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A B S T R A C T   

Quality assessment of natural images is influenced by perceptual mechanisms, e.g., attention and contrast 
sensitivity, and quality perception can be generated in a hierarchical process. This paper proposes an architecture 
of Attention Integrated Hierarchical Image Quality networks (AIHIQnet) for no-reference quality assessment. 
AIHIQnet consists of three components: general backbone network, perceptually guided neck network, and head 
network. Multi-scale features extracted from the backbone network are fused to simulate image quality 
perception in a hierarchical manner. The attention and contrast sensitivity mechanisms modelled by an attention 
module capture essential information for quality perception. Considering that image rescaling potentially affects 
perceived quality, appropriate pooling methods in the non-convolution layers in AIHIQnet are employed to 
accept images with arbitrary resolutions. Comprehensive experiments on publicly available databases demon
strate outstanding performance of AIHIQnet compared to state-of-the-art models. Ablation experiments were 
performed to investigate the variants of the proposed architecture and reveal importance of individual 
components.   

1. Introduction 

With the rapid development of smart devices and social media 
platforms, there has been an explosion of user-generated content (UGC). 
Consequently, evaluation of Quality of Experience (QoE) of UGC images 
is becoming a critical issue, considering that most images are produced 
in an unprofessional manner and often suffer from authentic distortions. 
Full-reference image quality models with access to undistorted image 
signals as a reference point have already demonstrated high accuracy to 
assess the fidelity of distorted images compared with the reference [1]. 
However, UGC images with authentic distortions do not have any ref
erences. Thus, no-reference image quality assessment (NR-IQA) is 
naturally the only option for QoE measurement [2]. Earlier works on 
NR-IQA mainly concentrated on investigating quality features related to 
certain distortion types, e.g., blocking artifact [3], image blurring and 
sharpness [4]. These image quality models have achieved high corre
lation with subjective judgment, but the range of application scenarios is 
limited, as prior knowledge about distortion types must be available. 
With the rapid growth of UGC content, authentic image distortions 
become more and more relevant. Thus, natural image quality assessment 

not specialized in distortion types is more demanded. 
Based on the premise that the visual perceptual system is designed to 

interpret statistical regularities in natural scenes, Sheikh [5] approached 
IQA in his dissertation from a novel direction by assuming that image 
distortions make natural scenes in images look “unnatural”. Conse
quently, natural scene statistics (NSS) modeled by information-theoretic 
approach can be employed to define viewing behavior in a natural task, 
including quality assessment [6–8]. In [7], the natural image quality 
evaluator (NIQE) is based on the construction of quality aware collection 
of statistical features extracted by a NSS model. As NSS can represent the 
generic distribution of characteristics of image presentations, these ap
proaches can ignore the assumption of image distortion types. Inspired 
by NIQE, Zhang et al. [8] trained an opinion-unaware multivariant 
Gaussian model (IL-NIQE) based on NSS features for local image quality 
prediction, which can provide stronger generalization capability than 
those IQA models following an opinion-aware approach by learning 
regression model based on subjective quality opinion. 

Due to the capability of machine learning in revealing the hidden 
patterns of target tasks from training data, it has also attracted wide 
interests in IQA research. Most efforts have been focused on engineering 
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features related to visual quality perception and employing machine 
learning models to predict image quality [7–11]. For example, a widely 
referenced blind image spatial quality evaluator (BRISQUE) derives 
scene statistics of locally normalized luminance coefficients in the 
spatial domain to quantify the losses of naturalness, and an image 
quality score can be estimated by any machine learning based regressor 
[11]. 

Even though classical learning-based approaches achieve promising 
performance in IQA, they often require sophistically designed features, 
in which both the characteristics of human visual system (HVS) and 
image attributes should be considered. Lately, with the advancement of 
deep learning, allowing feature engineering to be an integrated part of a 
deep learning model, it has been dominating computer vision tasks [12]. 
Naturally, NR-IQA models based on deep learning have been proposed, 
following the commonly used architecture in image recognition, e.g., 
convolution neural networks (CNN) as feature extractors followed by 
single- or multi-layer perceptron for quality prediction, see e.g. [13–20]. 
Section 2 will present a detailed review of the related work on deep 
learning driven NR-IQA models. 

The architecture of using CNNs and regression layers cannot fully 
exploit image information that is relevant for quality perception. For 
example, spatial details might be lost when image information is 
abstracted by deeper and deeper layers in a CNN architecture, even 
though such deep structure is expected to efficiently represent the ab
stract semantics of the image. In vision research, hierarchical multi-scale 
perception architectures are often employed to model visual perception 
process in viewing tasks that can represent relevant features at multiple 
spatial and semantic scales. For example, multi-scale structural simi
larity model (MS-SSIM) has shown better performance than single-scale 
SSIM for IQA [21]. In [22], a simple side pooling net has also been used 
to pool features extracted from multi-scales in a CNN architecture. 
Another typical example of hierarchical architecture is object detection, 
where feature pyramid network (FPN) built on different scales of base 
network layers can be employed to detect objects at multiple scales [23]. 
The motivation is that objects with different sizes can both be retained 
and detected in a multi-scale manner. Considering that the HVS can 
perceive visual stimuli at different scales, e.g., from coarse to fine 
[24,25], we assume that multi-scale perception modelling also benefits 
IQA. 

On the other hand, important mechanisms in visual perception 
should be considered in IQA models. As a key mechanism, attention 
drives a set of cognitive operations occurring in the HVS to focus on 
selected visual stimuli, while other perceptible information in the visual 
field is overtly or covertly ignored [26]. Thus, visual attention can 
significantly influence how perception is generated in IQA and should be 
considered in development of visual quality models [27,28]. Psychovi
sual experiments have also demonstrated that the HVS has different 
sensitivities to varying visual stimuli at different frequencies modeled by 
contrast sensitivity function (CSF) [29,30], determining the most 
essential information for image quality perception. 

In this work, a deep architecture of attention integrated hierarchical 
image quality network (AIHIQnet) for NR-IQA is proposed. Relevant 
quality features are first extracted at multiple scales from a backbone 
network. Subsequently, a perceptually guided neck network is built, 
consisting of multi-scale feature fusion and a special attention module 
simulating the spatial attention and contrast sensitivity mechanisms. 
Finally, following the subjective process of IQA, where multiple par
ticipants rate the quality, a head network is proposed to predict the 
distribution of quality scores given to an image. Furthermore, other deep 
learning driven computer vision problems often employ image rescaling 
to generate constant input sizes and reduce computing resource re
quirements. However, such rescaling operation can potentially affect 
quality perception. For example, viewers might prefer high resolution 
rather than low resolution images on large displays. In order to handle 
the issue of varying input resolutions in IQA, the proposed hierarchical 
networks mainly contain resolution-independent full convolution 

networks and subnetworks. The main contributions of this work are 
summarized as follows: 

1) A generic NR-IQA model for quality prediction of natural images 
with authentic distortions and arbitrary resolutions. 

2) An architecture based on multi-scale feature fusion to derive 
image quality perception in a hierarchical manner. 

3) An attention module simulating the mechanisms of attention and 
contrast sensitivity in the HVS to capture the perceived information that 
is essential for image quality perception. 

The remainder of this paper is organized as follows. Related work on 
deep learning driven NR-IQA models is reviewed in Section 2. Section 3 
presents the details of AIHIQnet. Section 4 reports comprehensive ex
periments, including comparison with state-of-the-art IQA models, 
analysis, and ablation experiments. Finally, concluding remarks are 
drawn in Section 5. 

2. Related deep learning driven NR-IQA models 

A commonly used architecture in deep learning driven IQA models 
consists of CNNs to extract image features, followed by fully-connected 
(FC) layers for quality value regression. CNN architectures have natural 
advantages for IQA, e.g., convolution can capture structural changes of 
images that also effectively indicate quality change. A widely used 
approach is based on image patching [13–16]. For example, inspired by 
the pioneering AlexNet architecture for image recognition [31], Kang 
et al. [13] proposed a simple architecture consisting of a single convo
lution layer and pooling layers on normalized 32 × 32 pixel image 
patches. On the other hand, following the successful applications of VGG 
architecture using small convolution kernels and deeper layers [32], 
Bosse et al. [14,15] proposed deepIQA to predict the quality score of 
randomly sampled image patches (32 × 32 pixels) and then use their 
average as full image quality score. In [16], Li et al. proposed a deep 
architecture consisting of four convolution blocks with variant kernel 
sizes and apply it on image patches of 224 × 224 pixels. However, using 
small image patches in model training is based on the assumption that 
each image patch has the same quality level as its source image. Such 
assumption can be unreliable, as image quality is often spatially 
inconsistent, and viewers might pay different attention to different areas 
driven by the attention mechanism. 

