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The ability to navigate safely and efficiently through a given landscape is relevant for any
intelligent moving object. Examples range from robotic science and traffic analysis, to the
behavior within an ecosystem. Many objects tend to move in patterns depending on their
nature. By establishing models of patterns of motion one may estimate the future motion
within an area. We propose here a method for detecting regular patterns of motion by
modeling the environment as an energy landscape, and locating optimal paths through it.
As an example, we use maritime position Automatic Identification System (AIS) data as
input to work out optimal routes between different start and end points when these are not
located along the standard shipping lanes. These initial tests show that the method has
potential for analyzing and determining regular patterns of motion.
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1 INTRODUCTION

Imagine a large town square. The square has fixed structures such as fountains etc. that block direct
pathways across it. It is a busy place where many pass across it in all directions. Cameras have been
set up that record the motion of people across the town square. The question we will address in this
paper is the following: Based on the recordings, is it possible to predict the motion of a single person
from some start point A to some end point B across the town square, even when the points A and B
are not located along the typical paths that people use across the square. This question has since long
been posed in different contexts [1]. Examples range from the behavior of ecosystems to robotic
navigation and traffic systems. A predator needs to account for the future motion of its prey in order
to catch it, just as a ship needs to consider the future positions of other ships to avoid collisions [2].

Moving objects are influenced by both the landscape in which they move, as well as other objects,
moving or not, within the same area [3–5]. There are several different ways to approach motion
prediction. The most straight forward approach is to predict the motion of each object in a system
individually, by assigning to each object a position as a function of time [6]. However, for large
systems, this method would produce a large number of coupled equations. Hence, this approach
would be unproductive in this case. A better approach is to exploit the fact that objects tend to move
in patterns [3, 7]. Depending on their nature and surroundings, moving objects tend to move in
regular patterns. By establishing a model of these motion-patterns in a given area, one may use the
pattern itself when predicting future motion. This is the core idea of our approach.

When applying methods of pattern recognition to motion prediction, the process typically
operates in two stages. The first stage is the actual pattern recognizing, which learns the regular
patterns of motion using a set of training data. The next stage applies the learned pattern to predict
the future motion. Further, this two-stage process may be grouped into two main groups of
techniques; Grid-based techniques and cluster-based techniques [3].
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The grid-based techniques are derived from the occupancy
grid concept [8]. That is, the landscape is modeled as a grid and
transition probabilities between the cells are calculated from the
training data. The grid is then used directly for motion prediction.
Grid-based techniques are frequently used in robot navigation
systems [9–11].

Cluster-based techniques on the other hand, apply statistical
decision tools in order to group similar trajectories into
representative clusters. Several different clustering techniques
exists, the Expectation-Maximization approach [12] is
considered to be the state of the art [3]. Future motion of a
moving object is then estimated as the representative cluster
which the given route is most likely to belong to.

In this paper, we propose a dynamic grid-based technique for
learning motion patterns by mapping it onto the optimal paths in
a disordered landscape problem [13, 14]. We describe this
problem as follows. Imagine a plane and that x→ is a point on
this plane. There is a stochastic field e( x→) associated with the
plane. We choose a pathP through the plane starting at point x→A

and ending at point x→B. We integrate the field e( x→) along the
path P,

EP � ∫
x
→
∈P
e( x→)d x→. (1)

The optimal path is found by the minimization

EO � min
P

EP � min
P

∫
x
→
∈P
e( x→)d x→. (2)

This problem has produced a large body of work within the
statistical physics community. It is also closely related to the
optimal path problem which is central in a large number of
applications and fields [15–18].

The central idea we present in this paper is to relate the
function e( x→) to the inverse of the density earlier paths raised to
some power. We then identify the optimal path from x→A to x→B

through this landscape.
We apply this idea to vessel traffic, using marine automatic

identification system coordinates. We transform the coordinates
to a dimensionless area and introduce a grid over the area. We
associate each grid point with the local density of AIS coordinates.
We implement the optimal paths through the area using the
iterative algorithm of Hansen and Kertész [19, 21], but any other
algorithms may be used, e.g., the Bellman-Ford or the Dijkstra
algorithms [22–24].

