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Abstract: Optical image sensors are the most common remote sensing data acquisition devices
present in Unmanned Aerial Systems (UAS). In this context, assigning a location in a geographic
frame of reference to the acquired image is a necessary task in the majority of the applications. This
process is denominated direct georeferencing when ground control points are not used. Despite
it applies simple mathematical fundamentals, the complete direct georeferencing process involves
much information, such as camera sensor characteristics, mounting measurements, attitude and
position of the UAS, among others. In addition, there are many rotations and translations between the
different reference frames, among many other details, which makes the whole process a considerable
complex operation. Another problem is that manufacturers and software tools may use different
reference frames posing additional difficulty when implementing the direct georeferencing. As this
information is spread among many sources, researchers may face difficulties on having a complete
vision of the method. In fact, there is absolutely no paper in the literature that explain this process in
a comprehensive way. In order to supply this implicit demand, this paper presents a comprehensive
method for direct georeferencing of aerial images acquired by cameras mounted on UAS, where all
required information, mathematical operations and implementation steps are explained in detail.
Finally, in order to show the practical use of the method and to prove its accuracy, both simulated
and real flights were performed, where objects of the acquired images were georeferenced.

Keywords: direct georeferencing; UAS; pinhole camera model

1. Introduction

Currently, optical image sensors are ubiquitous in Unammned Aerial Systems (UAS).
These acquisition devices can be RGB, infrared or hyperspectral cameras, for example.
There are a variety of applications using such sensors, e.g., in the fields of inspection [1],
mapping [2], search and rescue [3], tracking [4], border patrol [5], sea surveillance [6],
agriculture [7], and even recreation [8].

Traditionally, the georeferencing of aerial images was performed with the use of
Ground Control Points (GCP) [9,10], which are marked points on the ground that have a
known geographic location. However, the need of GCP imposes a considerable limitation
in such operations because most of the time the operator cannot place and measure the GCP
prior to the mission. For example, in [11], the authors developed a large-scale video fast
geo-registration method for forest fire monitoring, using high-resolution camera mounted
in UAS. The developed system uses selected terrain points as references, called “landmarks
ground control points”, LGCPs, whose positions and geographic coordinates are known
from official geographic maps and loaded in the system, in order to precede the obtained
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image georeferencing. Despite the method may be satisfactory for land monitoring, it is
limited for terrains where the mapping was not accurate or known, as well in case there
will be no possibility to chose LGCP, as deserts or maritime regions, for example.

The process of georeferencing aerial images without the use of GCPs is called Direct
Georeferencing. This process relies on using information about the position, attitude,
image sensor and lens characteristics to calculate the position of the aerial image object
in the geographic frame. This involves many challenges, such as that there is no range
information available, i.e., direct distance between the camera and the target.

One may say that this could be simply solved by equipping the UAS with laser
scanners or stereo cameras. However, these sensors are costly for long ranges and would
also increase the weight of the UAS payload, reducing its endurance.

In the literature, there are some works that perform direct georeferencing. Hemerly [12]
has the merit of being one of the main references in the field, bringing a brief explana-
tion of the direct georeferencing process, which is tested in a real UAS flight; the paper
also mentions the camera calibration process. Leira et al. [13] implements a light-weight
thermal camera for small fixed-wing UAS, with a georeferencing algorithm. The georef-
erencing process is explained and a real flight test is performed, where eighty images
are georeferenced.

In [14], the authors proposed a real time direct georeferencing system for maritime
targets, employing a thermal camera mounted on an UAS. The system is tested for a static
target and for a moving vessel. All the steps of the georeferencing process are discussed.
The algorithm is later used in [4] to calculate the target’s position for further tracking in two
of the four tracking solutions presented with the use of UAS. Real flight tests were taken
to evaluate the solutions. In [15], a rapid aerial image georeferencing method for UAS
for agricultural activities was implemented. Low cost Inertial Measurement Unit (IMU)
sensors, Global Positioning System (GPS) and sensor fusion techniques were employed, and
GCPs were not used. The method obtains the georeferenced position by treating navigation
data and the camera lens distortion model. Results were compared with sixteen positions
given by GCP and the accuracy was considered satisfactory for agriculture applications.

In [16], the authors implement a method for estimate the coordinates of a target from
the image obtained by a camera, mounted in a small fixed-wing UAS, given the UAS
position and altitude, and the camera posed angles. The georeferencing calculations are
similar to those presented in our research, which are detailed and fully explained here. The
paper also brings four techniques to reduce the estimated georeferenced position error.

As observed in the previously cited works, although the method of direct georeferenc-
ing of images taken by cameras mounted on UAS demands simple mathematical concepts,
all of them in linear algebra theory, the entire process involves many other details, resulting
in a complex and tricky operation. Therefore, a researcher may face it difficult to find and
comprehend these details, as they are treated separately and pulverized in many works
in the scientific literature, increasing the risk of making small mistakes, which lead to big
errors in the results. In fact, there is absolutely no paper in the literature that explain the
process in a comprehensive way.

Therefore, this paper adds to the field by detailing the complete implementation of the
direct georeferencing process, clarifying the concepts, and the reasons behind the choices.
The method is tested both in real and simulated environments, as there has been significant
growth on the use of simulation tools for UAS applications. In addition, the determination
of the zC factor, briefly, or imprecisely, mentioned or not mentioned at all by the other
works, is completely elucidated.

Another contribution of this paper is the inclusion of platform mounting measure-
ments (lever arms) in the calculations. This is often neglected in the UAS community. Since
the lever arms are in the range of centimeters, they are usually not considered. However,
this can result on significant errors for high resolution sensors, or larger UAS.

