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Abstract

In this chapter, we present fv-unsat, a multipoint finite-volume-based solver
for unsaturated flow in deformable and nondeformable porous media. The latter
is described using the mixed form of Richards’ equation, whereas the former by
the equations of unsaturated linear poroelasticity. The module aims at flexibility,
relying heavily on discrete operators and equations, exploiting the automatic dif-
ferentiation framework provided by the MATLAB Reservoir Simulation Toolbox
(MRST). Our examples cover two numerical convergence tests and two three-
dimensional practical applications, including the water infiltration process in a
nondeformable soil column and a realistic desiccation process of a deformable clay
sample using atmospheric boundary conditions. The resulting convergence rates
are in agreement with previously reported rates for single-phase models, and the
practical applications capture the physical processes accurately.

13.1 Introduction

The unsaturated zone has been a constant focus of attention by the industrial and
research communities due to its high relevance in areas such as environmental sci-
ences, hydrogeology, soil mechanics, and agriculture. Relevant natural and anthro-
pogenic processes take place in this zone; transmission of water from the atmo-
sphere to the saturated zone via infiltration or precipitation, support of plants via
root uptake, active return of water from the subsurface to the atmosphere via evap-
otranspiration, drying of soils during drought seasons, extraction of groundwater
via wells, construction and operations of dams, etc. [46].

Although many of these processes can be studied by only taking into account
the simultaneous flow of water and air, some of them, such as the desiccation
of muddy soils, require the incorporation of the deformation effects due to the
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strong coupling between flow and mechanics. This gives rise to a nonlinear cou-
pled flow/mechanical set of partial differential equations. Under the assumption of
small deformations and linear constitutive relations for the mechanical behavior of
the soils, this set of equations can be expressed as a natural extension of Biot’s
equations of poroelasticity [26], for which recently global existence of the weak
solution has been proven [9].

Given the complexity of the resulting model, it is imperative to use robust dis-
cretization techniques in a flexible computational setting. The fully coupled system
is not commonly treated by numerical software, and the few available codes are
limited to the use of finite-element methods [26] or mixed finite-element methods
[7]. In this module, we propose the use of finite-volume methods (FVM), which
are inherently conservative while keeping the advantages of robust discretization
schemes; i.e., flexibility in representing complex domains.

In the FVM framework, two-point flux approximation (TPFA) is the most widely
used method for discretizing scalar equations. However, TPFA is only consistent
for K-orthogonal grids [1] and cannot be directly applied to vector equations.
The first of these issues can be addressed with the multipoint flux approxima-
tion (MPFA) method [1], and the second with the multipoint stress approximation
(MPSA) method [33]. Both methods are currently well established in academia and
slowly taking hold in industry.

As we mentioned before, computational flexibility is an important aspect of a
module when it comes to solving a broad range of applications. With this goal in
mind, we have written £v-unsat taking advantage of the high-level coding capac-
ities of the MATLAB Reservoir Simulation Toolbox (MRST), such as automatic
differentiation [24]. This module is based on the work of [44] and requires the
module fvbiot, which provides the discrete MPFA and MPSA operators, along
with the coupling operators for the flow/mechanical problem.!

The existing implementation of £v-unsat does not cover the full width of mod-
eling options of the governing equations; e.g., mixed and time-dependent boundary
conditions for the mechanical problem. If the interested user needs to include these
setups, we recommend the Python-based framework PorePy [20], which provides
a more general implementation of MPSA for poroelastic problems.

Our notation follows MRST’s conventions [28]. In physical space, x represents
a scalar, X a vector, and X a tensor. In a discrete sense, x is a vector and ope(x) is
a discrete operator acting on x; i.e., the matrix—vector product between ope and x.

The chapter is structured as follows: in Section 13.2 we provide the continuous
formulations for the unsaturated flow in nondeformable (Richards’ equation) and

I After this chapter was written, mpsaw, a new and improved implementation of the MPSA-W method has been
released with the core MRST distribution. The module can also be downloaded separately at https://
bitbucket.org/mrst/mpsaw/src/master/.
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deformable (unsaturated poroelasticity) porous media; in Section 13.3 we intro-
duce the MPFA and MPSA methods, together with the discrete operators and the
discrete equations; in Section 13.4 we present two numerical convergence tests and
two practical applications with in-depth explanation regarding the module; and in
Section 13.5 we draw the conclusions.