We emphasize that we are not attempting here to present a
fully implementable algorithm ready to be used on ships. Rather,
this is a feasibility study testing whether the central ideas
may work.

We note that optimal paths have been used earlier in
connection with marine motion prediction [20]. However, the
paths in this case are optimized with respect to length. This is a
very different concept than what we present here.

We organize this paper as follows. Section 2 describes the
method we propose. In Section 3, we implement the method for
marine AIS data. We end by a brief summary and discussion.

2 ALGORITHM

We now describe how we transform the AIS coordinates, given in
terms of continuous longitude and latitude, into grid points. We
then go on to describe the concept of optimal paths in this context
and the algorithm used to extract it. Lastly, we describe how we
turn this into path prediction.

2.1 From Automatic Identification System
Coordinates to Grid
The automatic tracking system AIS uses tranceivers to allow ships
to view surrounding marine traffic and to be seen themselves. It
provides, among other services, a record of the position as a
function of time for the equipped vessels passing through the
area. This includes most large vessels.

We define our area of interest as the rectangle defined by the
corners given by the longitudinal and latitudinal coordinates
longmin, longmax, laemin and laemax. A given ship at a given
time is at position (longk, laek) where the subscript refers to
the position record (i.e., which ship and at what time). We
introduce dimensionless Cartesian coordinates to describe its
position, xk ∈ {0,N − 1} and yk ∈ {0,N − 1}, where N is an
integer, given by

xk � longk − longmin

longmax − longmin

(N − 1), (3)

and

yk � laek − laemin

laemax − laemin
(N − 1). (4)

The position of a given ship at a given time k at (xk, yk) is
then located within grid cell defined by the corner nodes
i1kmod(xk), i2kmod(xk) + 1, j1kmod(yk) and j2kmod(yk) + 1. In
order to construct a path density defined at the nodes
(i, j), ρi,j, we assign a weight to the position of ship
position and time k, (xk, yk) distributed among the four
corned nodes (i1k, j1k), (i2k, j1k), (i2k, j2k) and (i1k, j2k). If ri1k ,j1k is the
distance between (xk, yk) and (i1k, j1k), and likewise for ri2k ,j1k , ri2k ,j2k
and ri1k ,j2k , we define

Rxk ,yk � ri1
k
,j1
k
+ ri2

k
,j1
k
+ ri2

k
,j2
k
+ ri1

k
,j2
k
. (5)

We define the weights

Wi1
k
,j1
k
� 1
3Rxk ,yk

(Rxk ,yk − ri1
k
,j1
k
),

Wi2
k
,j1
k
� 1
3Rxk ,yk

(Rxk ,yk − ri2
k
,j1
k
),

Wi2
k
,j2
k
� 1
3Rxk ,yk

(Rxk ,yk − ri2
k
,j2
k
),

Wi1
k
,j2
k
� 1
3Rxk ,yk

(Rxk ,yk − ri1
k
,j2
k
).

(6)

The path density may then be defined as
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ρi,j � ∑K
k�1

Wik ,jk, (7)

when K is the number of position recordings within the grid cell.
We now associate a weight with node (i, j),

ei,j �
⎧⎪⎨⎪⎩

ρ−αi,j , if ρi,j > 0,
m, if ρi,j � 0,
M, if(i, j) is on land,

(8)

where α is an adjustable parameter controlling the magnitude of
the fluctuations of ei,j: if α→ 0 the fluctuations are smoothened
out and disappear when α � 0 as all nodes then are assigned the
same weight. The parameterm is chosen so that there is a balance
between the tendency for a path to follow the normal shipping
lanes (where ρi,j is large) and a path being as short as possible. The
other value M≫m ensures that no paths crosses land.