Finally, the challenge that this work tries to overcome is the lack of centralized and
standardized information about the methods to perform the georeferencing of aerial images
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taken by cameras mounted on UAS. It is important to well understand the methods because
there are many different frames involved in the process and the tools provided by sensors
and systems manufacturers may use different frames and axis orientations. Therefore, it is
important to understand the mathematical fundamentals and the implementation steps to
be able to consciously make the required conversions and adaptations.

2. Materials and Methods

In this section, the definition of direct georeferencing, as well as its applications will be
presented. In addition, the most important mathematical tools used in the georeferencing,
such as rotations and aircraft maneuver angles, will be formulated, in order to guarantee a
self-contained material. Finally, the implementation steps will be described.

2.1. Direct Georeferencing

Georeferencing is the process of assigning to an object or target a location in a geo-
graphic frame of Reference [17]. In this paper, the objects of interest, or the targets, are
initially available in an aerial image acquired by a monocular camera mounted on an UAS.
The goal is, therefore, to calculate the location of the object in a geographic frame, such as
the Universal Transverse Mercator frame or World Geodetic System 1984 frame. To perform
these calculations, information about the camera sensor, mounting characteristics, and
attitude and position of the UAS in the geographic frame is used, among other information.
Considering that this process does not involve Ground Control Points, it is defined as
Direct Georeferencing.

2.2. Mathematical Fundamentals

In this section, the mathematical support used in the direct georeferencing equations
are presented. These comprises of Linear Algebra concepts, such as rotation matrices, and
orientation angles fundamentals.

2.2.1. Rotation Matrix

Figure 1 shows two different coordinates systems, represented by the orthogonal
reference frames XYZ and X′Y′Z′. It also presents the angles between axis X′ and each
axis of the XYZ frame, which will be used in the coordinates transformations between the
frames. The others angles that each axis forms with the axes of the other frame are not
shown in Figure 1 for the didactic purposes.

From Figure 1, it can be seen that the unit basis vectors of X′ Y′ and Z′ axes (î′, ĵ′ and
k̂′) projections in the XYZ frame are given by the following Equations [18]:

î′ = cos AX′X î + cosAX′Y ĵ + cosAX′Z k̂, (1)

ĵ′ = cosAY′X î + cosAY′Y ĵ + cosAY′Z k̂, (2)

k̂′ = cosAZ′X î + cosAZ′Y ĵ + cosAZ′Z k̂, (3)

where Aaxis′−axis are the angles between the axis of the two frames, and cos Aaxis′−axis
denotes the direction cosines of the vector on the axis.

These equations can be written in the matrix form as: î′

ĵ′

k̂′

 =

cosAX′X î cosAX′Y ĵ cosAX′Z k̂
cosAY′X î cosAY′Y ĵ cosAY′Z k̂
cosAZ′X î cosAZ′Y ĵ cosAZ′Z k̂

 = RXYZ→X′Y′Z′

 î
ĵ
k̂

, (4)

where the matrix RXYZ→X′Y′Z′ is known as the Directional Cosine Matrix (DCM), or the
rotation matrix, from the XYZ frame to the X′Y′Z′ frame, which is given by:
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RXYZ→X′Y′Z′ =

cosAX′X cosAX′Y cosAX′Z
cosAY′X cosAY′Y cosAY′Z
cosAZ′X cosAZ′Y cosAZ′Z

. (5)

Figure 1. Angles between X′Y′Z′ and XYZ axes.

Now, let V be a vector in the frame XYZ:

V = aî + bĵ + ck̂ = [a b c]

 î
ĵ
k̂

. (6)

Therefore, the vector V′, which is the representation of the vector V on the frame
X′Y′Z′ can be obtained by:

V′ =

a′ î
b′ ĵ
c′ k̂

 = RXYZ→X′Y′Z′V =

cosAX′X cosAX′Y cosAX′Z
cosAY′X cosAY′Y cosAY′Z
cosAZ′X cosAZ′Y cosAZ′Z

aî
bĵ
ck̂

. (7)

or:
V′ = RXYZ→X′Y′Z′V. (8)

To perform the inverse transformation, that is, from the X′Y′Z′ frame to XYZ frame,
the rotation matrix RX′Y′Z′→XYZ is given by:

RX′Y′Z′→XYZ =

cosAXX′ cosAXY′ cosAXZ′

cosAYX′ cosAYY′ cosAYZ′

cosAZX′ cosAZY′ cosAZZ′

. (9)

Considering the congruence of the angles between axis of the two frames, given by:

AX′X = AXX′ ; AX′Y = AYX′ ; AX′Z = AZX′ , (10)

AY′X = AXY′ ; AY′Y = AYY′ ; AY′Z = AZY′ , (11)
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AZ′X = AXZ′ ; AZ′Y = AYZ′ ; AZ′Z = AZZ′ , (12)

one may conclude that:

RX′Y′Z′→XYZ =

cosAXX′ cosAXY′ cosAXZ′

cosAYX′ cosAYY′ cosAYZ′

cosAZX′ cosAZY′ cosAZZ′

 (13)

=

cosAX′X cosAY′X cosAZ′X
cosAX′Y cosAY′Y cosAZ′Y
cosAX′Z cosAY′Z cosAZ′Z

 = Rᵀ
XYZ→X′Y′Z′ , (14)

or:
RX′Y′Z′→XYZ = Rᵀ

XYZ→X′Y′Z′ . (15)

So, given the rotation matrix from one frame, said XYZ, to another, said X′Y′Z′, in
order to perform the inverse transformation, the new rotation matrix will be given by its
transpose matrix:

V′ = RXYZ→X′Y′Z′V (16)

V = RX′Y′Z′→XYZV′ = Rᵀ
XYZ→X′Y′Z′V

′. (17)

It can also be demonstrated that, in the specific case of rotation matrices, the following
statement is true:

Rᵀ
XYZ→X′Y′Z′RXYZ→X′Y′Z′ = Rᵀ

X′Y′Z′→XYZRX′Y′Z′→XYZ =

1 0 0
0 1 0
0 0 1

 = I, (18)

where I canonically represents the identify matrix.