13.2 Governing Equations

In this section, we provide the set of equations that governs the physical processes
in the continuous domain. We do not attempt to provide detailed derivations of
these equations; for that matter we refer to [13, 26, 37].

13.2.1 Richards’ Equation

Richards’ equation models the flow of water in partially saturated porous media,
and it is based on the assumption of inviscid air. This assumption is supported
by the contrast in physical properties between water and air; e.g., at atmospheric
conditions air is three orders of magnitude less dense and two orders less viscous
than water [37]. Because the unsaturated zone is connected to the atmosphere, it is
reasonable to assume that the air remains at atmospheric pressure. This is usually
referred to as the Richards assumption and it was first proposed in [40].

We start the derivation by stating the mass-balance equation for the water phase

0 (PwSwn)
ot

Here, p,, and S,, are the density and saturation, n is the porosity of the porous
medium, v,, is the water velocity, and 1, is the rate of external addition/subtraction
of fluid mass per volume of representative elementary volume [5]. If water and solid
phases are assumed to be incompressible, we can rewrite (13.1) as

+ V- (puSynty) = iy, (13.1)

0S5y - .
npw? + oV - (Sunvys) = my, (13.2)
where U, := U, — U; is the velocity of the water with respect to the solids [26].

We recognize the term S,,nv,, as the Darcy velocity of the water phase, given by

- - k -
qu = Swnvws = __krw (pr - pwg)» (133)

w
where K is the intrinsic permeability tensor, i, is the water dynamic viscosity, p,, is
the water pressure, and g is the gravity acceleration considered positive downwards.
The relative permeability k,,, € [0, 1] is included to account for the simultaneous
flow of water and air.
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In hydrology, it is common to express Darcy’s law (13.3) in terms of heads,
‘-iw = —K;”krwv (ww +§) (134)

Here, ¥, = (pw—pa)/(pwg) is the water pressure head (relative to the atmospheric
pressure p,), { = z — 7o is the elevation head (e.g., the height from a reference to
the measurement point), and K!*' := p, gk//,, is the hydraulic conductivity at
saturated conditions [17, 37].

If Richards’ assumption holds true, the air pressure is constant and equal to p,,
which is assumed to be zero. This allows us to write the equations purely in terms
of the water phase. Note that the capillary pressure is still present; i.e., p. = p, —

Pw= — pw- To get to the final expression, we substitute (13.4) into (13.2) and
divide by p,,:

06, sa My

=~V (K ks V (Y 4+ 0)) = " (13.5)

where we introduce the water content 6,, := nS,, and use the fact that the porosity
is constant. Equation (13.5) is referred to as the mixed-based form of Richards’
equation. The term “mixed” suggests that both the water content and the pressure
head appear explicitly in the equation. Alternative formulations include the pres-
sure head—based and the water content—based forms [37]. On a continuous level,
all forms of Richards’ equation are equivalent under strictly unsaturated conditions.
However, on a discrete level, the ¥-based lacks conservative properties [12] and the
0-based fails to converge when S,, — 1 [38]. Therefore, in this module, we employ
the mixed-based formulation.

In unsaturated systems, the usual practice is to express k., and 6, in terms
of i,. These relationships are called soil/water retention curves (SWRCs). One
such family of curves is the van Genuchten—Mualem (vG-M) model, originally
proposed in [43]. For the vG-M model, the water content is given by

05 —or
w_Tw____ 4 gr oy, <O,
0, = { [1+ (o [y, m]™ N (13.6)

0,", Yu =0,

where 0; and 0, are the water content at saturated and residual conditions and «,,,
ny, and m, are fitting parameters. Note that ¢r,, < 0 denotes unsaturated conditions.
The relative permeability is given by

_ ny—1 ny1—my 2
{1 = (o [ )™~ 11+ (@ [P )17} oy <0,
krw = [1+ (ot [P D™ 1m0/2 (13.7)
19 Ww 2 O'
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We also introduce the specific moisture capacity Cy, := df,,/dyr,,:
_mvanw (9{:) - 9;) (o |Ww|)nv

m 1) 1//10 < 07
Cy = Wl? [(@y ™ 4+ 1]
0, Yy = 0.