Several models attempt to exploit existing CNN architectures pre
trained on large-scale image sets in the scenario of IQA [17,18]. Gao 
et al. [17] employed the VGG-net pretrained on ImageNet to derive 
images features at different levels, which are then concatenated and fed 
into SVR for image quality prediction. Similarly, Bianco et al. [18] used 
AlexNet pretrained on ImageNet and other large-scale databases and 
then fine-tuned the model for IQA. In order to fit the existing CNN 
models with fixed input size, rescaling or patching images of different 
resolutions is often performed. Features from different patches are most 
commonly pooled by simple averaging, but more advanced pooling 
strategies have also been proposed. In our earlier work on video quality 
assessment, a long short-term memory (LSTM) network for spatiotem
poral pooling of small cubic video clips has been used [19]. 

As explained earlier, image rescaling might change the perceived 
quality, compared to the original image. For image patching based 
quality assessment, in addition to the unreliable assumption of spatially 
constant quality as explained above, another disadvantage lies in the 
difficulty of developing an end-to-end learning approach based on 
patches. This also applies to the approach of using CNN for feature 
extraction and other regressors (e.g., SVR) for quality prediction. 
Furthermore, by directly applying CNN architectures pretrained on 
image sets for the purposes other than quality assessment might not be 
the optimal way to fully exploit the benefits of large-scale pretraining. 
Our ablation experiments will demonstrate that even though CNN ar
chitectures pretrained on ImageNet can provide solid foundation for 
downstream tasks, e.g., IQA, further transfer learning should be per
formed appropriately to achieve good results. 
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In order to fully exploit the advancement of deep learning, more 
studies on deep learning driven end-to-end trainable NR-IQA models 
have been proposed [20,33–38]. Following the common approach, Hosu 
et al. [20] proposed Koncept512 consisting of a base CNN network 
(InceptionResNetV2 [39]) followed by several fully connected layers to 
implement regression to predict image. They also created a large-scale 
image quality database to train and evaluate the model. 

As mentioned above, image quality perception can be significantly 
influenced by other factors, e.g., distortion types and visual mecha
nisms. In [33], Ma et al. proposed a multi-task end-to-end network 
(MEON) consisting of two sub-networks sharing early layers for distor
tion identification and quality prediction. The training of quality pre
diction network also benefits from the distortion identification network 
which can be trained with readily generated data. However, MEON 
limits its fixed input resolution to 256 × 256, and for images with larger 
resolutions, either majority vote strategy of extracted sub-images or 
averaging is still required. Zhang et al. [34] attempted to tackle two 
distortion types (synthetic and authentic) in a deep bilinear model 
consisting of two CNNs (DBCNN). As an important visual feature for 
image quality perception, structural information has been widely used 
in IQA [521]. Considering that structural information can be appropri
ately represented by image gradient, Yan et al. [35] have proposed a 
two-stream NR-IQA model, where the image stream attempts to model 
pixel features by CNN and another gradient stream attempts to model 
structural information based on image patches. The two streams are 
merged to predict the overall image quality. 

As an important mechanism in the HVS for quality perception, 
attention or its derived saliency information has also been widely used 
in IQA. A typical example of integrating attention or saliency informa
tion to IQA models is to multiply attention or saliency map with image or 
feature map. Yang et al. [36] proposed an end-to-end multi-task network 
(SGDNet) to predict image saliency and quality jointly, and image sa
liency can also serve as a weight map that is used for element-wise 
multiplication with the feature map derived from a CNN based model. 
Chen et al. [37] proposed an interesting idea of integrating reinforce
ment learning (RL) into NR-IQA by forcing the model to learn policy 
attended to fixation regions. On the other hand, in our previous studies 
[41–43], we have observed that directly multiplying attention or sa
liency map with images or low-level feature maps might introduce loss 
of important information for quality perception. Instead, we hypothesize 
that it is more appropriate to integrate attention into relevant visual 
mechanisms. For example, we found that multiplying attention map 
with the critical frequency in CSF shows promising performance in video 
quality assessment [43]. This also motivates us to use a deep learning 
approach to integrate attention mechanism into CSF in this work, e.g., 
using an attention module in AIHIQnet. Inspired by the fact that the 
advanced Transformer architecture can efficiently capture the atten
tional information in the input signals [44], we have developed a hybrid 
architecture (TRIQ) by applying the encoder of Transformer to the 
features extracted by a backbone CNN, which achieves high perfor
mance compared with other state-of-the-art models in IQA [38]. 

In addition, multi-scale image representation can provide more 
perceptual semantcis for visual tasks. In [22], Wu et al. proposed a 
cascaded architecture (CaHDC) to represent the hierarchical perception 
mechanism in HVS, and then pool the features extracted at different 
scales by a simple side pooling net (SiPNet). The model was trained with 
respect to combining several image quality databases. Another inter
esting approach (hyperIQA) is proposed to use a hyper network to 
establish perception rule adaptive to image contents [39], in which 
multi-scale image features representing both local and global distortions 
by a backbone network (ResNet50) can be aggregated for image quality 
prediction. 

In order to build a general purpose NR-IQA model, it is necessary to 
appropriately integrate relevant visual mechanisms, e.g., attention, CSF, 
crossing scale perception, into a deep architecture. This motivates us to 
design the AIHIQnet model to exploit the advantage of feature 

representation capability of deep networks and the importance of 
perceptual mechanisms in IQA. To demonstrate the performance of 
AIHIQnet, several other models that can well represent different types of 
deep learning driven NR-IQA algorithms have been included in this 
study as benchmarks. Table 1 summarizes these models and their set
tings in our work. 

3. AIHIQnet: Attention integrated hierarchical image quality 
networks 

Since the revolutionary work AlexNet for image recognition using 
deep neural networks [31], many advanced networks (e.g., VGG [32], 
InceptionResnetV2 [40], ResNet [45]) have demonstrated that tradi
tional hand-crafted features can be replaced by the networks using im
ages directly as inputs. With a sufficiently deep architecture, the earlier 
layers can serve as “feature extractor” due to the outstanding repre
sentative capacity of deep networks. Consequently, the subsequent 
layers can perform target tasks based on those extracted features. For 
example, image classification is often performed by fully connected 
layers (head) built on top of convolution layers (backbone) to classify an 

Table 1 
Explanations of the Deep Learning Driven NR-IQA Models Included In Our Work.  

Models Brief explanations 

DeepBIQ [18] Each image is cropped into 5 × 5 patches with size of 224 × 224, 
then the AlexNet without top layers pretrained on ImageNet is 
used to calculate features of each patch. The averaged features 
over all patches are taken as the features at image level, and then 
fed into SVR for quality prediction. Model is implemented by 
PyTorch. 

Koncept512  
[20] 

InceptionResNet-V2 [40] without top fully connected layers to 
extract image features, and a global average in spatial dimension, 
and then add three fully connected layers and dropout layers. 
Finally, a fully connected layer with one filter for MOS prediction. 
Can be adjusted to accept varying image resolutions by specifying 
the input shape as [None, None, 3] together with global pooling 
method. 

CaHDC [22] A VGG-like base network to generate 4 feature maps (i.e., 
intermediate outputs of convolution layers at different scales). The 
results are concatenated after max pool, and then a bottleneck 
convolution layer with dropout, and finally another convolution 
layer with 1 filter and global average to predict image quality. Can 
be adjusted to accept varying image resolutions by specifying the 
input shape as [None, None, 3] together with global pooling 
method. 

MEON [33] TensorFlow implemented provided by the authors (https://ece. 
uwaterloo.ca/~zduanmu/tip2018biqa/) was modified in our 
work. Each image is divided into overlapped patches with size of 
256 × 256, the overlap size is 128 × 128. When training the 
model, we assumed all the patches share same quality score as the 
shource images, but the maximal prediction quality value over 
patches is used in the inference. 

DBCNN [34] VGG16 and the S-CNN implemented by the authors are combined 
by a global bilinear pooling operation. The model can accept 
arbitrary image resolutions. The official Matlab implementations 
published on Github (https://github.com/zwx8981/DBCNN) 
were employed. 

SGDNet [36] Resnet50 [45] to generate a feature map, which is processed by a 
convolution layer or a squeeze-and-excitation [46] block and then 
multiplied with the image saliency map. And then followed by two 
fully connected layers with dropout, and a fully connected layer 
with one filter for MOS prediction. Can be adjusted to accept 
varying image resolutions by specifying the input shape as [None, 
None, 3] together with global pooling method and by resizing the 
resolution of saliency map accordingly. 