2.2.2. Euler Angles Sequence for Aerodynamics: Yaw, Pitch and Roll

There is a mathematical method to transform coordinates from one frame to another,
that is, to perform the rotations of vectors between two frames. This technique is known
as Euler angles sequence, and consists to choose a sequence of three angles to project one
frame into another. There are many possibilities for these sequences. In aerodynamics, a
specific angles sequence is more convenient to use, because its relationship with the aircraft
movements: yaw, pitch and roll.

The yaw movement is the turn to the left or right of the nose of the airplane, provoked
by the action of the rudder. In other words, it is a rotation in the axis normal to the plane
formed by the wings and the fuselage. The pitch movement consists of turning the nose
up or down, and it is generated by the movement of the elevators, located in the tail of
the airplane. This is equivalent to a rotation in an axis along the wings. Finally, the roll
movement is the rotation along the airplane longitudinal axis, which is the axis along the
fuselage. This maneuver is provided by the ailerons, placed at the rear of the wings [19].
Figure 2 shows the yaw, pitch and roll airplane maneuvers, with their respective axes.

As seen in Figure 2, the axes are canonically attributed, respectively, to Z axis, for the
yaw, Y axis for the pitch and X axis for the roll movements. Its positive rotations are given
by the right hand law, with the thumb aligned with the arrow of the axis.

Figure 3 shows the Euler angles sequence for aerodynamics [18]. Figure 3a shows the
first rotation around the Z axis, by the yaw angle ψ, which carries the frame XYZ to the
frame X1Y1Z1, where the axis Z is congruent to Z1; Figure 3b presents the second rotation,
around the Y axis, by the pitch angle θ, moving the frame X1Y1Z1 to the frame X2Y2Z2,
where the axis Y1 is congruent to Y2; Figure 3c shows the third and last rotation, in the X
axis, by the roll angle φ, rotating from the X2Y2Z2 reference frame to the final X′Y′Z′ frame.
The notations ψ, θ and φ for the Euler angles yaw, pitch and roll, respectively, are canonical
in the literature and, therefore, are employed in this work.
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Figure 2. Airplane yaw, pitch and roll maneuvers.

Figure 3. Euler sequence: (a) Yaw; (b) Pitch; and (c) Roll.

The rotation matrix for the Euler sequence yaw, pitch and roll angles, RYPR, is given
by [18]:

RYPR =

 cosψ cosθ sinψ cosθ −sinθ
cosψ sinθ sinφ− sinψ cosθ sinψ sinθ sinφ + cosψ cosφ cosθ sinφ
cosψ sinθ cosφ + sinψ sinφ sinψ sinθ cosφ− cosψ sinφ cosθcosφ

. (19)
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The Euler angles values are given by:

tanψ =
cosAXY′

cosAXX′
(20)

sinθ = −cosAXZ′ (21)

tanφ = − cosAYZ′

cosAZZ′
(22)

2.3. Implementation

This section presents each step of the direct georeferencing process, which basically
consists of successive rotations between the reference systems, or frames, involved in
the chain.

2.3.1. Image Frame to Camera Frame

Photographic cameras are devices that are able to record images from the three-
dimensional world in bidimensional surfaces, or the image planes. Their construction is
very simple, consisting of a dark box with a small aperture; the photons, reflected on the
object surface in the three-dimensional world, will pass through the aperture and will form
the image on the opposite surface of the dark box, where an optical sensor may be placed.
Figure 4 shows this scheme.

Figure 4. Camera Model.

The system can be mathematically modelled by introducing a coordinate reference
in the camera aperture, called Camera Frame (C), where the object position is plotted in
coordinates xC, yC, zC, and another reference frame, the Image Frame (i), placed on the
image plane, or focal plane, where the image position is plotted in the coordinates (xi, yi).
Figure 5 shows the model.

This model is known as the Pinhole Camera Model. To make easier mathematical
operations, a geometrically equivalent construction is obtained by mirroring the image
plane, or the projection plane, to place it on the other side of the Camera Frame. This simple
procedure allows to work only with positive values of the axes. Figure 6 demonstrates
the scheme.

From Figure 6a the relation between the coordinates xi, in the Image frame (i), and xC,
in the Camera frame (C), is obtained, where f is the focal distance.

xi
f
=

xC
zC

∴ xi = f
xC
zC

. (23)

Furthermore, from Figure 6b:

yi
f
=

yC
zC

∴ yi = f
yC
zC

. (24)

It is important to note that these equations are only valid for rectified images. If the
image is not rectified, a rectifying process is needed prior to the use of these equations.



Sensors 2022, 22, 604 8 of 25

Figure 5. Pinhole Camera Model: (a) X axis view; and (b) Y axis view.

Figure 6. Equivalent Camera Model: (a) X axis view; and (b) Y axis view.
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Figure 7 shows the same scheme in a more detailed perspective view. Here, the Image
Frame is oriented in the two axis U and V:

u− cx = xi, (25)

vs.− cy = yi, (26)

where cx and cy are the coordinates of the principal point of the image.

Figure 7. Equivalent Camera Model, in a more detailed perspective view, with the Image Frame top
left orientation in the two axis U and V.