The last step in setting up the system is to assign weights to the
links between neighboring nodes. Let the node (inn, jnn) be one of
the four nearest neighbors of node (i, j). Then, the link between
them is given the weight

ei,j;inn ,jnn �
1
2
(ei,j + einn ,jnn). (9)

We also allow for diagonal paths. The link between node (i, j)
and its diagonal neighbors (inn, jnn) as

ei,j;inn ,jnn �
�
2

√
2

(ei,j + einn ,jnn), (10)

where the factor
�
2

√
is introduced to take into account the

additional length of the diagonal edges.

2.2 Optimal Path Construction
We define a path P between two nodes A at (iA, jA) and B at
(iB, jB) as a continuous chain of neighboring links linking the two
nodes. We associate a weight of the path in the same way as in
Eq. 1,

EP � ∑
(i,j)∈P

ei,j;inn ,jnn. (11)

The optimal path is then

FIGURE 1 | (A) Data set A showing AIS position recordings with positions in degrees relative to the origin. (B) A selected subset of area A spanning 0.3+ in both the
longitudinal and latitudinal directions, transformed into a grid of dimensions 334 × 334 with grid size 100 × 100 m2.

FIGURE 2 | (A) Data set B showing AIS position recordings with positions in degrees relative to the origin. (B) A selected subset of area B spanning 3+ in both the
longitudinal and latitudinal directions, transformed into a grid of dimensions 334 × 334 with cell size 1000 × 1000 m2.
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EO � min
P

EP � min
P

∑
(i,j)∈P

ei,j;inn ,jnn. (12)

We will in the following assume that both nodes A and B lie on
the edges of the grid. In order to identify the optimal path, we use
the algorithm of Hansen and Kertész [19]. It consists of two main
steps; first an initialization and then an updating process. A
variable ei,j is assigned to each node. For the nodes on the edges of
the grid, the values ei,j stay fixed, while it is updated for the
internal nodes iteratively. The iteration algorithm for the internal
nodes is

ei,j → ei,j � min
inn ,jnn

(ei,j;inn ,jnn + einn ,jnn). (13)

After M iterations, the variable ei,j will contain the sum of the
weights along the optimal path starting at node (i, j) of lengthM.
The end point of the optimal path is not specified. Furthermore,
the optimal path may curl up on itself, creating a tadpole
configuration.

Consider now a node (iA, jA) on the boundary of the grid. In
order to find the optimal path from an internal node (i, j) to
(iA, jA), we set the value eiA ,jA to zero, while for the remaining
boundary nodes the value eic ,jc is set to a very large positive value.
The updating process for the internal nodes is carried out
according to Eq. 13, until all values ei,j no longer change. At
this point, the value of ei,j contains the value of EO � Ei,j;iA ,jA along
the optimal path between nodes (i, j) and (iA, jA).

FIGURE 3 |Optimal paths between the lower left and upper right corner
of the grid in Figure 1B for α � 0, 0.25, 0.50, 0.75 and 1. The parameter β,
defined in Eq. 15 was set to zero.

FIGURE 4 | The length of the optimal paths, LO between the lower left
and upper right corner of III as a function of α, while keeping β � 0.

FIGURE 5 |Optimal paths between the lower left and upper right corner
of the grid in Figure 2B for α � 0, 0.25, 0.50, 0.75 and 1. The parameter β,
defined in Eq. 15 was set to zero.

FIGURE 6 | The length of the optimal paths, LO between the lower left
and upper right corner of V as a function of α, while keeping β � 0.
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We now choose another boundary node (iB, jB) as end point
for the optimal paths. Hence, we fix eiB ,jB � 0 and fix all the other
boundary nodes to a large positive value, including boundary
node (iA, jA). The internal node values are initially set to zero,
ei,j � 0. We then iterate according to Eq. 13. When numbers no
longer change, ei,j will contain Ei,j;iB ,jB � EO for the optimal path
between nodes (i, j) and (iB, jB).