TRIQ [38] Our proposed model and it is publicly available (https://github. 
com/junyongyou/triq), adaptive positional embedding is used to 
handle arbitrary image resolutions. 

hyperIQA [39] Official implementation by PyTorch (https://github. 
com/SSL92/hyperIQA) and default parameters were trained in 
our database settings. Images are rescaled to the same size during 
training, and therefore, images with different resolutions than the 
trained resolution also need to be rescaled in inference.  

J. You and J. Korhonen                                                                                                                                                                                                                       

https://ece.uwaterloo.ca/%7ezduanmu/tip2018biqa/
https://ece.uwaterloo.ca/%7ezduanmu/tip2018biqa/
https://github.com/zwx8981/DBCNN
https://github.com/junyongyou/triq
https://github.com/junyongyou/triq
https://github.com/SSL92/hyperIQA
https://github.com/SSL92/hyperIQA


Journal of Visual Communication and Image Representation 82 (2022) 103399

4

image into predefined categories. In the research of object detection, 
intermediate layers between backbone network and final head layers are 
widely employed. 

Most convolution networks use increasing number of convolutional 
filters together with spatial strides to organize the contained layers so 
that semantic image features are abstracted from space to channels. In 
other words, later layer outputs have smaller spatial scales whilst higher 
(channel) depth. In this way, semantic features can be extracted at scales 
from low to high, when they are propagated from the earlier layers to the 
later ones. Top layers usually contain more representative semantics for 
a target task, whereas too small spatial resolutions might also cause 
limitations for solving the task. Thus, considering that sufficient spatial 
details carry relevant information for image quality perception, we 
intend to employ semantic features both from low scales (high resolu
tions) and high scales (low resolutions). The aim of AIHIQnet is to 
generate image quality prediction at different scales and combine them 
to derive the overall quality. Fig. 1 illustrates the architecture of 
AIHIQnet consisting of three parts: backbone, neck and head networks, 
as detailed in the following subsections. 

A. Backbone network 
AIHIQnetThe purpose of backbone network is to extract image fea

tures relevant for quality perception through the learning process. In 
general, the choice of the backbone network is not very crucial for 
AIHIQnet. A CNN architecture following the common approach to 
organize the convolution blocks/layers and generate feature maps at 
different scales can be served as the backbone network. In the AIHIQnet 
implementation, we have mainly focused on ResNet family, e.g., 
ResNet50. ResNet152, VGG16 [32] and DenseNet121 [47] have also 
been included in the ablation experiments. However, the experiments 
and following descriptions are all based on ResNet50. The imple
mentation of ResNet in the official release of TensorFlow [48] has been 
employed in this work. 

ResNet50 consists of 5 stages (residual blocks) each containing a 
convolution block and identity block. In this work, we choose the out
puts from the later 4 stages (named C2, C3, C4, and C5) to derive feature 
maps for IQA. The output from the first stage is not included because it 
contains relatively shallow semantics and requires a lot of memory. The 
backbone network is in fact a full convolution network, whose config
uration is independent of the input shape. In this case, only the 

parameters of the convolution layers (e.g., filter number, kernel size, 
strides) need to be specified. Such architecture can accept any image 
inputs with different resolutions. Assuming an input RGB image of res
olution [X, Y, 3], where X and Y denote height and width, the output 
shapes of the backbone network are: 
⎧
⎪⎪⎨

⎪⎪⎩

C2 : [X/4,Y/4, 256]
C3 : [X/8,Y/8, 512]

C4 : [X/16,Y/16, 1024]
C5 : [X/32,Y/32, 2048]

(1) 

B. Neck network for feature fusion and attention modelling 
As explained above, image quality perception can be better modelled 

in an approach of feature fusion between high-scale (i.e., low resolution 
or more abstract) and low-scale feature maps. To perform the cross-scale 
feature fusion without introducing large additional computational cost, 
a bottleneck convolution layer is first applied to the hierarchical feature 
maps {C2, C3, C4, C5}: 

Conv(K, (1 × 1), 1)(Ci), i = 2, 3, 4, 5 (2)  

where K denotes the filter number that is set to the smallest number of 
channel dimension in {C2, C3, C4, C5}, thus 256 is used, 1 × 1 indicates 
the kernel size, and another 1 is the striding step. The main purpose of 
the bottleneck convolution layer with kernel size of 1 × 1 is to reduce the 
channel dimensions of {C2, C3, C4, C5} without changing their spatial 
resolutions. 

Subsequently, up-sampling is performed for cross-scale fusion, i.e., 
up-sampling the spatial resolution of high-scale feature map to match its 
next low-scale map. The up-sampled feature maps are fused with 
convolution results of the next high-scale map to generate intermediate 
maps {M5, M4, M3, M2}. 

M5 = Conv(K, (1 × 1), 1)(C5)

Mi = Conv(K, (1 × 1), 1)(Ci) + Up − sample(Mi+1), i = 4, 3, 2 (3)  

where M5 is directly generated from C5 by the convolution layer, as C5 is 
the highest scale map from the backbone network. 

Consequently, another convolution layer using K filters with kernel 
size (3 × 3) is applied to {M2, M3, M4, M5} to generate pyramidic feature 
maps {P2, P3, P4, P5}, as in Eq. (4). Other kernel sizes have also been 

Fig. 1. Architecture of the perceptual hierarchical image quality networks (AIHIQnet). The numbers indicate the output shape of each block/node.  
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tested, e.g., 5 × 5, while it has been found to perform worse for AIHIQnet 
in IQA. 

Pi = Conv(K, (3 × 3), 1)(Mi), i = 2, 3, 4, 5 (4) 

In addition, a common understanding about CNN architecture is that 
more semantic information is conveyed by more abstract representation. 
Thus, we intend to more fully exploit the highest scale feature map, i.e., 
C5, for IQA by another convolutional operation with a striding step 2. 
Same as generating the other pyramid feature maps {P2, P3, P4, P5}, the 
kernel size of this convolutional operation is also set to (3 × 3). Thus, 
another feature map P6 can be generated from C5 directly, as formulated 
in Eq. (5). 

P6 = Conv(K, (3 × 3), 2)(C5) (5) 

The pyramidic feature maps {P2, P3, P4, P5, P6} carry perceptible 
information extracted from the input image for quality assessment. 
However, due to the selective attention mechanism, not all the percep
tible information will contribute to quality perception evenly. As 
explained by the spatial selective attention mechanism, the HVS often 
selectively perceives the most important or informative stimuli, while 
ignoring other perceptible information [26,49]. In other words, viewers 
pay more attention to certain spatial areas than others in the field of 
vision. 

In addition, contrast sensitivity measured as a function of retinal 
eccentricity for visual stimuli in spatial frequency is maximized at the 
fovea and declined with eccentricity to the gaze [30], as described in the 
following equation. 

CT(f , e) = CT0⋅exp
(

α⋅f ⋅
e + e2

e2

)

(6)  

where f denotes the spatial frequency, e is the retinal eccentricity. A 
critical frequency fc, beyond which the contrast will be imperceptible, 
can be obtained by setting CT to 1.0 (the maximum possible contrast) 
and solving for f: 

fc =
e2⋅log(1/CT0)

α⋅(e + e2)
(7) 

In our earlier work [43], a psychovisual experiment has been con
ducted demonstrating that the critical frequency can be further adjusted 
according to spatial attention map, approximating a dot-product way as 
following: 

f
′

c = fc⋅[ρ + (1 − ρ)]⋅AM (8)  

where AM denotes distribution of spatial attention, and ρ is a control 
parameter. 

Attention guided contrast sensitivity mechanism indicates that the 
HVS has stronger reflection to the components at certain frequency in 
visual stimuli than other components. Thus, such mechanism can also be 
represented by a means of attention network, i.e., more attention is paid 
to components with certain contrast frequencies than the others. For 
example, no attention is paid to the frequency components beyond the 
critical frequency. Therefore, even though perceptible information for 
IQA has already been extracted and underlies in the feature maps {P2, 
P3, P4, P5, P6}, an attention module implementing contrast sensitivity 
and selective attention mechanism is still conducive to detecting the 
most crucial information for IQA. 

As contrast sensitivity and selective attention are two separate but 
related mechanisms in the HVS, we also implement the attention module 
in such an approach. The attention module contains two attention 
blocks, namely channel attention representing contrast sensitivity and 
spatial attention for selective attention. 