Therefore, combining Equations (25) and (26) with Equations (23) and (24) leads to:

u = f
xC
zC

+ cx, (27)

vs. = f
yC
zC

+ cy. (28)

In order to allow matrices operations, such as rotations and translations (the rigid
transformations), which will be necessary in posteriors calculations, homogeneous coordi-
nates will be employed. Therefore, Equations (27) and (28) take the following form:

zC

u
v
1

 =

 f 0 cx
0 f cy
0 0 1

xC
yC
zC

. (29)

The coordinates u and v in the Image Frame i are conveniently used in pixels unit.
The object coordinates in the Camera Frame (C) are usually given in meters. Therefore,
naturally, the focal distance f and the coordinates of the principal point (cx and cy) should
be given in pixels.

The focal distance ( f ) is usually given in millimeters. Therefore, to convert to pixels,
multiply by the Image Size in pixels and divide by the Sensor Size in millimeters:

f [px] = f [mm]
Image Size [px]

Sensor Size [mm]
(30)

In case of different pixel resolutions for x and for y dimensions, Equation (29) will
have the form:

zC

u
v
1

 =

 fx 0 cx
0 fy cy
0 0 1

xC
yC
zC

. (31)
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Therefore, fx and fy in pixels should be calculated based on the focal length ( f
in millimeters) image dimensions (ImageWidth and ImageHeight in pixels) and sensor
dimensions (SensorWidth and SensorHeight in millimeters):

fx = f
ImageWidth
SensorWidth

, (32)

fy = f
ImageHeight
SensorHeight

. (33)

Equation (31) can also be written in the form:

zCPi = KPC, (34)

where Pi = [u, v, 1]ᵀ is the vector of the object’s coordinates in the Image Frame,
PC = [xC, yC, zC]

ᵀ is the vector of the object’s coordinates in the Camera Frame, and
K is the intrinsic parameters camera matrix, also referred as the calibration matrix, as it can
be obtained during the camera calibration process.

K =

 fx 0 cx
0 fy cy
0 0 1

. (35)

Equations (31) and (34) can be rewritten as:

zC

u
v
1

 = K

xC
yC
zC

. (36)

As the objective is to obtain the object’s metric coordinates in the camera frame from
the object’s pixel coordinates in the image frame, Equation (36) then becomes:xC

yC
zC

 = K−1zC

u
v
1

. (37)

Considering that zC is unknown, in order to resolve the equation, it will be incorpo-
rated to PC, generating the P′C vector:

P′C =


1

zC
xC

1
zC

yC
1

zC
zC

 =

x′C
y′C
1

 = K−1

u
v
1

. (38)

As will be further demonstrated, zC will be easily determined at the end of the
whole process, when the P′C coordinates (x′C and y′C), will be determined (as well the PC
coordinates, xC and yC). Until there, however, the process will follow using P′C.

2.3.2. Camera Frame to Gimbal Frame

The next step is the coordinates transformation from the Camera Frame (C) to the
Gimbal Frame (G). The Gimbal Frame has its X axis, XG, parallel to Z axis of the Camera
Frame, ZC; YG, the Y axis in Gimbal Frame, is parallel to the X axis of the Camera Frame,
XC; ZG, the Z axis in the Gimbal Frame is parallel to the Y axis of the Camera Frame, YC.
Figure 8 shows the Gimbal and the Camera frames.

The rotation matrix from the Camera Frame to the Gimbal Frame, RC→G, can be
obtained throughout the projection of the Gimbal Frame in the Camera Frame, being
given by:
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RC→G =

0 0 1
1 0 0
0 1 0

. (39)

Figure 8. Camera and Gimbal frames.

Therefore, the object’s position in the Gimbal Frame prime, P′G, is obtained by:

P′G = RC→GP′C, (40)

or: x′G
y′G
z′G

 =

0 0 1
1 0 0
0 1 0

x′C
y′C
z′C

. (41)

In cases where there is a difference in the position of the origin of the frames, as shown
in Figure 8, a translation vector from the Camera Frame to the Gimbal Frame (TC→G) must
be inserted. The object’s position in the Gimbal Frame prime will be then given by:

P′G = RC→GP′C + TC→G. (42)

2.3.3. Gimbal Frame to UAS Frame

The next step is the object’s coordinates transformation from Gimbal Frame to the
UAS Frame, which is centered on the UAS center of gravity, as shown in Figure 9.

The transformation will require the Direction Cosine Matrix (DCM) from the Gimbal
Frame to the UAS Frame, RG→UAS, given by the Euler angles yaw, pitch and roll. The
operation is given by:

P′UAS = RG→UASP′G + TG→UAS, (43)

where TG→UAS is the translation vector of the Gimbal Frame in the UAS Frame.
In a more complete form, Equation (43) may be written as:

P′UAS = RG→UASP′G + TG→UAS (44)

= RG→UAS(RC→GP′C + TC→G) + TG→UAS (45)

= RG→UASRC→GP′C + RG→UASTC→G + TG→UAS (46)
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Figure 9. UAS and Gimbal frames.

2.3.4. UAS Frame to NED Frame

The following step is transform the object’s coordinates from the UAS Frame to the
NED Frame (North-East-Down Frame). Figure 10 presents the scheme, also considering a
translation vector TUAS→NED, which is the position of the origin of the UAS frame in the
NED frame, if there is a difference between the origins of the reference systems.

Figure 10. NED and UAS frames.

To perform the coordinates transformation, the DCM between the frames, RUAS→NED,
must be employed, and so, the Euler angles yaw, pitch and roll must be known. The pixel
position in the NED frame prime, P′NED, is given by:

P′NED = RUAS→NEDP′UAS + TUAS→NED. (47)

Substituting Equation (44) in Equation (47), in order to obtain a more complete form:

P′NED = RUAS→NED(RG→UASRC→GP′C + RG→UASTC→G + TG→UAS) + TUAS→NED

= RUAS→NEDRG→UASRC→GP′C + RUAS→NEDRG→UASTC→G

+RUAS→NEDTG→UAS + TUAS→NED (48)

2.3.5. NED Frame to ENU Frame

In many situations, it may be necessary to use the East-North-Up (ENU) reference
system, as it is the reference frame employed in the Universal Transverse Mercator (UTM)
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coordinate system, which is directly associated with the World Geodetic System (WGS84)
used by the Global Positioning Systems (GPS), with the well known latitude, longitude and
height coordinates. Figure 11 presents the relation between the NED and the ENU frames.

