. In the lower row
of plots in Figs. 6–9, we see the results from the final history-matching
step HM3. For all wells, we obtain an excellent match to the data. We
would, of course, expect this in a twin experiment where the ensemble
statistics and model used is consistent with the reference case.

We do not need to optimize for drilling priorities when there
are only two candidate drilling locations left for the final decision
step DEC4. However, we could have included additional planned well
alternatives in an optimization computation.

Thus, we have a final decision step DEC4, of determining whether
to drill or not, the remaining wells OP-5 and WI-1. In the decision step
DEC4, we evaluate the NPVs or different drilling scenarios. I.e., drill
none of the wells (nowells), drill only OP-5 (p5), drill only WI-1 (w1),
or drill both wells (p5w1). The procedure simulates the four different
scenarios over the ensemble of history-matched models and evaluates
the NPV of each realization for each scenario. We can then estimate
the mean and uncertainty of the NPV for each scenario. We subtract
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Fig. 7. Injections rates of WI-2 (left) and WI-3 (right) following the three history-matching steps HM1 (upper), HM2 (middle), and HM3 (lower). Gray curves, blue curves and
red dots represent data for the prior ensemble, posterior ensemble and the observation data respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Fig. 8. Production profiles for OP-4 following the different history-matching steps HM2 (upper) and HM3 (lower). Gray curves, blue curves and red dots represent production
data for the prior ensemble, posterior ensemble and the observation data respectively. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
the drilling costs of an assumed 60 million USD per well in the final
evaluation. In a realistic setting, we should also include the operating
costs of the wells.
10
We illustrate the NPV evaluation results in Fig. 10. In the left plot,
we observe that the scenario of not drilling any wells yields the highest
mean NPV and has the least uncertainty, as shown in the right plot.
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Fig. 9. Production profiles for OP-2 following the history-matching step HM3. Gray curves, blue curves and red dots represent production data for the prior ensemble, posterior
ensemble and the observation data respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. The figure compares the four decision scenarios, i.e., drilling no wells
(nowells), drilling only producer five (p5), drilling only water injector one (w1), or
drilling both wells (p5w1). We plot the number of realizations falling in a particular
NPV interval as histograms for the four decision scenarios as a function of the NPV
given in 109 USD. The NPV values are after subtracting the drilling costs of USD 60M
per well.

Therefore, the decision of the final step is not to drill any more of
the planned wells and rather continue producing the reservoir with
the existing six wells. We also note that the distributions are highly
overlapping, and there are many realizations that, if used alone, would
give a different conclusion on whether to drill none, one, or two wells.
However, the robust decision is to select the alternative with the highest
mean NPV when averaged over the ensemble. Note that the ensemble
histograms are close to Gaussian in the current case, which simplifies
the decision process.

Finally, we illustrate the updating of fault multipliers in Fig. 11. We
show the prior, posterior, and actual reference values of the six fault
multipliers and, from top to bottom, the results after HM1, HM2, and
HM3. The positions of the faults and wells are in Fig. 3. We observe
that the fault multipliers are more sensitive to the production data from
wells near the faults. We denote the six faults as F2, F3, F4, F5, F6, and
F7. The data are in the logarithm scale. We see that during HM1, the
fault multiplier of F3 is more sensitive to the production of the open
wells OP-1 and WI-2 because these two wells locate between faults
F2 and F3. Similarly, we see a clear update for F3, F5, and F6 after
HM2. The update results from the new observation data from the newly
drilled wells OP-4 and WI-3. The well OP-4 locates between faults F4
and F5, while WI-3 is between the faults F6 and F7. Furthermore, HM3
updates the faults F5 and F7. Because we drill wells OP-2 and OP-3
before HM3. OP-2 is close to F7, and OP-3 close to F5. The observations
from these two wells help update faults F5 and F7. We also note that we
get close to the reference values used in the ‘‘truth’’ model realization
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for all significantly updated fault multipliers. We have similar up-
dates of the three-dimensional porosity and permeability fields, where
data from different wells update different spatial regions. However,
these updates are more elaborate, and we have left them out of this
discussion.