Even though the channel features in each of the pyramidic feature 
maps {P2, P3, P4, P5, P6} are not same as the frequency components used 
in CSF, we hypothesize that the channel features still represent similar 

mechanism of contrast sensitivity. The channel features actually repre
sent the responses of image signals to different convolution kernels, 
corresponding to different frequency components. A simplified example 
is Sobel operator, which is a convolutional operator that can distinguish 
high frequency information (e.g., edges) from low frequency informa
tion (e.g., plain areas). Thus, our hypothesis has a solid foundation. In 
the channel attention block for contrast sensitivity mechanism, inspired 
by the squeeze-and-excitation networks [46] and convolutional block 
attention module [50], we first squeeze a pyramidic feature map using 
two methods, namely spatial maximum and average pooling schemes. 
Subsequently, a fully connected layer shared by the maximum and 
average pooled feature vectors is employed to derive attention weights 
from the two pooled feature vectors. Individual components in the 
maximum or average pooled feature vector represent features at 
different frequencies, and we aim to use the attention module to derive 
the relative important levels for individual components of quality 
perception. Therefore, Sigmoid function has been chosen as the activa
tion function in the fully connected layer. The number of filters in this 
layer is set to the number of channels of the pyramidic feature map, i.e., 
K, so that the dimension of channel weights matches the feature map. 
Consequently, the average between the two channel weights derived 
respectively from the maximum and average pooled feature vectors is 
obtained, which serves as the channel weight to represent the attention 
distribution over frequencies for quality perception. The channel 
attention block can be represented roughly as follows: 

CA = avg{s{FC[AvgPool(P)],FC[MaxPool(P)]}} (9)  

where FC and s denote the fully connected layer with Sigmoid as acti
vation function, and avg is the average of the two channel weights. As 
CSF indicates that visual perception can be influenced by frequencies 
beyond certain threshold, the channel attention block is appropriate for 
simulating CSF, e.g., by using the unbalanced attention distribution over 
different channels. 

As explained earlier, multiplying a spatial attention or saliency map 
directly with an image or low-level feature maps might cause loss of 
information essential to quality perception. Thus, we intend to apply 
spatial attention to the high-level feature representations. Inspired by 
Eq. (8), the spatial attention block is applied to the output of the channel 
block in AIHIQnet. 

In the spatial attention block, channel-wise maximum and average 
pooling schemes are first applied to a pyramidic feature map to squeeze 
information in the channel domain. Consequently, two squeezed feature 
maps are concatenated. As the spatial attention block is expected to 
derive attention allocation over spatial locations in the feature map for 
quality perception, a convolution layer using one filter is employed to 
generate a single weight map with the same spatial size as each of the 
pyramidic feature maps {P2, P3, P4, P5, P6}. A relatively large kernel size 
7 × 7 is used in the convolution layer to increase its receptive field. 
Other kernel sizes, including 5 × 5 and 9 × 9, have also been tested in 
this work, and we found that kernel size of 7 × 7 provides the best re
sults. Similar to the channel attention block, Sigmoid function is 
employed as the activation function in the convolution layer. A spatial 
weight map can be derived as follows: 

SA = s{Conv(1, (7 × 7), 1)[AvgPool(P),MaxPool(P)]} (10) 

Following the idea of the Transformer model [44], and also inspired 
by the relationship between contrast sensitivity and attention that can 
be represented by dot-product as in Eq. (8), dot-product attention 
without scaling factor is employed to implement the attention module in 
this work. The perceived quality feature maps (PF) at five spatial scales 
are derived as follows, with the same shape as the pyramidic feature 
maps {P2, P3, P4, P5, P6} in Eqs. (4) and (5): 

PFi = SA ⊗ (CA ⊗ Pi), i = 2, 3, 4, 5, 6 (11) 

Finally, it should be noted that the same attention module is used to 
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process all the five pyramidic feature maps. Fig. 2 shows the flowchart of 
the attention module. Several alternative operations in the two attention 
blocks have also tested in this work, e.g., summation or dot product to 
replace avg in Eq. (9), as well as using averaging instead of concatena
tion in the spatial attention block. We have found that the approach 
described above achieves the best performance in IQA in general. 

C. Head network for prediction of image quality scores 
In practical quality assessment, multiple subjects are often recruited 

to vote for image quality over a predefined rating scale, e.g., a five-scale 
rating (1 = bad, 2 = poor, 3 = fair, 4 = good, 5 = excellent) is often used. 
Subsequently, mean opinion score (MOS) of all participants is calculated 
to indicate the perceived quality of the image. An IQA model can target 
at predicting either distribution of quality scores over the rating scale or 
single MOS value. However, the distribution of ratings might be useful in 
certain applications, e.g., user experience survey. Previous studies also 
demonstrated that predicting score distribution appears to provide more 
robust prediction than predicting MOS directly [51]. This will also be 
confirmed in our experiments. We assume that such phenomenon is 
related to the fact that label smoothing often improves the robustness of 
multi-class classification [52]. Using the distribution of quality scores 
rather than one-hot coding (i.e., MOS) is assumed to work like label 
smoothing. Thus, AIHIQnet is set to predict the distribution of ratings, 
rather than the quality score directly, and MOS values can be calculated 
from the distribution straightforwardly as: 

IQ =
∑

x∈{1,2,3,4,5}

x⋅p(x) (12)  

where p(x), x∈{1,2,3,4,5} denotes the normalized distribution of the 
quality scores. 

As the perceived quality features at different scales are generated 
from the neck network, the goal of the head network is to combine them 
to derive the normalized distribution of quality scores. At each spatial 
scale, global spatial average pooling is first performed to squeeze the 
perceived quality feature map to generate a feature vector with K di
mensions. Such global pooling can also handle image inputs with arbi
trary resolutions. Other advanced pooling approaches can also be used 
to combine the features across space and channels. We have tested the 
spatial pyramid pooling proposed by K. He et al. [53] that can handle 
arbitrary input image resolutions, but no performance gain was 
observed for AIHIQnet in our experiments. We assume that the features 
derived through the backbone and neck networks with the integrated 
attention blocks can efficiently model quality perception, and then 
simple global spatial pooling can easily combine the features in the head 
network for quality prediction. Subsequently, a fully connected layer 

with five outputs is employed to predict the normalized distribution of 
quality scores at each scale, as the five-point rating is used in this work. 
It should be noted that such rating scale is different from the spatial scale 
of quality features, even though they are both set to five, by coincidence, 
in this model. As the last fully connected layer should predict the 
normalized probability distribution representing the quality score dis
tribution at each spatial scale, Softmax is employed as the activation 
function of this layer, as follows: 

pi(x) = FCi{avg(PFi); softmax},
x ∈ {1, 2, 3, 4, 5},

i = 2, 3, 4, 5, 6
(13)  

where FCi{avg(PFi)} denotes the fully connected layer on the global 
average of PFi. 

Finally, the distribution probabilities derived at the five spatial scales 
are averaged to obtain the overall distribution of the image quality 
scores, i.e., 

p(x) = pi(x), x ∈ {1, 2, 3, 4, 5}, i = 2, 3, 4, 5, 6 (14) 

As the distribution of quality scores represents the normalized dis
tribution of image quality votes over the rating scales, cross entropy is 
used as the loss function for the predicted distribution against the 
ground truth score distribution. We have also tested other loss functions, 
including loss for ordinal classification [54] and the earth mover’s dis
tance (EMD), as used in neural image assessment [55], and observed 
that in general, cross entropy produces the most robust results for 
AIHIQnet. 

On the other hand, it is also easy to predict MOS directly, instead of 
the distribution of quality scores, in the model. This is done by changing 
the number of outputs from five to one, and activation function from 
Softmax to linear in Eq. (13) for single value prediction. Consequently, a 
single value will be produced at each scale, and then the average over 
the five scales is calculated for MOS prediction, as given in Eq. (15). 

MOSi(x) = FCi{avg(PFi); linear}, i = 2, 3, 4, 5, 6 (15) 

Accordingly, cross entropy is replaced by mean squared error (MSE) 
for direct MOS prediction. This model is named AIHIQnet-MOS in the 
experiments. 

4. Experiments and discussions 

In order to evaluate the performance of AIHIQnet, several state-of- 
the-art models representing typical machine learning based NR-IQA 
are included in our experiments, namely NIQE[7], IL-NIQE[8], BRIS
QUE [11], and the deep learning driven models explained in Table 1. 

Fig. 2. Attention module in IQA including channel attention block for contrast sensitivity mechanism and spatial attention block for selective attention mechanism, 
and the number below each node indicates the output shape. 

J. You and J. Korhonen                                                                                                                                                                                                                       



Journal of Visual Communication and Image Representation 82 (2022) 103399

7

Most studies report correlation coefficients, e.g., Pearson linear corre
lation (PLCC) and Spearman rank-order correlation (SROCC), between 
the predicted quality scores and ground truth scores to evaluate the 
performance of quality models, e.g., see [20,22,34,35,39]. A machine 
learning driven IQA model often aims to minimize the distance measure 
between single predictions and ground truth, while a correlation coef
ficient only provides a measure of statistical characteristics between 
multiple predictions and ground truth. A correlation coefficient is not 
always positively correlated with a distance measure. Therefore, in 
addition to PLCC and SROCC, the root mean squared error (RMSE) be
tween the predicted quality scores and ground truth has also been 
included as an evaluation criterion. Finally, ablation experiments have 
also been conducted to reveal impact of different mechanisms of 
AIHIQnet on the performance, providing us with useful insight to 
advance development of deep learning based IQA models. 