Figure 11. ENU and NED frames.

From Figure 11, the rotation matrix from the NED frame to ENU frame, RNED→ENU ,
can be obtained:

RNED→ENU =

0 1 0
1 0 0
0 0 −1

. (49)

Thus, the primed position of the object in the ENU frame is given by:

P′ENU = RNED→ENU P′NED + TNED→ENU . (50)

Considering the previous calculations, a general equation may be extracted, substitut-
ing Equation (48) in Equation (50):

P′ENU = RNED→ENU RUAS→NEDRG→UASRC→GP′C
+RNED→ENU RUAS→NEDRG→UASTC→G

+RNED→ENU RUAS→NEDTG→UAS

+RNED→ENUTUAS→NED + TNED→ENU (51)

To simplify, it can be written as:

P′ENU = RC→ENU P′C + TC→ENU , (52)

where the matrix RC→ENU is the product of all rotations:

RC→ENU = RNED→ENU RUAS→NEDRG→UASRC→G, (53)

and vector TC→ENU is the sum of all translations until this stage, considering the rotations
in each step:

TC→ENU = RNED→ENU RUAS→NEDRG→UASTC→G

+RNED→ENU RUAS→NEDTG→UAS

+RNED→ENUTUAS→NED

+TNED→ENU . (54)
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2.3.6. Determination of zC

Equation (38) shows the relation between PC and P′C:

P′C =
1

zC
PC. (55)

Considering Equation (52), the object’s position in the ENU frame is given by:

PENU = RC→ENU PC + TC→ENU . (56)

In order to determine zC, it is necessary to solve the system formed by Equations (52)
and (56): {

P′ENU = RC→ENU P′C + TC→ENU

PENU = RC→ENU PC + TC→ENU
. (57)

The second equation of the system in Equation (57) can be rewritten in the form:

zCP′ENU − zCTC→ENU = RC→ENU PC. (58)

The combination of Equations (58) and (57) leads to:

PENU = zCP′ENU − zCTC→ENU + TC→ENU . (59)

Equation (59) is a matrix equation, and has solution in the z coordinates, because the
zENU coordinate, or the target object’s z coordinate in the ENU Frame, is known: it is the
object’s altitude, considering that the origin of the ENU frame is set on sea level. In cases
the ENU Frame is set on another level, the z coordinate will correspond to the vertical
distance, as the height, from the origin of ENU frame to the object’s level. Figure 12 shows
the scheme.

Figure 12. Object’s height in the ENU frame (zENU coordinate).

The value of zENU must be known to perform the calculations, and it is very reasonable
to assume this condition will be satisfied, because the region where the UAS is operating
is known and so will be its altitude. In addition, digital elevation models can be used to
estimate the altitude of the target.

Therefore, considering that z′ENU and zC→ENU had been determined in Equation (52),
zC is finally given by:

zC =
zENU − zC→ENU
z′ENU − zC→ENU

. (60)

Finally, the position of the object in the ENU frame can be obtained by using Equation (59)

PENU = zCP′ENU − zCTC→ENU + TC→ENU (61)
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2.3.7. Camera Matrix

Very often, in the literature, all the calculations demonstrated before are resumed in
an unique Equation [4,12–14], in the form:

zC

u
v
1

 = K
[
RENU→C TENU→C

]
xENU
yENU
zENU

1

 = M


xENU
yENU
zENU

1

. (62)

According to Hanning [20], Equation (62) is called pinhole model equation, where M
is the camera matrix, used to denote a projective mapping from world coordinates (xENU ,
yENU , zENU) to pixel coordinates (u, v).

Seeking the goal of this work, which is to bring a complete and detailed exposition
about the entire direct georeferencing process, a brief explanation about the meaning of
this expression must be taken here.

The main aspect in this equation is the use of homogeneous coordinates, from the
projective geometry, in place of the Euclidean geometry coordinates. This representation is
necessary to allow calculations in matrix form, using a single matrix (the camera matrix M)
when mapping a three-dimensional image from the real world to a bi-dimensional camera
image, and vice versa [21].

In the equation, K is the intrinsic parameter matrix (35), RENU→C is the 3 × 3 matrix
representing the product of all rotations from the Camera frame to the ENU frame, and
TENU→C is the 3 × 1 matrix, which is the sum of all rotated translations from the ENU
frame to the Camera frame.

According to Hanning [20], in homogeneous coordinates, the extrinsic matrix
(
[
RENU→C TENU→C

]
) is given by:

[
RENU→C TENU→C

]
=

[
RENU→C TENU→C

01×3 1

]
=


r11 r12 r13 t11
r21 r22 r23 t21

r31
0

r32
0

r33 t31
0 1

. (63)

The camera matrix M is given by:

M3×4 = [K 03×1]

[
RENU→C TENU→C

01×3 1

]
=

 fx 0 cx 0
0 fy cy 0
0 0 1 0




r11 r12 r13 t11

r21 r22 r23 t21

r31

0
r32

0
r33 t31

0 1

. (64)

As it can be seen, the intrinsic matrix K has also to be used in homogeneous coordinates.
The completion of the matrices with zeros and ones is done in a way that the result of the
calculations is the same before and after the homogeneous coordinates transformation.