(13.8)

13.2.2 Unsaturated Poroelasticity

Herein, we present the equations that govern an unsaturated poroelastic medium as
a natural extension of Biot’s equations [26]. The momentum conservation for an
unsaturated poroelastic medium reads

V.o, + (0 —n)ps+nS,pu)g =0, (13.9)

where o0, is the total stress tensor and p, the density of the solids, with the second
term representing the body forces. For a poroelastic medium, the total stress has
two contributions: the part that acts on the solid skeleton and the part that acts on
the fluid. The relation is given by the extended principle of effective stress [16],

o, =0,—ap,Syl. (13.10)

The term o, is the effective stress tensor, and it is responsible for causing the actual
deformation of the material; thus the name “effective” [45]. The second term affects
the pore pressure of the fluid, where « is the Biot coupling coefficient and I is the
identity tensor. The negative sign follows the convention that tensile forces are
positive whereas compressive forces are negative [31]. Substitution of (13.10) into
(13.9) gives the final version of the unsaturated momentum balance equation,

V.o, —aV(S,pu) + ((1 —n)ps + nSwpw)é_; =0. (13.11)

Assuming small deformations and a linear stress—strain relation, the effective
stress o, can be related to the displacement field u employing the generalized
Hooke’s law

o.=C: 1 (Vi+ Vi)', (13.12)

where C is the stiffness matrix, a fourth-order tensor in its most general form. For
the particular case of an isotropic medium, (13.12) can be written as

0= us(Vii + (Vi)") + As (V- D) |, (13.13)

where A, and u, are the first and second Lamé parameters [30].
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A statement of the mass conservation principle for both phases (water and solid
skeleton) can be used to derive the unsaturated storage equation (see [44] for a
detailed derivation):

apw Sy a - - Fily
S(Sw)_ + X(Swv pw)_ + OCSw_ (V : M) +V. qw = —, (1314)

at at at w
where  &:= (¢ —n)C;S2 +nC,S, and x:= (¢ —n)CiS,p,+n are
compressibility-like terms. In (13.14), the first two terms represent accumulation
terms, the third term is the change of strain at constant saturation, the fourth term
is the divergence of the Darcy velocity, and the last terms are sources or sinks of

water [41].

Note that the above set of equations is written in terms of (p,, S,,) instead of
(Y, 0y). Because the SWRC is expressed in terms of the latter variables, we have
to adapt the original vG-M model to be consistent with the (p,,, S, ) representation.
This can be easily achieved using the following relations:

p
lllw = _w’
Puw8
where all of the terms have been previously introduced, except the specific satura-
tion capacity C,, := 9S,,/9p,.

Ow = nSy, Cw = nlowgcp,

13.2.3 Boundary and Initial Conditions

To close the systems of partial differential equations, we must provide boundary
and initial conditions for the flow and mechanical problems. For the flow problem,
two types of conditions can be specified: pressure (or pressure head) and fluxes. For
the mechanical problem, we can impose displacement and traction force vectors.
Denoting €2 the domain of interest and d€2 its boundary, the boundary conditions
are given by

Pw=28pp on I,p, (13.15)
Gu-n=gpn on Dpy, (13.16)
i=gip on Tjp, (13.17)
o,-n=giny on Iy, (13.18)

where 7 is the normal vector pointing outwards, and the subindices D and N denote
Dirichlet and Neumann boundary conditions. The boundary of the domain is given
by8S2=FDUFNW1thFDﬂFN:(Z5
The initial conditions are specified as
Pw = Ppwo for t =0, (13.19)
=uy for t=0. (13.20)

<
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13.3 Discretization and Implementation

This section is devoted to the discretization techniques and computational imple-
mentation. First, we briefly introduce the numerical methods; e.g., MPFA/MPSA
finite-volume (FV) schemes. Then, we employ the discrete operators to derive
the discrete version of the governing equations. Finally, we describe the general
strategy for solving the resulting nonlinear set of equations. In particular, we discuss
the workflow of the iterative solver and the timestepping algorithm.

13.3.1 MPFA and MPSA

Before writing the discrete version of the governing equations, we briefly introduce
the MPFA and MPSA methods. From an implementation standpoint, the discretiza-
tion routines for both methods are provided by the third-party module fvbiot.
Nevertheless, we should remark that TPFA is the standard scheme employed in
MRST for the discretization of flow equations. In addition, MRST provides an
alternative MPFA implementation based on the mimetic method available through
the mpfa module (see section 6.4 of the MRST textboox [28] for further details).
Because both techniques (MPFA and MPSA) are well established in the literature
we do not go in-depth. We refer to [1, 4, 23] for an introduction to MPFA and to
[21, 33] for an introduction to MPSA.