A. Image quality databases 
Training a deep learning driven IQA model often requires a large 

amount of annotated data. There are many publicly available IQA da
tabases containing images with authentic or synthetic distortions in 
either with or without reference scenarios. Even though some attempts 
have been made to combine different databases in training a single IQA 
model, e.g., an uncertainty-aware unified model (UNIQUE) for handling 
cross-distortion-scenario issue [56], it is still difficult or impossible to 
directly combine multiple quality databases produced in different sub
jective assessment experiments. Therefore, we intend to employ indi
vidual large-scale IQA databases in our experiments. 

To the best of our knowledge, there are currently three large-scale 
IQA databases with authentic distortions publicly available, namely 
KonIQ-10 k [20], SPAQ [57], and LIVE-FB [58]. In [20], Hosu et al. 
collected over 10,000 natural images with resolution of 1024 × 768 and 
conducted a crowdsourcing experiment to produce the KonIQ-10 k 
image quality database. The MOS values and original quality score 
distributions were both published. The authors also evaluated their 
quality model using half-sized images and the original quality scores, 
and reported better performance than using the original resolution im
ages [20]. It is difficult to judge the legitimacy of the approach of using 
quality models with smaller resolution images than those used in the 
subjective study to obtain the ground-truth subjective scores, as the 
performance is influenced by two independent factors: model design and 
the impact of downscaling. The SPAQ database was produced in a 
controlled laboratory environment, in which several human opinions 

(image quality, image attributes and scene categories) were collected on 
11,125 images with diverse resolutions taken by smart phones. In 
addition, Ying and Niu et al. [58] introduced the largest (by far) IQA 
database (LIVE-FB) containing 39,806 images. However, even though 
the LIVE-FB database contains a large number of images, about 92% 
images have the MOS values located in a narrow range of [60,80] out of 
the full range [0,100]. This is mainly due to the fact that the LIVE-FB 
database is actually assembled from several other existing databases, 
which are not designed for IQA purpose and the used images often have 
fair quality. Thus, LIVE-FB cannot appropriately represent the distri
bution of varying image qualities. We have actually tested the NR-IQA 
models on the LIVE-FB database, as will be briefly discussed in Section 
IV.C, while none of them achieves promising performance. Thus, in our 
experiments, only the images with original resolution in KonIQ-10 k 
database and the SPAQ database were mainly used. Considering that 
these two databases were produced from different assessment environ
ments, i.e., crowdsourcing and controlled laboratory, it is also inter
esting to compare the two assessment methodologies based on IQA 
models. 

Subsequently, following the standard protocol, the two databases 
were split into train, validation and test sets. A crucial rule for splitting is 
that the resulting sets should be independent and identically distributed. 
In our work, we split the individual database randomly according to both 
the MOS values and complexity of images, namely spatial perceptual 
information (SI) as defined in the ITU Recommendation [59]. All images 
in a database were first roughly classified into two complexity categories 
in terms of SI: high SI and low SI, and then the images in each category 
were further divided into five quality categories based on their MOS 
values. Consequently, we randomly chose 80% of the images from each 
quality category within each complexity category as train images, 10% 
images as the validation images, and the rest 10% served as test images. 
Such random split were performed in ten separate sessions. Fig. 3 shows 
the average histograms of MOS and SI values of the train, validation and 
test images over the ten sessions, illustrating that the images in the split 
sets are independent and similarly distributed. 

It should be noted that different ranges of MOS values are used in the 
two databases, i.e., [1,5] in KonIQ-10 k and [0,100] in SPAQ. For a 
cross-database performance evaluation, we have also linearly normal
ized the MOS values in SPAQ into the range of [1,5]. In addition, as the 
raw distribution of scores given by individual participants in the KonIQ- 
10 k database has been published, we have calculated the normalized 

Fig. 3. Histograms of MOS and SI of the train, validation and test images in KonIQ-10 k (left) and SPAQ (right) databases.  
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distribution of quality scores over the quality categories as the predictive 
object in AIHIQnet. Whereas, only MOS values were published for the 
SPAQ database. Therefore, the AIHIQnet-MOS model has been used for 
SPAQ. 

B. Model training strategies 
NR-IQA models based on classical machine learning, e.g., BRISQUE 

and DeepBIQ using SVR, NIQE and IL-NIQE based on Gaussian distri
bution, can achieve consistent performance by following the common 
approach of grid search to find the best hyperparameters based on the 
image features derived from the training images. On the other hand, the 
performance of deep learning models can be heavily affected by the 
training strategy. We have adopted the original implementations of 
other compared deep learning models and the training strategies pro
vided by their authors. The original implementations have been slightly 
adjusted as explained in Table 1, so that the models can take arbitrarily 
sized images as inputs. 

AIHIQnet and AIHIQnet-MOS were first built and compiled by in
dividual loss functions and Adam as the optimizer, and the training 
process was performed in two phases: pretrain and finetune. In the 
pretrain phase, we have found that a base learning rate 5e-5 provided 
the best performance in general. The maximum number of epochs was 
set to 100. A learning rate scheduler of cosine decay with warmup was 
employed. The first 10 epochs with linearly increasing learning rate 
were for warmup, then the base learning rate was held for another 30 
epochs, and subsequently, the cosine decay of learning rate was applied 
until the end of training. Early stop has also been used by monitoring the 
PLCC value on the validation set. In the finetune phase, the base learning 
rate was set to 1e-6 with the same scheduler applied. Finally, the best 
model was determined according to the maximal PLCC value on the 
validation images produced from the training process. 

As the images contained in the SPAQ database have diverse resolu
tions, we implemented an image generator that can serve a batch of 

images with same resolution in each training step. The images were 
shuffled after every epoch. In addition, image augmentation is often 
employed when training deep learning models to increase the amount of 
training data and accordingly improve the generalization capability of 
the trained models. For example, transformation, mixture of multiple 
images, etc., are used in model training for object detection, image 
recognition, etc. However, due to the particularity of IQA, most of the 
image augmentation techniques can potentially affect the perceived 
quality of augmented images. In this work, we have investigated popular 
image augmentation techniques implemented in a Python library [60] 
and gauged if they affected the perceived image quality. Finally, we 
concluded that only horizontal flip did not influence image quality 
significantly, and therefore, it was included as an augmentation strategy 
in our experiments. 

The models were trained on two GeForce RTX 3090 GPUs. As some 
models employ base networks, e.g., ResNet50 in AIHIQnet/AIHIQnet- 
MOS, SGDNet, TRIQ, InceptionResNet-V2 in Koncept512, publicly 
available weights pretrained on ImageNet for the base networks were 
employed for applying transfer learning. Accordingly, all the images 
were normalized by the preprocessing methods in TensorFlow or 
PyTorch based on how the base networks were implemented, when 
pretrained weights have been applied. Otherwise, if a base network is 
not used, e.g., in CaHDC, the images were still normalized by subtracting 
the mean and dividing the standard deviation of all images in the 
training sets. 

In addition, the compared models (Koncept512, SGDNet, MEON, 
DBCNN, CaHDC, TRIQ) were also trained by the proposed strategy 
above, and we have found that better results were often obtained for 
some models, compared to the original training strategies. Naturally, the 
better results are reported in the paper. 

C. Comparison experiments 
In the training process from each of the ten random train/validation/ 

Table 2 
Average and Standard Deviation of Evaluation Criteria on KonIQ-10 k and SPAQ Test Sets.  