2.4. Lens Camera Distortion

In this paper, the image used in the direct georeferencing process is assumed rectified.
This means that no image distortion is present. Usually, manufacturers of UAS cameras
provide the option to directly obtain the rectified image. However, as this subject may be
an issue, it is briefly discussed in this section.

The geometry of the perspective or pinhole camera is simple since we assume the
pinhole to be infinitely small. In reality, the light passes through a lens that complicates
the camera model. The lens can distort the light rays projected onto the 2D sensor and
this geometric effect of image distortion is important to compensate for with regard to
georeferencing. A camera with radial distortion is not well described by the pinhole model.
Many wide-angle lenses have noticeable radial distortion which basically means that
lines in the scene appear as curves in the image. There are two types of radial distortion:
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(1) barrel distortion and (2) pincushion distortion. There are also other forms of distortion
effects, such as tangential distortion.

By only considering barrel distortion, the distorted coordinate on the sensor plane can
be represented as [22]:

xdistorted = x(1 + k1r2 + k2r4 + k3r6)

ydistorted = y(1 + k1r2 + k2r4 + k3r6)
(65)

where r =
√
(x− cx)2 + (y− cy)2, cx and cy is the optical centre pixel on the sensor and

k1, k2 and k3 are the radial distortion coefficients, which can be obtained during the camera
calibration process. Therefore, the original raw distorted image can be rectified.

2.5. Software Implementation

In this section, a pseudocode to perform the direct georeferencing and the main
functions used in the MATLAB and Python script are be presented. The structures followed
in each script are the same and follow the six steps discussed in Section 2.3. For each
implementation script, the specific employed functions will be explained, as well as its
special procedures.

2.5.1. Pseudocode

The steps discussed in the previous section can be summarized in Algorithm 1, that
can be further implemented in any chosen programming language.

Algorithm 1 Direct Georeferencing

1: Input Pi
2: Define K
3: P′C ← inverse(K)Pi
4: Define RC→G
5: Input TC→G
6: P′G ← RC→GP′C + TC→G
7: Input ψG, θG, φG
8: RG→UAS ← transpose(DCM(ψG, θG, φG, “ZYX′′))
9: Input TG→UAS

10: P′UAS ← RG→UASP′G + TG→UAS
11: Input ψUAS, θUAS, φUAS
12: RG→UAS ← transpose(DCM(ψUAS, θUAS, φUAS, “ZYX′′))
13: Input TUAS→NED
14: P′NED ← RUAS→NEDP′UAS + TUAS→NED
15: Define RNED→ENU
16: Input TNED→ENU
17: P′ENU ← RNED→ENU P′NED + TNED→ENU
18: TC→ENU ← TNED→ENU + RNED→ENUTUAS→NED + RNED→ENU RUAS→NEDTG→UAS +

RNED→ENU RUAS→NEDRG→UASTC → G
19: zC→ENU ← TC→ENU [2]
20: z′ENU ← P′ENU [2]
21: Input zENU
22: zC = (zENU − zC→ENU)/(z′ENU − zC→ENU)
23: PENU ← zCP′ENU − zCTC→ENU + TC→ENU
24: Output PENU

2.5.2. MATLAB Implementation

The first step is the transformation from the Image to the Camera frame, and, in the
beginning of all the calculations, the intrinsic parameters matrix data needs to be input.
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The intrinsic parameter matrix K is a 3-by-3 matrix, therefore in MATLAB has the following
format: “K = [fx 0 cx; 0 fy cy; 0 0 1]”.

The pixel position coordinates in the Image Frame, u and v, are the next data required.
The pixel position matrix in the Image Frame, Pi, is then determined. The MATLAB
command “K\” gives the product of the inverse matrix of the intrinsic matrix K with the
following term.

The following operations are matrix multiplication for rotations and sum for transla-
tions, which in MATLAB is done in a straightforward way.

In the transformation from the Gimbal to the UAS frame, in order to obtain the DCM
for the rotation, the Euler angles sequence, yaw, pitch and roll must be input. The MATLAB
function “angle2dcm(angl1, angl2, angl3)” gives the DCM matrix, where the parameters
“angl1”, “angl2” and “angl3” are the aerodynamics Euler angles sequence, respectively,
yaw, pitch and roll angles in this work. Here, it is important to note that the angles of the
Euler sequence, yaw, pitch and roll, are commonly given in the most external reference
frame, which in this case is the UAS Frame. Therefore, the MATLAB function will return
the rotation from the UAS to the Gimbal frame. The rotation from the Gimbal to the UAS
frame (RG→UAS) can be obtained by transposing the rotation matrix from the UAS to the
Gimbal frame (RUAS→G), using the MATLAB function “transpose(RUAS→G)”. This same
procedure needs to be applied when obtaining the rotation from the UAS to the NED frame.

The last step of the script consists of finding the target’s position in the ENU frame.
The coordinate zENU , which is equivalent to the distance from the target to the origin of
the ENU frame in the z axis, needs to be input. It is also necessary to determine the total
translation matrix, TC→ENU , which is given by the sum of all translations matrices, rotated
with its related DCMs. Finally, to calculate zC, z′ENU and zC→ENU are needed. In MATLAB,
they are obtained by P′ENU(3) and TC→ENU(3), respectively.

2.5.3. Python Implementation

In the Python implementation, NumPy [23] arrays are used for the matrices. As an
example, to input a NumPy array for the intrinsic matrix, the following command is used:
“K = numpy.array([[f_x, 0, c_x],[0, f_x, c_y],[0, 0, 1]])”.

With the NumPy library, it is easy to get the inverse matrix of the intrinsic matrix by
using the “numpy.linalg.inv(K)” command.

The matrix multiplication is done by using the operator “@” that was introduced in
Python 3.5, for example: “C = A @ B”.