MPFA

In an FVM framework applied to the flow problem, we aim to discretize the inte-
grated version of (13.4) over a face. For a cell-centered FVM, we use the cell-
centered pressures to estimate the fluxes across the faces; i.e., Q = [, ¢q -ndx.
Hence, for a given face, we have to define the number of points to be considered
for approximating Q.

The simplest choice is to consider two points, say, 1 and 2 from top Figure 13.1.
This technique is referred to as TPFA, with the flux across the shared face j
given by

Q; = A;Ti(p1 — p2), (13.21)

where Q; is the water flux, A; = k., j/1, 1s the water mobility, and 7 is the
transmissibility. For readability, we drop the subindices denoting the water phase.

The MPFA method is a generalization of the TPFA method, where instead of
using two points of information, we use a larger set of potentials (see bottom of
Figure 13.1). For the MPFA method, the flux can be approximated as

Q;~ A Zlijpi, (13.22)

iel
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Figure 13.1 Flux approximations: TPFA (top) relies on first neighbors only,
whereas MPFA (bottom) also includes second neighbors. Adapted from [1]

where #;; are the transmissibility coefficients satisfying ), _;#; = 0, and T is
the set of of cells used to approximate the flux through the face j. The size of
the set Z depends on the dimensionality of the problem and the type of element
employed. For quadrilaterals, the set Z consists of six neighbors. With this increase
in accuracy, MPFA results in a consistent discretization method compared to TPFA
(which gives nonphysical results when applied to non-K -orthogonal grids) [1]. An
interesting discussion regarding consistency of the numerical methods can be found
in chapter 6 of the MRST textbook [28].

Mobilities A; are evaluated at the faces using either an arithmetic mean or an
upstream weighting of the cell-centered values. The arithmetic mean implies A ; =
(A1 + A2)/2, whereas the upstream weighting is based on the flux direction; i.e.,
Aj=naif )Y s tijpi > 0(T;(p1 — p2) > 0 for TPFA) and A ; = %, otherwise [1].

Provided that the pressures are known, both problems are reduced to determining
T; and t;;. For TPFA, these are given by the harmonic average; however, finding
t;; 1s more complicated. Several families of MPFA methods obtain #;; in different
ways. The key difference among the methods lies in the way interaction regions
are constructed and continuity points selected. Interaction regions are composed
of the relevant neighboring cells and identified using the dual of the mesh (see
Figure 13.2). We refer to [14] for an excellent discussion on the topic. In this
module, we use the MPFA-O method, implemented in the £vbiot module.

MPSA

In recent years, the MPSA method was developed as a generalization of the MPFA
method applied to vector equations, such as the Navier—Lamé equations [21, 33] or
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Figure 13.2 Dual mesh (light gray), conservation cells (black), and interaction
region for the O-method (shaded). Adapted from [33]

the Biot equations [35]. MPSA uses the displacements u located at the cell centers
as the only primary unknowns with the traction forces T = | 0" ndX defined on
the faces. On each face, the traction is linearly approximated by

T~ sy, (13.23)
i€l
where s;; = —s;; are the stress weight tensors, and Z is the set of neighboring

cells to the face j. In essence, (13.23) can be seen as a local version of Hooke’s
law (13.12). Now the problem is reduced to the calculation of the stress weight
tensors s;; for each face of the domain. Similar to MPFA, there are several ways to
estimate s;; depending on the continuity points. The procedure for calculating the
stress weights is beyond the scope of this chapter; we refer to [21, 33] for further
details. The £vbiot module provides the MPSA-W version from [21], which is
used herein.

13.3.2 Discretization

Herein we introduce the discrete MPFA/MPSA operators and discretize the gov-
erning equations. The way discrete operators are defined in our module is heavily
inspired by MRST’s rapid prototyping philosophy. In particular, they are in agree-
ment with the basic structure of the simulators based on automatic differentiation
utilized in MRST; see, for example, chapter 7 of the MRST textbook [28] for an
excellent introduction. As the reader will note, this enables us to write the discrete
equations in a fairly compact way, while simultaneously providing a concise way
to structure the code.
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Table 13.1 Definition of the MPFA/MPSA operators.