Models KonIQ-10 k test set SPAQ test set 

PLCC ↑ SROCC ↑ RMSE ↓ PLCC ↑ SROCC ↑ RMSE ↓ 

NIQE [7] 0.597 (±0.011) 0.601 (±0.036) 0.527 (±0.136) 0.765 (±0.021) 0.728 (±0.045) 0.582 (±0.094) 
IL-NIQE [8] 0.573 (±0.040) 0.552 (±0.029) 0.496 (±0.037) 0.770 (±0.032) 0.708 (±0.107) 0.594 (±0.088) 
BRISQUE [11] 0.637 (±0.009) 0.634 (±0.016) 0.419 (±0.058) 0.803 (±0.012) 0.810 (±0.019) 0.501 (±0.062) 
DeepBIQ [18] 0.873 (±0.021) 0.864 (±0.037) 0.284 (±0.029) 0.858 (±0.027) 0.861 (±0.028) 0.389 (±0.035) 
Koncept512 [20] 0.916 (±0.116) 0.909 (±0.085) 0.267 (±0.094) 0.831 (±0.097) 0.830 (±0.080) 0.384 (±0.060) 
CaHDC [21] 0.856 (±0.027) 0.817 (±0.025) 0.370 (±0.041) 0.824 (±0.030) 0.815 (±0.019) 0.486 (±0.068) 
MEON [33] 0.704 (±0.136) 0.794 (±0.073) 0.405 (±0.059) 0.683 (±0.088) 0.733 (±0.049) 0.483 (±0.100) 
DBCNN [34] 0.856 (±0.027) 0.843 (±0.021) 0.375 (±0.064) 0.894 (±0.024) 0.865 (±0.020) 0.459 (±0.057) 
SGDNet [36] 0.868 (±0.027) 0.811 (±0.016) 0.312 (±0.047) — — — 
TRIQ [38] 0.922 (±0.018) 0.910 (±0.011) 0.223 (±0.030) 0.916 (±0.027) 0.925 (±0.015) 0.324 (±0.021) 
hyperIQA [39] 0.916 (±0.030) 0.907 (±0.027) 0.242 (±0.031) 0.910 (±0.026) 0.915 (±0.020) 0.329 (±0.028) 
AIHIQnet 0.932 (±0.012) 0.919 (±0.019) 0.207 (±0.012) — — — 
AIHIQnet-MOS 0.929 (±0.020) 0.915 (±0.014) 0.209 (±0.022) 0.929 (±0.022) 0.925 (±0.019) 0.326 (±0.027)  

Table 3 
Average and Standard Deviation of Evaluation Criteria of NR-IQA Models Trained On One Database and Tested On Another Database  

Models Trained on KonIQ-10 k tested on SPAQ Trained on SPAQ tested on KonIQ-10 k 

PLCC ↑ SROCC ↑ RMSE ↓ PLCC ↑ SROCC ↑ RMSE ↓ 

NIQE [7] 0.572 (±0.026) 0.584 (±0.030) 0.746 (±0.105) 0.524 (±0.026) 0.610 (±0.040) 0.691 (±0.086) 
IL-NIQE [8] 0.585 (±0.039) 0.602 (±0.044) 0.723 (±0.048) 0.597 (±0.038) 0.626 (±0.035) 0.725 (±0.098) 
BRISQUE [11] 0.659 (±0.010) 0.654 (±0.019) 0.650 (±0.049) 0.518 (±0.018) 0.526 (±0.023) 0.684 (±0.120) 
DeepBIQ [18] 0.793 (±0.027) 0.807 (±0.030) 0.562 (±0.050) 0.714 (±0.019) 0.712 (±0.030) 0.520 (±0.020) 
Koncept512 [20] 0.825 (±0.105) 0.828 (±0.094) 0.726 (±0.110) 0.728 (±0.103) 0.753 (±0.079) 0.528 (±0.130) 
CaHDC [21] 0.712 (±0.038) 0.727 (±0.030) 0.595 (±0.051) 0.536 (±0.038) 0.589 (±0.033) 0.870 (±0.082) 
MEON [33] 0.693 (±0.060) 0.704 (±0.067) 0.671 (±0.047) 0.648 (±0.065) 0.692 (±0.034) 0.583 (±0.091) 
DBCNN [34] 0.686 (±0.039) 0.733 (±0.050) 0.646 (±0.105) 0.677 (±0.040) 0.644 (±0.035) 0.601 (±0.087) 
TRIQ [38] 0.853 (±0.017) 0.865 (±0.020) 0.479 (±0.037) 0.786 (±0.025) 0.798 (±0.025) 0.463 (±0.035) 
hyperIQA [39] 0.832 (±0.046) 0.830 (±0.029) 0.472 (±0.044) 0.743 (±0.036) 0.720 (±0.030) 0.574 (±0.050) 
AIHIQnet 0.864 (±0.019) 0.865 (±0.013) 0.458 (±0.036) — — — 
AIHIQnet-MOS 0.852 (±0.023) 0.854 (±0.019) 0.458 (±0.030) 0.799 (±0.031) 0.791 (±0.024) 0.455 (±0.0242)  
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test split sessions, the NR-IQA models with the best weights determined 
by the maximal PLCC values on the validation set have been applied to 
the test set to evaluate the performance of individual models. Such 
approach has been performed on the KonIQ-10 k and SPAQ databases, 
respectively. Table 2 reports the average values and standard deviations 
of the evaluation criteria PLCC, SROCC, and RMSE over the ten split 
sessions on the two databases, respectively. It should be noted that 
SGDNet requires saliency maps as inputs. Even though the authors of 
SDGNet also proposed another approach without saliency to predict 
image quality, we have found that including saliency as input indeed 
improves the performance. As the authors of SDGNet only published 
saliency maps for the KonIQ-10 k database, the evaluation of SDGNet 
was not performed on the SPAQ databases. 

Subsequently, in order to evaluate the generalization capability of 
the NR-IQA models, we have also applied the models trained on one 
database to another database, e.g., AIHIQnet was trained on the train 
and validation sets in KonIQ-10 k database and then tested on the entire 
SPAQ database, and vice versa. The results are reported in Table 3. As no 
saliency maps are available for the SPAQ database, SGDNet was 
excluded from the cross-database experiment. It is also noted that 
AIHIQnet can be trained with KonIQ-10 k database while not on SPAQ, 
as the distribution of MOS values is required. Thus, only AIHIQnet-MOS 
trained on SPAQ has been tested with respect to the KonIQ-10 k 
database. 

According to the evaluation results, deep learning driven models 
generally outperform the representative NR-IQA models (BRISQUE, 
NIQE, IL-NIQE) based on classical machine learning approach using 
hand-crafted features. Furthermore, the results demonstrate that the 
proposed AIHIQnet, as well as AIHIQnet-MOS, shows significantly bet
ter performance and generalization capability than the other deep 
learning driven models with respect to both the two databases. The 
possible reasons are discussed as follows. 

DeepBIQ shows promising performance in NR-IQA, which on one 
hand confirms that large-scale pretraining indeed provides solid foun
dation for downstream tasks, e.g., IQA. On the other hand, the employed 
image patching and averaging approach can be influenced significantly 
by image resolution, spatially inconsistent quality and unbalanced 
attention distribution. This is also suspected to be a potential reason why 
MEON obtains poor performance in our experiments, in which the image 
resolutions are relatively large. 

Koncept512 is a representative of deep learning models widely used 
in image classification, i.e., using a sufficiently deep CNN architecture 
(InceptResnet-V2) to extract relevant features and then fully connected 
layers for quality prediction. This approach achieves promising perfor
mance in image classification problems, and such architecture of CNNs 
followed by FC layers achieves fair performance in IQA. On the other 
hand, we have also noticed that three dropout layers with relatively 
large dropping rate (0.5) used in Koncept512 brings strong instability in 
model training. Similarly, DBCNN also follows the common approach of 
constructing CNNs for image classification, even though two separate 
CNNs for synthetic and authentic distortions are combined. However, 
such approach does not fully exploit the features and hidden charac
teristics extracted by CNN layers for quality perception. As we will 
illustrate by activation maps in the next Section, the semantical features 
can vary significantly from image recognition to IQA. 

SGDNet integrates image saliency into IQA by multiplying the sa
liency map derived externally with an intermediate quality feature map 
generated by the CNN architecture. It shows fair performance on the 
KonIQ-10 k database, which also confirms that image saliency can 
contribute to quality assessment significantly. However, a direct multi
plication between a saliency map and the quality feature map as in 
SGDNet might not be the best approach to fully exploit saliency or 
attention mechanism in quality assessment, as we have investigated in 
earlier studies [41]-[43]. Furthermore, as the saliency map is obtained 
externally, SGDNet cannot learn the importance of saliency on quality 
perception during the training process, which also potentially impedes 

the advantage of using saliency in IQA. In this regard, the Transformer 
architecture can better exploit the attention mechanism for target tasks, 
and thus, TRIQ shows very promising performance in our experiments. A 
potential approach to further improve TRIQ is to combine Transformer 
and hierarchical structure based on CNNs in IQA. On the other hand, the 
hierarchical structure has been employed in CaHDC, which can take 
advantage of deep CNN architectures. However, the side pooling nets 
using simple maximum pooling to combine feature maps at different 
CNN scales might not sufficiently capture the crucial perceptible infor
mation for IQA. As a comparison, hyperIQA using an elaborate archi
tecture based on multi-scale image features has obtained high 
performance, which demonstrates that image quality perception can be 
appropriately modelled in a hierarchical fashion. Whereas, the hyper
IQA model requires that images should be rescaled to the resolution that 
has been used in model training, which can potentially introduce bias in 
image quality prediction. 