The NavPy [24] library is used to provide the DCM matrices by the function “navpy.
angle2dcm” which inputs are the three angles of rotation (yaw, pitch and roll). The default
rotation sequence is the “ZYX” sequence, which is the one used by this work. In addition,
the documentation says that the DCM transforms a vector from the locally level coordinate
frame (i.e., the NED frame) to the body frame. Therefore, in this work the transpose of
the given DCM will be used, which transforms the vector from the body frame to the
NED frame.

Finally, in the last step, where zC is calculated, in order to access the third element of a
NumPy array, the 2 index is used, for example: “z_T = T_T[2]”.

3. Results

To evaluate the proposed direct georeferencing method, two cases were explored.
First, a target in picture taken in a simulation environment was georeferenced. Second, a
real setup was used to take a picture of a target with a camera mounted on an UAS, which
was then georeferenced.

3.1. Simulation Environment Example with UE4 and AirSim

In this case, a simulation environment was created in the Unreal Engine 4 (UE4). The
AirSim plugin was used to simulate the UAS camera and flight dynamics. The UAS model
in the simulation environment can be seen in Figure 13.
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Figure 13. UAS in simulation environment.

The virtual camera was placed 20 cm down to the drone and 30 cm to the front as
illustrated with the example of Figure 14.

Figure 14. Camera placement on UAS in the simulation application.

A target (white cross) was placed on the ground, in front of the door of a power
house (Figure 15). To simulate the Universal Transverse Mercator (UTM) frame, a random
location in the simulation environment was chosen to be the origin of the UTM frame. The
target’s position in virtual UTM coordinates was then 8.5 m to the east, −8.0 m to the north
and 0 m of height, as it is positioned on the ground.

The gimbal’s attitude was configured to have a yaw (ψG) of −90 degrees (−π/2
radians) and a pitch (θG) of−60 degrees (−π/3 radians) with respect to the world. The UAS
was moved to a place where it could have a good view of the target and the surroundings
to take the picture. The position of the drone (TNED→ENU in meters) was given by the
simulated sensors.

The camera was modeled based on the FLIR Chameleon 3 [25] camera sensor and a
lens with 12.5 mm of focal distance. The camera has a resolution of 2448 × 2048 pixels and
a sensor of 8.6 mm of width [25].
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Figure 15. Picture acquired in the simulation environment.

Additionally to the pixels resolution, the AirSim plugin models the camera by the
horizontal Field of View in degrees. The following equation was used to calculate the hori-
zontal field of view (FOVhorizontal in degrees) from the horizontal sensor size (SensorWidth
in millimeters) and the focal length ( f in millimeters):

FOVhorizontal = 2 arctan(
SensorWidth

2 f
) (66)

Therefore, for 8.6 mm of sensor width and 12.5 mm of focal length, the horizontal field
of view is equal to 37.97 degrees.

The target (white cross) in Figure 15 is located on [u, v] = [1095, 1099] pixels. The
values of all parameters can be seen in Table 1.

Table 1. Parameters used for the direct georeferencing of the aerial imaged acquired in the simulation
environment.

Parameter Value Note

Pi [1095, 1099]

K

3558.1395 0 1224
0 3558.1395 1024
0 0 1


TC→G [0, 0, 0] The camera and the gimbal

frames have the same origin.

[ψG, θg, φG] [−π/2,−π/3, 0]

TG→UAS [0.3, 0, 0.2]

[ψUAS, θUAS, φUAS] [0, 0, 0]
As the gimbal’s attitude is with
respect to the world, the UAS
attitude is not considered.

TUAS→NED [0, 0, 0] The UAS and NED frames have
the same origin.

TNED→ENU [31.72212,−6.55099, 42.44889]

zENU 0



Sensors 2022, 22, 604 20 of 25

The calculated georeferenced position of the target in the ENU frame (PENU) was
[8.50283,−7.99841] m. This gives 100% of accuracy if rounded to the second decimal digit,
proving that the georeferencing method is correct.

3.2. Practical Example with ROS

For the practical experiment, a ZED 2 camera [26] was mounted on the UAS pointing
straight down without a gimbal. The Robot Operating System (ROS) was used to capture
and save the data.

The camera ROS wrapper provides the topics of “image_rect_color”, where it is
possible to obtain the rectified image; and the “camera_info”, where the camera intrinsic
matrix K for the rectified image can be obtained.

The camera system is equipped with an IMU and a Magnetometer which are used in
this work to calculate the UAS’ attitude. These sensors are mounted close to the camera
sensor. The distance between the attitude sensors and the camera (TG→UAS) and the
orientation between the camera and the attitude sensors ([ψG, θG, φG]) are given by the
manufacturer in the ROS wrapper through the topic “left_cam_imu_transform”.

The attitude is given in quaternions format in the topic “imu/data”. As Euler angles
are used in this work, a conversion from quaternions to angles is needed. However, in
order to proceed with the georeferencing calculations, additional conversions are required
as the frame in ROS have different orientation than the UAS frame used by this work
(Figure 16), which is the same used by flight control units. Therefore, as the y and z axes in
ROS’ frame are pointing to the opposite direction of the axes y and z in this work’s UAS
frame, the pitch angle obtained from the “imu/data” ROS topic needs to be inverted; and
the yaw angle needs to be inverted and added 90 degrees (π/2 radians).

Figure 16. ROS and georeferencing algorithm frames.

The test setup was to take a picture (Figure 17) of the target object, which is a table of
80 × 60 × 85 cm.
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Figure 17. Aerial image taken by camera mounted on UAS.