Description Mapping Operator dimension
Flux F:P—>TF Ny x N

Flux boundaries boundfF :F — F Ny x Ny

Flux divergence divF:F—> P Ne x Ny

Stress s:U—3S dNy x dN,

Stress boundaries boundS:S — S dNy x dNy

Stress divergence divs:S—- U dN. x dNy
Pressure gradient gradpP:P—- U dN, x N,
Displacement divergence divu:U— P N, x dN,
Compatibility compat : P — P N¢e x N

Discrete MPFA/MPSA Operators

Let d denote the dimensionality of the problem —i.e.,d = 2,3 —and let N. and N
represent the number of cells and faces of a nonoverlapping domain €2. Each cell
of the domain is identified as €2; and its enclosed surface as 092;.

We first introduce the discrete version of the variables of interest; i.e., pressure,
displacement, flux, and traction:

p={p.. - .pn}" €P P = RM, (13.24)
wi={iy, -y} €U U=R™MN, (13.25)
Q:={Q1 .0y} €F,  F=RY, (13.26)
T:=(T), - Ty,)7 €S, S=R™M. (13.27)

For vector-valued quantities, such as displacement and traction, the length of the
vector depends on the dimensionality of the problem. For example, for a 2D prob-
lem using two cells, u = {u1,u,uz,us}" = {uy ,ur,us,uz,}".

Following MRST’s operator-based approach, in Table 13.1 we introduce the
discrete MPFA and MPSA operators along with the coupling operators. The first
three operators are related to the discretization of flow problems: F(-) acts on the
potential and computes the fluxes (by first determining #;; and then computing
the gradient of the potential); boundF(-) deals with the boundary conditions; i.e.,
either constant pressure or constant flux. This operator will take care of the mapping
from boundary values to the right discretization, keeping track of how Neumann
and Dirichlet conditions should be treated differently. Finally, divF(-) computes
the divergence of the flux, mapping back from faces to cell centers.
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The next three operators are analogous to the first three, S(-) acting on the dis-
placement, boundS(-) acting on the mechanic boundary conditions, and divS(-)
computing the divergence of the (integrated) stress.

The last three operators are necessary for the coupled mechanics flow setting;
gradP(-) computes the gradient of the pressure, divU(-) takes the divergence of
the displacement, and compat(-) is a compatibility operator. This last operator
(which acts on the pressure) arises naturally from the discretization process. This
term has the physical interpretation of representing the volumetric expansion (or
contraction) of a grid cell in response to the deviation in pressure of the cell rela-
tive to its neighbors. It is especially relevant when small timesteps are employed,
providing stability to the discretized coupled system [35].

Discrete Richards’ Equation

Having defined the discrete operators, we can write the discrete version of the
governing equations. In an FVM framework, we typically integrate the mass con-
servation equation (13.5) over a cell volume,

a0 - ]
/ —2dv —|—/ V.qudV = @d\/, Vi e [1,N.]. (13.28)
Q; 8t Q; Qi /Ow
Assuming that the equation is solved using an iterative strategy (see Subsec-
tion 13.3.3), after applying backward Euler, the accumulation term from (13.28)
becomes
89w 9n+1,m+1 —_ "
— =t (13.29)
ot At"
where n denotes the time level and m the iteration level, and At is the timestep. As
suggested in [12], to ensure local mass conservation, we use the modified Picard
iteration to Taylor-expand 61 *! from (13.29) as a function of v,,,
93}+l,m+l — Qll;l)-i-l,m + C:;,+1’m (wn—&-l,m-‘rl _ 11”lrll)+l,m) + HOT (1330)

w

Using (13.29) and (13.30) with the higher-order terms neglected and computing
the integral, the accumulation term from (13.28) is given by
90, Vi

P gy =
Q at At"

[Qg—tlm + C:;—;l,m(wn+l,m+l _ wn—&-l,m) _ 91’2,1']’ Vi e [1,N,],

w,i w, i

where V; is the volume of the cell i. Alternatively, we can write the previous
equation in vector form as
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/ hd dV _ (an—i—l m + Cn+l m (]ﬁn—i-l ,m+1 wn+1 m) 0&)’ (1331)

where with a slight abuse of notation, we denote

T
a6,
/—dV —dV f —dv
Q QN ot

In (13.31), V = {V,, --- ,VNC}T is a vector representing the volumes of each
cell of the domain. Note that the product between vectors should be interpreted as
element-wise multiplications. An analogous procedure gives the expression for the
source term,

/—dV Ty (13.32)
Q Pw Pw

Applying the divergence theorem, the second term of (13.28) can be written as
f V- g,dV =/ Gu A =" G, ijA; =Y Q; Viell,N],
Q" 0% jeFi jeFi

where JF; is the set of faces associated with the cell i. Alternatively, in vector form,