AIHIQnet follows the multi-scale perceptual process and benefits 
from a deep network architecture deriving relevant features. Such hi
erarchical structure of generating quality feature maps can accurately 
capture the intrinsic mechanism of IQA. Furthermore, by integrating the 
perceptually guided attention module into pyramidic feature maps, 
AIHIQnet can also appropriately simulate the generation of image 
quality perception in the HVS. In most cases, AIHIQnet obtains better 
performance than AIHIQnet-MOS, which also supports the prior obser
vation that predicting score distribution provides more robust results 
than predicting MOS values directly. 

On the other hand, the cross-database experiment shows that the 
models still have limited generalization capability, as indicated by the 
results in Table 3. This is expectable because the two IQA databases were 
established in two subjective experiments with different settings and 
environmental conditions. In addition, the alignment of quality scores in 
different databases is also a challenging issue. By comparing the cross- 
database evaluation results, it can be observed that most models 
trained on the KonIQ-10 k database demonstrate better generalization 
capability than being trained on SPAQ. We suspect that this is due to that 
different assessment environments used for the subjective studies. As the 
SPAQ experiment was performed in a controlled laboratory environ
ment, the results are probably more consistent than the results in a 
crowdsourcing study, limiting the generalizability of the results. 

Furthermore, it is also interesting to evaluate how a deep learning 
based NR-IQA model trained on large-scale datasets performs on new 
small-scale datasets. Many subjective IQA experiments have been con
ducted and the datasets are published, e.g., CLIVE [61], CSIQ [62], 
TID2013 [63], CID2013 [64]. However, most datasets, e.g., CSIQ and 
TID2013, were developed for full-reference (FR) IQA purpose, i.e., the 
reference images were available for viewers . A significant difference 
between FR IQA and NR IQA is that the former has reference images, and 
both subjective participants and objective QA models assess the relative 
quality of a distorted image against its reference, not the absolute 
perceived quality. Therefore, it might be inappropriate to evaluate NR- 

Table 4 
Evaluation results of models trained on combined KonIQ-10 k & SPAQ and 
tested on combination of CLIVE & CID2013   

PLCC ↑ SROCC ↑ RMSE ↓ 

NIQE [7]  0.553  0.538  0.921 
IL-NIQE [8]  0.525  0.576  0.884 
BRISQUE [11]  0.617  0.628  0.803 
DeepBIQ [18]  0.786  0.758  0.668 
Koncept512 [20]  0.718  0.733  0.694 
CaHDC [21]  0.529  0.551  0.830 
MEON [33]  0.683  0.706  0.701 
DBCNN [34]  0.583  0.682  0.740 
TRIQ [38]  0.814  0.820  0.658 
hyperIQA [39]  0.795  0.801  0.694 
AIHIQnet  0.839  0.852  0.637 
AIHIQnet-MOS  0.843  0.843  0.628  
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IQA models using IQA datasets developed for FR scenario. Conse
quently, we have trained the models on a combined dataset consisting of 
KonIQ-10 k and SPAQ, and then evaluated them on the combination of 
NR datasets CLIVE and CID2013. Please note that this approach might 
confuse the differences across IQA experiments and datasets, e.g., 
KonIQ-10 k vs. SPAQ, and CLIVE vs. CID2013, whereas it can roughly 
demonstrate the strategy of training models on large datasets and testing 
on small datasets. Table 4 reports the evaluation results of this experi
ment, demonstrating that the proposed AIHIQnet/AIHIQnet-MOS 
models have promising generalization capability. 

In addition, we have also drawn the scatter plots of MOS values 
predicted by the trained NR-IQA models against the ground-truth 
quality assessment. Fig. 4 shows the case of models trained on KonIQ- 
10 k and tested with respect to the ground-truth MOS on the SPAQ 
database. The scatter plots illustrate that AIHIQnet, TRIQ and hyperIQA 
provide more consistent predictions of image quality in general. How
ever, the scatter plots also show that the imbalanced distribution of 
quality assessment of the KonIQ-10 k database, i.e., most subjective MOS 
values located in the range of [1.5, 4.0] as shown in Fig. 3, was intro
duced to the model prediction. Such phenomenon is even severer with 
the LIVE-FB database. We have trained and evaluated the NR-IQA 
models with respect to the LIVE-FB database, and almost all the 

models fail to obtain promising performance with only AIHIQnet-MOS 
and TRIQ achieving correlation slightly over 0.5 against the ground- 
truth. This partially demonstrates that an IQA database with balanced 
distribution of quality scores is crucial for benchmarking image quality 
models. 

D. Activation map visualization 
It is important to investigate what AIHIQnet has learned from the 

training process. A common approach in CNN architectures is to visu
alize the intermediate activation maps from individual channels [65]. In 
this experiment, we visualize the activation maps from the trained 
AIHIQnet model and also compare them with the map derived from the 
original pretrained backbone network. AIHIQnet trained on the KonIQ- 
10 k database has been selected for this experiment, and we have chosen 
the split session that produced the highest PLCC value on the validation 
set. 

The perceived quality feature maps (PF) derived in Eq. (11) carry 
information of image quality perception. Considering that an individual 
activation map at different scales contains many channels, e.g., 2,048 
channels at the highest scale, we performed maximum pooling over 
channel dimension of PF that roughly represents the distribution of 
perceived information within an image at different scales. A similar 
approach has also been employed to visualize the attention maps in 

Fig. 4. Scatter plots of different NR-IQA models tested on the SPAQ database, models were trained on KonIQ-10 k database, horizontal axis: ground-truth MOS 
normalized into [1,5], vertical axis: average of predicted MOS by models trained in the ten split sessions. 

Fig. 5. Example images, activation maps of PF, and activation maps from the backbone network from AIHIQnet trained weights and ImageNet pretrained weights. 
Columns (I): image, (II) backbone map from ResNet50 ImageNet pretrained, (III) backbone map from IQA training with ResNet50 as backbone, (IV) PF map with 
ResNet50 as backbone, (V) backbone map from DenseNet121 ImageNet pretrained, (VI) backbone map from IQA training with DenseNet121 as backbone, (VII) PF 
map with DenseNet121 as backbone. 
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other attention integrated vision models, e.g., vision Transformer (ViT) 
[66]. Consequently, the average of PF maps over different scales is used 
to indicate the feature activation map, where the higher-scale maps 
{PF3, PF4, PF5, PF6} are all up-sampled to match the resolution of the 
lowest scale map PF2. 

In addition, AIHIQnet has been trained by starting with ImageNet 
pretrained weights for the backbone network, which has been 
commonly considered as a promising approach, demonstrated also in 
our ablation experiment described in the following subsection. How
ever, image content recognition task that the ImageNet pretraining is 
aimed for, is apparently different from IQA task. Thus, it is interesting to 
see how the target tasks influence the derived image features. A feature 
map computed by averaging the activation maps of the backbone net
works, i.e., {C2, C3, C4, C5} in Eq. (1), is used to represent the features 
extracted by the backbone network after the training processing. The 
first feature map is generated using the trained AIHIQnet, and the sec
ond map using the original backbone with ImageNet pretrained weights. 

Fig. 5 illustrates three examples randomly chosen from the KonIQ- 
10 k training set, including the images and activation maps generated by 
two different backbone networks, namely ResNet50 and DenseNet121. 
Because the two backbone networks employ different architectures, it is 
expected that the activation maps (columns II and V) of ImageNet pre
trained weights are different. In addition, the two backbone networks 
show a similar behavior in the IQA task as discussed in the following. By 
comparing the activation maps before and after training for IQA tasks, i. 
e., columns II vs. III, and columns V vs. VI, it clearly demonstrates that 
the features have been dramatically updated for the purpose of IQA, and 
quality assessment is often driven by smaller regions within an image 
than the regions in content recognition. Finally, columns IV and VII 
showing the activation maps of PF illustrate that the proposed attention 
module can accurately capture the most important or attended areas for 
IQA tasks. According to the activation maps in columns III & IV, and VI 
& VII, roughly representing image features learned from IQA training 
process, structural information related to objects and especially those 
objects of interest (e.g., the lamp and monitor in the first row image, the 
road mark in the second row image, and the snooker balls in the third 
row image) are accurately captured by the model. This observation also 
supports the assumption that image quality perception is heavily influ
enced by structural information and visual attention mechanism 
[7,21,27,28]. More in-depth analysis on explaining the AIHIQnet model, 
e.g., from visual-psychological perspective, will be studied in our next 

work. 
E. Ablation experiments 
As AIHIQnet provides a general framework for NR-IQA that can be 

built on varying components in different ways, it is important to 
investigate the performance of the components of AIHIQnet(-MOS). We 
have conducted a series of ablation experiments on the two databases. 
Naturally, the same training strategy as that employed in the compari
son experiments has been used. Table 5 reports the average evaluation 
results of the ablation experiments over the ten split sessions, and the 
details about the ablation experiments are discussed below. The original 
results from the full models, as reported in Table 2, are also included for 
easy comparison. 