The parameters considered for the direct georeferencing can be seen in Table 2. The
translation from camera to gimbal frames (TC→G) is zero because there is no gimbal installed
in this setup. To keep the same implementation steps that were described in the previous
sections, as no gimbal was installed, the gimbal angles ([ψG, θG, φG]) considered in the
calculations are actually the angles of the camera attitude with respect to the IMU (UAS
frame). The same is valid for the translation (TG→UAS). The attitude of the IMU (UAS
frame) is obtained from converting the quaternions from the ROS topic “imu/data” to
Euler angles and making the required conversions from the frame used in ROS to the frame
used in this work. The NED frame’s origin is considered at the same place as the IMU
(UAS frame) and the ENU horizontal origin is placed on the UAS. Finally, the vertical
ENU origin was placed on the ground, therefore, the height of the UAS (zNED→ENU) was
obtained from its relative height (height from take-off).

Table 2. Parameters used for the direct georeferencing of the aerial imaged acquired in a real flight.

Parameter Value Note

K

1055.33422 0 1055.33423
0 990.06824 544.24640
0 0 1


TC→G [0, 0, 0]

[ψG, θG, φG] [0.00176, 0.00116, 0.00138]

TG→UAS [−0.002, 0.023, 0.002]

[ψUAS, θUAS, φUAS] [6.04630,−1.46643,−0.10614]

TUAS→NED [0, 0, 0] The UAS and NED frames
have the same origin.

TNED→ENU [0, 0, 8.88]

The strategy used to evaluate the method was to georeference the four corners of the
table’s top shelf. As it can be seen in Figure 18, the blue squares have the corners’ pixel
coordinates and the green squares have the calculated georeferenced coordinates in the
ENU frame. It is important to notice that in this case, as the corners of the top shelf are
being georeferenced, the height of the object (zENU) is of 0.85 m.

The calculated lengths from corner to corner can be seen in Table 3. This was the
strategy chosen to evaluate the algorithm as there was no way to precisely measure
the position of the table during the experiments. Therefore, the georeferenced position
presented in Figure 18 is relative to the UAS, as it can be observed in Table 2 from the
TNED→ENU translation vector. The result was very satisfactory as the calculated values
perfectly match the dimensions of the shelf.
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Figure 18. Pixel and georeferenced positions of table’s top shelf’s four corners.

Table 3. Calculated length between shelf corners.

Length [m]

top left to top right 0.80

top left to bottom left 0.60

top right to bottom right 0.60

bottom left to bottom right 0.80

Finally, to evaluate the proposed solution’s performance when georeferencing targets
at different heights, the distance between corners that are placed on top of each other was
calculated and compared with the measured distance.

The bottom right corner of the top shelf is assumed at 0.85 m of height (zENU) and the
bottom right corner of the bottom shelf is assumed at 0.35 m of height.

The georeferenced coordinates of both corners were calculated (Figure 19) and used to
calculate the distance between them. The calculated distance was of 0.52 m, against 0.50 m
of measured distance. Therefore, there was an error of 2 cm, which is small and could have
happened because of the shelf’s thickness or deviations when manually choosing the pixels
in the image.

Figure 19. Georeferenced positions of bottom right corner of the top shelf and bottom right corner of
the bottom shelf.
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4. Discussion

There are many different orientation frames in the process of direct georeferencing
aerial images acquired by cameras mounted on UAS. First, the image frame, then the
camera, gimbal, UAS (or IMU) and the geographic/world (NED and ENU) frames. In this
work, in order to follow the literature and most common applications, two world frames
were considered: the NED (North-East-Down); and ENU (East-North-Up) frames.

Despite camera, gimbal and UAS, NED and ENU frames were presented in this work,
not all applications will require the use all these frames. Therefore, it is important to apply
the method with the needed changes in each case.

As seen in the practical case study, it is important to understand the formats of the
attitude data given by the flight control units or ROS, to be able to convert to the formats
used in the direct georeferencing algorithm presented in this work. This is one of the
reasons why this work is considered relevant as it explains the implementation steps so
that the readers can understand the reasons behind the equations, in order to adapt the
solution to their use.

In addition, it is important to note that accurate measurements are important for
an accurate direct georeferencing. Therefore, GNSS RTK solutions should be used, in
addition to highly accurate Inertial Measurement Units (IMU), magnetometers and gimbals.
Furthermore, platform mounting measurements between the origins of the frames of
reference (lever arms) should be included in the calculations as translation vectors. This
is often neglected in the UAS community, since the lever arms are short, in the range of
centimeters. However, for high resolution sensors in the order of millimeters, or larger
UAS or manned aircraft, the lever arms are necessary to account for.

Another important aspect to consider is that depending on the IMU orientation, there
may be problems when computing the yaw angles when the camera is pointing down.
A possible solution for this issue is to change the orientation of the z axis so that it is
perpendicular to the world when the UAS is horizontally positioned. A way to eliminate
this issue is to use quaternions in all steps of the direct georeferencing implementation.
This could be interesting future work.

5. Conclusions

This work presented a comprehensive method for direct georeferencing of aerial
images taken by monocular cameras mounted on UAS. To perform the calculations, the
method uses data about the camera sensor, relative position and orientation between
camera, gimbal, UAS and world, and position and attitude sensor data. Two case studies
were performed to show the method’s employment: georeferencing of a target in an image
taken in a simulation environment; and georeferencing an object from an image taken in
a real flight. For an image taken in a simulation environment, the georeferenced target
position was precisely calculated. In the practical experiment, where the corners of a table
were georeferenced, there were small inaccuracies, which were expected, as in real life
setups there are small terrain deviations, sensor noise, among other problems. Therefore,
the main goal of this work, which was to present a comprehensive direct georeferencing
method and its implementation, was accomplished. This included the mathematical
fundamentals and the assessment of practical challenges explored in the case studies.
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