/ V. G,dV = divF(Q,), (13.33)
Q@

where we use the discrete divergence operator divF actingon Q.
Combining (13.31), (13.32), and (13.33), we can write the discrete version of
mass conservation as

A O € (g ) i (@) = VL,
(1%.34)

The discrete version of the Darcy flux through a face j is given by

ij_%kf;-l]mztlj( n+lm+l+§i)’ Vje[l,Nf],
How iel

where I;,w, ;j denotes the relative permeabilities evaluated at the faces; i.e., obtained
by arithmetic average or upstream weighting. The previous equation written in
vector form reads

Pug
QUJ: .

w

n+1m(

Fwé g F(wrz;)-H,m—H_i_c)_'_boundF(bf))’ (1335)
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where by € F is the vector of flow boundary conditions. Equations (13.34) and
(13.35) represent a closed system of nonlinear algebraic equations, perfectly suited
for an iterative solver. Finally, note that even though the physical model is referred
to as the mixed-based version, the discretized version of the model is solved
only for the pressure head wﬁﬁfl’””l, because we can to express 6, =6, (V)
from (13.6).

Discrete Equations of Unsaturated Poroelasticity

Following the same procedure as in the Richards equation, the unsaturated storage
equation (13.14) in vector form is given by

VEn( n+l,m+1 __ pzj) + Vxn (Sz)—ﬁ—l,m + C;l)-H,m (pZ}-H,m-H _ pz;i-l,m) _ SZ;)

w

+ S, divu (u”“’””rl — u”) + azcompat (S';}pffl’mH)
mﬂ
+ At"divF (Q,) = VA2, (13.36)
Pw
where the time derivatives are approximated using backward Euler and we
applied the modified Picard iteration to Taylor-expand S™""*1 in terms of p,,.
The compat operator appears naturally in the MPFA/MPSA discretization of
the coupled system and provides compatibility when A" <« 1. We choose to
evaluate the accumulation-like terms & and x at the time level n to reduce the
nonlinearities; nevertheless, we acknowledge that other choices are possible.
The Darcy flux (integrated version of (13.3)) in terms of pressure reads

1 vn+1l,m

Qu =~k (F (P + pugt) +boundF (b)) (13.37)

The (semidiscrete) unsaturated linear momentum equation (13.11) can be inte-
grated over each cell of the domain, giving

fV-aedV—/ aV (S puttmily gy
Qi Qi

i

+/ [(1 —n)ps + nS;')pw] §dV =0, Viel[l,N]. (13.38)
Q;

Applying the divergence theorem, the first term from (13.38) can be written as

fV-aedV:/ o idA=Y 0. iijA; =Y T, Viell.N],
Q Ay

JEFi jeFi
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or in vector form as
/szv c0,dV = divs(T). (13.39)
The second term of (13.38) is given by
/S;on (Sz)pﬁ)“’mﬁ) dV = agradP (S'L’Upﬁfl’mﬂ) , (13.40)
whereas the discretization of the body forces reads

/ [(1 —n)ps + nSpr]ng = dnc(V) ((l —n)ps + ndnc(S’;),ow) g.
2
(13.41)

Here, we have used the dnc(-) operator, which converts a vector of length N,
to a vector of length dN, by repeating each element of the N, vector d times.
For example, for a 2D problem with two cells, dnc(V) = dnc({V}, V}!) =
{Vi, V2, Vi, Vo).

Combining (13.39), (13.40), and (13.41) gives the discrete version of the
momentum equation in vector form,

divs (T) — agradp (S, pith"*)

(13.42)
+ dnc (V) ((1 —n)ps + ndnc(SZ)),ow) g=0.

Finally, for a generic face j, the traction forces acting on that face are given by

7_:]' = Zsijﬁ?+l'm+l, Vje [I,Nf],
iel

or in vector form,

T = s+ 4 bounds (b,,), (13.43)

where b,, € S is the vector of boundary conditions for the mechanical problem.
Equations (13.36), (13.37), (13.42), and (13.43) represent the complete set of
discrete equations. This set of equations can be solved using a sequential approach
[6, 22] or a monolithic approach [34]. The latter is the preferred method for this
module, with the vector {w/ 1 +! prlm+ T g the only compound primary
variable.
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Call equation

™ eq = resEq(Xag; o)
Compute F' and J
F =eq.val
J = eq.jac{1}

zZ
Update variable

Y =J\-F
Xad.Val=x,q.val+yY

To the next time level

Figure 13.3 Workflow of the iterative solver applied to a generic equation.