1) AIHIQnet(-MOS) with variants of attention module. 
Three ablation experiments have been performed: AIHIQnet(-MOS) 

using only channel attention without the spatial attention block, i.e., 
Eq. (11) is changed to PF = CA ⊗ P; AIHIQnet using only spatial 
attention block, i.e., PF = SA ⊗ P; and AIHIQnet without the attention 
module. When not using the attention module, the pyramidic feature 
maps {P2, P3, P4, P5, P6} in Eqs. (4) and (5) derived from cross-scale 
fusion were fed into the head network directly. Sufficiently high accu
racy was achieved from the three ablation experiments, which confirms 
that the proposed architecture consisting of backbone, neck and head 
networks is able to model image quality perception appropriately. 
However, integrating both the spatial and channel blocks definitely 
boosts the performance further, which demonstrates that the mecha
nisms of selective attention and contrast sensitivity indeed play an 
important role in IQA. 

2) AIHIQnet(-MOS) without using cross-scale fusion. 
The feature maps {C2, C3, C4, C5} were fed into the attention module. 

As C2, C3, C4, and C5 have different channel dimensions, we have applied 
a bottleneck convolution layer (K filters, kernel size 1 × 1 and stride 1) 
to reduce the channel dimensions to K for generating the perceived 
feature maps {PF’2, PF’3, PF’4, PF’5}. In addition, another bottleneck 
layer with K filters, kernel size 1 × 1 and stride 2 was applied to C5 again 
to derive another perceived feature map PF’6. The perceived feature 
maps {PF’2, PF’3, PF’4, PF’5, PF’6} have same shapes as {PF2, PF3, PF4, 
PF5, PF6} in Eq. (11), and they are fed into the head network, subse
quently. The result shows that abandoning the fusion slightly drops the 
performance of AIHIQnet(-MOS), but not as much as removing the 
attention module. In other words, integrating the attention and contrast 
sensitivity mechanisms is more helpful than cross-scale feature fusion in 
AIHIQnet(-MOS). 

3) AIHIQnet(-MOS) without using horizontal flip for augmentation. 
In this scenario, training was purely based on the original images 

without any augmentation. The result confirms that augmentation by 
horizontal flip indeed improves the performance. We have also evalu
ated other augmenters, including color changes, contrast enhancement, 
geometric transforms, and vertical flip. However, these image aug
mentations do not boost the performance of AIHIQnet(-MOS), and they 
can even reduce it. We believe this is because inappropriate image 
augmentations can in fact affect the perceived image quality. 

In addition, the backbone network forms a solid base in the proposed 
architecture, and the number of parameters of ResNet50 backbone is in 
fact over 70% of the total number of parameters in AIHIQnet(-MOS). 
Therefore, it is interesting to test the influence of backbone network 
on AIHIQnet(-MOS), and the following ablation experiments all focus on 
variants of backbone networks. 

4) AIHIQnet(-MOS) without using ImageNet pretrained weights for 
the backbone network. 

The experiments described above were all using the ImageNet pre
trained weights to initialize the backbone network. However, ImageNet 
is mainly for visual recognition, and IQA has not been considered when 
the backbone networks were trained on ImageNet. As explained in 
Section IV.D, we also observed that the weights of backbone network 
can be changed dramatically from the initial weights when training 
AIHIQnet(-MOS) for IQA. According to the result, AIHIQnet(-MOS) 

Table 5 
Average of Evaluation Criteria of AIHIQnet and AIHIQnet-MOS in Ablation 
Experiments  

Ablation experiments AIHIQnet on KonIQ-10 k AIHIQnet-MOS on SPAQ 

PLCC SROCC RMSE PLCC SROCC RMSE 

Full model for 
comparison  

0.932  0.919  0.207  0.929  0.925  0.326 

1.1) Only channel 
attention  

0.907  0.904  0.227  0.902  0.903  0.358 

1.2) Only spatial 
attention  

0.898  0.899  0.234  0.909  0.910  0.352 

1.3) No attention 
module  

0.899  0.901  0.233  0.905  0.906  0.361 

2) No cross-scale fusion  0.907  0.905  0.226  0.910  0.904  0.349 
3) No image 

augmentation  
0.894  0.902  0.221  0.901  0.899  0.360 

4) No ImageNet 
pretrained weights  

0.805  0.811  0.263  0.826  0.814  0.405 

5) Freeze backbone 
network  

0.789  0.750  0.336  0.801  0.793  0.449 

6.1) Vgg16 as 
backbone  

0.918  0.920  0.213  0.915  0.917  0.336 

6.2) DenseNet121 as 
backbone  

0.933  0.924  0.209  0.926  0.921  0.331 

6.3) ResNet152 as 
backbone  

0.911  0.908  0.228  0.913  0.908  0.339  
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shows worse performance without using the ImageNet pretrained 
weights for the backbone network. This confirms that the ImageNet 
pretrained weights provide an appropriate initial point for a wide range 
of downstream computer vision tasks, including IQA, even though IQA 
was not the target task during pretraining. This also suggests that even 
larger databases dedicated to visual quality assessment will advance 
development of quality models. 

5) AIHIQnet(-MOS) with frozen backbone network. 
We also trained AIHIQnet(-MOS) by freezing the backbone network, 

meaning that the pretrained ImageNet weights for the backbone 
network were kept for IQA. Even though using the pretrained ImageNet 
weights as a starting point for transfer learning significantly boosts the 
performance of IQA models, the result demonstrates that the original 
weights do not work well for IQA without updating them during the 
transfer learning process. 

6) AIHIQnet(-MOS) with other backbone networks. 
Three other backbone networks have been employed to replace 

ResNet50, including VGG16 [32], DenseNet121 [47] and ResNet152 
[45]. VGG16 has a relatively simple architecture, DenseNet121 employs 
direct connections between any two layers with compact set of param
eters and reduced complexity, whereas ResNet152 represents a typical 
very deep architecture. Similarly, the ImageNet pretrained weights were 
loaded before transfer learning. The evaluation results demonstrate that 
the choice of the backbone network is not crucial for the model per
formance. We believe that the reason is twofold: relatively small data
sets (i.e., KonIQ-10 k & SPAQ compared with ImageNet) cannot fully 
exploit the discriminative capability of deep architectures; and 
employing the perceptually driven neck and head networks significantly 
empowers AIHIQnet(-MOS) for modeling image quality perception 
based on image features that can be extracted by various backbone 
networks. This experiment suggests that a more dedicated backbone 
network pretrained on other large databases might improve the per
formance of AIHIQnet(-MOS) further. This will be studied in the future 
work. 

F. Model complexity 
We have also analyzed the model complexity in terms of floating 

point operations per second (FLOPS). Table 5 reports the FLOPS of those 
deep learning driven NR-IQA models implemented in Python when 
uniformly specifying the input image size as 1024 × 768 × 3. AIHIQnet- 
MOS has almost the same complexity as AIHIQnet. In addition, we have 
run the trained models on a NVIDIA GeForce RTX 3090 GPU to predict 
image quality on the entire SPAQ database (batch size = 1) as it consists 
of diverse image resolutions. Subsequently, the average inference time 
per image was calculated as the computational time of the models. 
AIHIQnet takes about 47 ms on average to predict a single image quality, 
and the ratios of inference time of other models are also reported in 
Table 6. It should be noted that the inference time of SDGNet was 
calculated by the ratio with AIHIQnet on the KonIQ-10 k database, as no 
saliency maps are available for the SPAQ database. As deriving the sa
liency maps also requires complex computations, the computation time 
for SDGNet will be significantly increased when including saliency map 
derivation. The complexity analysis indicates that AIHIQnet is not the 
fastest IQA model, while the inference time is still acceptable given that 
accurate image quality prediction is achieved. We assume that the 
attention module performed on multiple scales contributes heavily to 
the model complexity, and an efficient optimization will be further 
studied in the next work. 

5. Conclusion 

This paper proposed a perception based hierarchical architecture 
AIHIQnet for NR-IQA, consisting of backbone, neck and head networks. 
Relevant features that are captured by a general backbone network are 
filtered by cross-scale fusion and an attention module to produce 
perceptual quality information, based on which the perceived image 
quality can be finally predicted following the essential process of quality 
perception. Two crucial mechanisms in IQA, contrast sensitivity and 
selective attention, are appropriately modeled in the attention module. 
Comprehensive evaluation and ablation experiments on publicly avail
able IQA databases demonstrated outstanding performance of AIHIQnet 
and revealed important characteristics that can be used in future work 
for further improvement of NR-IQA models. 
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