We may now combine the optimal paths starting at boundary
node (iA, jA) and ending at internal node (i, j) with the optimal
path starting at internal node (i, j) and ending at boundary node
(iB, jB). The optimal weight EO for this combined path is then
given by,

EiA ,jA;i,j;iB ,jB � min
inn ,jnn

(EiA ,jA;i,j + ei,j;inn ,jnn + Einn ,jnn ;iB ,jB, EiA ,jA ;inn ,jnn + einn ,jnn;i,j

+ Ei,j;iB ,jB).
(14)

Associating each internal node (i, j) with the value ei,j �
EiA ,jA;i,j;iB ,jB leads to the construction of a pathscape [21]. The
optimal path between edge nodes (iA, jA) and (iB, jB) is the
sequence of nodes associated with the smallest ei,j values.
There will then be a sequence of nodes having the second
smallest values ei,j. This sequence will branch out from the
globally optimal path as some node, to rejoin it at a different
node along the path. Then there will be sequence with the third
smallest values ei,j branching off and rejoining nodes
belonging to the two paths containing the two smaller
ei,j—and so on. Each internal node will belong to some path
in this hierarchy.

2.3 Predicting Paths
We now focus our attention on pathscapes where boundary
nodes (iA, jA) and (iB, jB) are placed along different edges.
There are 6N2 possible combinations. It may be convenient to
coarse grain the end points of the optimal paths. Hence, we
divide each edge into intervals of length LI . This means that
we set the weight of all the edge nodes nodes (i′A, j′A)
belonging to the interval, eiA’ ,jA’ � 0. The pathscape will then
consist of all optimal paths starting somewhere in the first

interval, (i′A, j′A), passing through internal node (i, j) and
then ending at a node (iB’, jB’) somewhere in the end interval.
Hence, the number of pathscapes is then reduced from 6N2 to
6n2, where n � N/LI .

Suppose the optimal path (iA’, jA’; i, j; iB’, jB’) has a length
LiA’ ,jA’;i,j;iB’ ,jB’ and a weight EiA’ ,jA’;i,j;iB’ ,jB’. Using the weight alone
in predicting paths does not function well since a short path
through a high-weight region may be as optimal as a longer path
through a low-weight region. We therefore renormalize the
weights, EiA’ ,jA’;i,j;iB’ ,jB’ → E’iA’ ,jA’;i,j;iB’ ,jB’ by setting

E′i
A′ ,jA′ ;i,j;iB’ ,jB′

� Cp

Ei
A′ ,jA′ ;i,j;iB′ ,jB′

(Li
A′ ,jA′ ;i,j;iB′ ,jB′

)β , (15)

where β is an adjustable parameter. The constant Cp is introduced
to further separate between different optimal paths. We note that
higher β makes longer paths more favorable.

FIGURE 7 | Area A: (A) The two most optimal paths between the intervals along different edges. (B) The five most optimal paths between different edges. Each
edge has been divided into two intervals, and fixing α � 0.8, and β � 0.8.

FIGURE 8 | The weight EO ranging from the most optimal (No. 0) to the
least optimal (No. 20) for paths between intervals on different edges as shown
in Figure 7.
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3 ANALYSIS OF TWO AUTOMATIC
IDENTIFICATION SYSTEM PATTERNS

We denote the two AIS sets we consider in the following A and
B. Figures 1, 2 show the two areas and the subsets that we use in
our analysis. Both subsets, shown in Figures 1B, 2B, have size
100 × 100 and where each grid block has size 100 × 100 m2 (area
A) and 1000 × 1000 m2 (area B). We see that A has a simpler
structure than B, consisting of two vertical clusters, while B
includes multiple clusters with different orientation. By
“cluster” we mean an area with high density of position
recordings.