5. Discussion

This work demonstrates a workflow of ensemble-based decision-
making for closed-loop reservoir management. The decision workflow
integrates well-drilling-sequence optimization and history-matching us-
ing ensemble methods that correctly account for uncertainty. Further-
more, using an ensemble of models allows for robust decision-making
with decision alternatives evaluated over the ensemble of models.
This decision workflow is independent of the history-matching and
optimization methods used, but it requires an ensemble of model
realizations to represent and predict the uncertainty. Hence, we only
implement an option if it results in a positive NPV on average over the
ensemble of models.

We have demonstrated the workflow on a simple reservoir case,
REEK, provided by Equinor. We used the EnOPT method for the op-
timization and the subspace EnRML for history matching. While the
history matching is well developed and its application well understood,
we observe that the optimization methods and strategies are less mature
and define an important area for further research. With significant
reservoir uncertainty, it is not clear that EnOPT is the best method
since the reservoir uncertainty lead to less correlation between the
optimization controls and the predicted objective. The approach taken
here uses multiple starting points, which helps the algorithm find a
better solution and avoid getting trapped in local optima. We generated
the starting sequences for the optimization randomly. An alternative
strategy could be to start from the best sequence from the previous
optimization step or perturbations of it if we wish to explore multiple
starting points.

An argument against optimizing the drilling sequence over the
reservoir’s lifetime is that we initially have significant uncertainty in
the reservoir description. The resulting optimal well sequence will
likely change after the next history-matching steps, which reduce the
reservoir uncertainty and improve the ensemble of models. So maybe
EnOPT would work better and more easily find the optimal solution if
we only optimize for one year at a time. We could even constrain the
optimization to search for the optimal injector–producer pair, which
reduces the number of alternative solutions to 15, i.e., we match each
of the five producers to each of the three injectors.

Another issue is that EnOPT is a gradient method, and here we use it
to optimize a discrete sequence of wells. We have assigned a continuous
variable named drilling priority to each well, and we drill the wells in
the order of their drilling priority. This procedure works well, as also
shown by Hanea et al. (2017).

The history matching updates the model and reduces the reservoir
uncertainty. Thus, after some model updates, we expect the reduced
reservoir uncertainty to improve EnOPT performance. Still, we believe
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Fig. 11. Fault-multiplier updates from the history-matching steps HM1 (upper), HM2
(middle), and HM3 (lower). Gray, blue and red dots represent prior, posterior and the
true reference values. Note that we are using a log-scale for the fault multipliers. The
zero reference value for F7 falls outside the range of the 𝑦-axis. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

that we should develop and evaluate other robust optimization methods
that are not based on ensemble gradients. We are currently working
with some of such methods, e.g., Wang and Oliver (2019, 2021) but it
is too early to conclude on the performance of these methods compared
to using EnOPT.

We have had less emphasis on the decision steps and assumed Gaus-
sian ensemble predictions, which means we should base our decision on
12
the ensemble mean. I.e., we select the alternative that gives the highest
NPV value in average over the ensemble of reservoir models. In the
case of non-Gaussian predictions, we might want to use more elaborate
methods based on utility theory and include risk behaviors. At this
point, we emphasize that the introduction of reservoir uncertainty into
decision-making helps the decision-makers make more robust decisions.

A final exciting aspect of this work is that we now also have an
efficient algorithm for ‘‘well-placement optimization’’. The traditional
method for optimizing the placement of a well is to move it around in
the reservoir until one finds the best well location. However, this is a
highly nonlinear and challenging optimization problem, particularly for
complex drilling trajectories and horizontal wells. Using the workflow
outlined above, we can plan several additional wells based on the ge-
ologic understanding and optimize and select among these. Whenever
it is uneconomical to drill any more wells, we continue producing the
reservoir until the end of the reservoir life time. Every time we have
updated the reservoir model with new information, we can further
revise the drilling plans and targets.

A final remark is that there may be many other fields and appli-
cations outside petroleum where the closed-loop concept is sound. We
anticipate that any observed time-recursive system where one specifies
the controls variables that determine the system’s future evolution
could benefit from a closed-loop approach involving recursive use of
robust control optimization, followed by a risk-based decision process
to determine the controls, and finally, the use of data assimilation or
history matching of newly acquired information to update the dynamic
system variables and parameters. Potential application areas in the
geosciences can be geothermal energy and groundwater management
(as pointed out by a reviewer). Other areas, such as managing traffic
flow by controlling traffic lights and redirecting traffic to less busy
roads, or managing the medicine dosage for cancer treatment or in dia-
betic patients, would also benefit from the ensemble-based closed-loop
concept.
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