13.3.3 Solving the Equations

To solve the system of equations we implement the modified Picard iteration
method as a part of an iterative solver as presented in the MRST textbook [28].
Other types of linearization schemes have been successfully applied to Richards’
equation and to a lesser extent to unsaturated poroelasticity. Usual schemes include
the classical Newton method, the Picard method, the Picard-Newton method, and
the L-scheme with and without Anderson acceleration (see [8, 19, 29]).

The resulting iterative scheme can be written as

dF
d_(xm) 8xm+l — —F(x)m, xm-‘rl < x™ 4 axm+l’ (1344)
X

where F is the residual vector, J := dF /dx is the Jacobian matrix depending on
the current solution x™, and §x™*! is the updated solution. Generally, the manual
computation of J is a tedious and error-prone process. To avoid such a process, we
exploit the automatic differentiation (AD) interface available in MRST, which in
essence consists of breaking down the computation into nested elementary differen-
tiation operations (see [24, 27, 28]). Figure 13.3 shows a schematic representation
of the workflow of the iterative solver.

The selection of the timestep At plays a key role in a solver’s performance. As
a general rule, the smaller the timestep the greater the chances of convergence.
However, decreasing the timestep too much could be unfeasible for some simu-
lations due to the increase in computational time. A better strategy is to use an
adaptive timestepping algorithm, such as the one implemented in Hydrus-1D [47].
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Yes
‘ Atpey =Ato1a XKiow

Yes
‘ Atpey=A0to1q X kupp

Figure 13.4 Workflow of the adaptive time stepping algorithm.

The algorithm determines the next timestep size based on the number of iterations
needed to achieve convergence in the last time level (see Figure 13.4). The idea is
to increase At in case the number of iterations i is less (or equal) than a lower
optimal iteration range i:., (i.e., 3), decrease At if i is greater (or equal) than an
upper optimal iteration range i,y (i.e., 7), or keep the same value otherwise. To
increase Ar, we multiply Az,;4 by a lower multiplication factor k., (i.e., 1.3), and
to decrease it, we multiply At,14 by an upper multiplication factor kg, (i.e., 0.7).

13.4 Numerical Examples

In this section we present four numerical examples; the first two are numerical
convergence tests and the last two are practical applications. The convergence tests
include Richards’ equation (convAnalysisRE.m) and the equations of unsat-
urated poroelasticity (convAnalysisUnsatBiot .m). The third example is a
well-known problem for unsaturated flow, where we simulate the water infiltration
in a nondeformable initially dry soil (see waterInfiltrationRE.m). The last
example, desiccationUnsatBiot .m, consists of a desiccation process of a
clayey soil under atmospheric evaporation in a Petri dish.

Even though the codes for the convergence tests are included in the module,
in principle they are not meant as tutorials. To start using fv-unsat, we recom-
mend waterInfiltrationRE.m, which offers a step-by-step explanation of
the module.

13.4.1 Numerical Convergence Tests

The first two examples involve numerical convergence tests, one for Richards’
equation and one for the unsaturated poroelastic equations. Before that, we define
the errors used to determine the converge rates.
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We are interested in measuring the errors for the pressure (or pressure head),
displacement, flux, and traction forces. We use the subscript 4 to denote the numer-
ical approximation and no subscript for the exact solution. We define the following
relative discrete L,-type errors as in [33]:

¢ 1/2 N, 1/2
A (ZzN Vilpi — ph,i|2) gh A (Z/ ' Aj1Q) — Qh»/'|2)

A (XY a5 10,P)"
8}~1’At _ (Z,Nl Vi |’:iz - ﬁh,ilz)l/z S}i’At _ (Zivf Aj |7_LJ - 7_:‘h»j|2)1/2
‘ (2N v, 1 2) ! (X0 A1)

where V; and A; are the cell volumes and face areas, respectively. For a given
variable, we define the reduction between two successive levels of refinement as
the ratio between the errors obtained by halving the spatial resolution for a fixed
time step. For example, for the pressure, we have the reduction and the convergence
rate given by

Red, = eﬁ’,’m/aﬁ‘/z’m, Rate, = log,(Red,).