We now consider area A. Setting parameter β � 0 in Eq.
15, we show in Figure 3 the optimal path between the lower
left and upper right corners of the grid 1b for different values
of α.

We show in Figure 4 the length of the optimal path between
the lower left and upper right corner in Figure 3 for different
values of α and with β � 0, LO. We note that LO is approximately
linear in α for α< 0.75, at which there is a jump.

Turning to area B, we show in Figure 5 the optimal paths
starting from the lower left corner and ending at the upper right
corner of the grid shown in Figure 2B as a fuction of α while
keeping β � 0.

We show in Figure 6 the length of the optimal path between
the lower left and upper right corner in Figure 5 for different
values of α and β � 0. As in Figure 4 for area A, we find a jump in
the length of the optimal paths for a given value of α, here α ≈ 0.4.
However, there are clearly defined plateaus in the optimal path
length, e.g., for 0.05< α< 0.4.

We now introduce intervals LI as described in Section C.We
consider first a more coarse grained section of area A, covered
by a grid of size 148 × 148 with grid size 100 × 100 m2. We
divide each edge into two sections. Figure 7A shows the two
most optimal paths in this system. In Figure 7B, we show the
five most optimal paths. We see in Figure 7B that several of the
five optimal paths overlap considerably, creating an
impression that there are fewer paths in the figure than
there is in reality.

Figure 8 shows the ordered sequence of weights E’O for the
optimal paths in Figure 7. We see that the weights of the first five
paths is quite similar, whereas from the sixth and onwards, it is
significantly higher. Generating this flat region is accomplished
by adjusting β and it signifies that these optimal paths are
equally good.

We do the same construction as in Figure 7 for area B in
Figure 9. We divide the edges into three intervals and choose the
values α � 0.08 and β � 0.8 for the two adjustable parameters.

Figure 10 shows the ascending sequence of renormalized
weights E’O for the two cases shown in Figures 9A,B. We find
48 optimal paths with slowly increasing weights before it jumps to
a much higher value.

Figure 9 shows the same area as in Figure 5. We have here
divided the edges into three intervals. The weight of the 50 most
optimal paths is shown if Figure 10. As in the much simpler
pucture in Figure 7, there is also in this case considerable overlap
between the optimal paths.

FIGURE 9 | AreaB: Here the grid has been divided into three segments along each edge. In (A)we show the 24most optimal paths and in (B)we show the 48most
optimal paths. We fixed the parameter values to α � 0.08 and β � 0.8.

FIGURE 10 | The weight EO ranging from the most optimal (No. 0) to the
least optimal (No. 50) for paths between intervals on different edges as shown
in Figure 9.
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4 DISCUSSION AND CONCLUSION

We have in this paper introduced a method to predict motion in an
area based on earlier motion in the same region. That is, given the
history of traffic in the area, what would be themost likely path a new
traveler would take between positionsA andB, even if these positions
are outside the usual routes of travel in the area. Themethod is based
on the concept of optimal paths through a landscape formed by the
paths taken earlier. It is a dynamic method as each new trajectory
taken in the area is added to the history.

We have tested the method on marine Automatic
Identification System (AIS) data. From a visual point of view,
the method locates the motion patterns efficiently in both the
simple case we studied (A) and in the more complex traffic
picture (B). However, a proper performance test has not been
performed. Further, the results showed that sectioning the edges
into only a few intervals, were enough to generate a good estimate
of the pattern. As all the grid nodes along the edges, may be
represented by only a few intervals, with a short running time of
the algorithm. The grid dimension and size of the cells does not
seem to influence the results that are found.

This work shows that the method we propose manages to
identify sensible paths that optimize between path length and
frequency of use—two seemingly very different quantities. In

order to turn this into a practical method, much more work is
needed, e.g. with respect to the cluster identification, grid
construction, type of vessel (if it is to be implemented as a
marine tool).
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