Richards’ Equation

In this example, we present a numerical convergence analysis of the two-
dimensional incompressible mixed-based formulation of Richards’ equation. This
analysis is performed in a unit square with a final simulation time of 1 and a
timestep At = 0.1. The computational mesh is a structured Cartesian grid. The
relative permeabilities on the faces are approximated using an arithmetic mean of
the cell centers, and for simplicity, gravity effects are neglected. Moreover, all of
the physical parameters are assumed to be equal to one, except o, = 0.4, 6, = 0.4,
0, = 0.1, n, = 2, and m, = 0.5. We assume the existence of a time-dependent
solution

Yy (x,y,1) = —t(1 —x)xsin (wx)(1 — y)ycos (wy) — 1,

satisfying ¥, (0, y,t) =¥, (1, y,1) = ¥, (x,0,1) = ¥, (x,1,1) = ¥, (x,y,0) = — 1.
With this assumption, it is possible to obtain an exact expression for the source
term m,,/py = [ and compute the errors. We refer to [39] for more details.

Table 13.2 shows the results for five different levels of spatial refinement.
Pressure head and fluxes show quadratic convergence rates. These results are
consistent with reported rates for MPFA schemes on structured-uniform grids
(see, e.g., [2, 3]).

Unsaturated Poroelasticity

In this analysis, we investigate the numerical convergence rates for the unsaturated
poroelastic equations. The domain, final simulation time, timestep, average of k,,,,
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Table 13.2 Convergence test for Richards’ equation.

h e’fp’ Al Redy Ratey, eg ar Redg Rategp
—4 -2

01 3338107 39049 1o0g2 299X M0T 3083 19936
0.05 1336 x 107* 7.445 x 1073

0.025 3aa3 x 10-5 39970 19989 O 5 40207 2.0075

001ss 8386 y -6 39991 19997 ’ g3 40182 2.0065

' ' 39998 19999 4.0110  2.0040
0.00625  2.090 x 1076 1.149 x 1074

Table 13.3 Convergence test for unsaturated poroelasticity: pressure and

displacement.
h 82’ At Red, Rate, sg’ At Red; Ratej;
—4 2

8'? iig * 13_ . 39106 19674 g;ig * 18_2 40877  2.0313

005 i x -5 3931 19775 O X o3 40017 2.0006

0055 s x o5 39836 19941 T x o3 39859 19949

00125 3596 5 -6 39970 19989 T ’ g4 39852 19946
' : 39992 1.9997 > 39753 1.9911

0.00625  8.991 x 107 8.864 x 107

and water retention parameters are the same as in the last example. However, we
now include gravity contributions. The physical parameters different from unity are
C,=0.1,n=04,and @ = 0.9.

We are interested in convergence rates of pressures and displacements, as well as
fluxes and traction forces. We assume the following time-dependent solutions for
the primary variables:

Pw(x,y,1) = —tx(1 — x)y(l — y)sin(zwx) cos(wy) — I,
i(x,y,1) = tx(1 — x)y(1 — y)[sin(rx), cos(ry)]".

We employ Dirichlet boundary conditions for the pressure and displacement satis-
fying the above equations. The initial conditions are obtained by setting t = 0, the
mesh is a structured triangular grid, and the analysis is performed for six different
levels of spatial refinement. The results are shown in Tables 13.3 and 13.4.

Pressures, displacements, and fluxes show quadratic convergence rate. The con-
vergence rate for traction is less uniform. Nevertheless, it is greater than 1.5 and
lower than 2, which is in agreement with previously reported rates on structured
grids for elasticity and (saturated) poroelasticity [21, 35].
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Table 13.4 Convergence test for unsaturated poroelasticity: flux and traction.

h eg ar Redg Rateg 8}%’ A Red; Rate;
) -2
8'? ;gi? x 1873 36349  1.8619 ;g‘]‘g x 1372 34914  1.8038
005 g g4 38863 19584 T o 32813 17143
0,025 Lo x s 39755 roon RS X -3 33032 17239
00125 4ses * -5 39968 19989 . l0-s 29773 15740
. . X . X
40007 2.0020 30802 1.6230
0.00625  1.142 x 1073 2.031 x 10~*

13.4.2 Water Infiltration in a Column of Dry Soil

In this example, we solve a water infiltration problem in an initially dry soil column.
The water flows from top to bottom and is modeled using Richards’ equation.
The simplicity of the problem represents an excellent opportunity to introduce the
module (see waterInfiltrationRE.m from the examples folder).

We start by constructing a Cartesian grid consisting of five cells in the x- and
y-directions and 30 cells in the z-direction. The domain is 100 x 100 x 100 cm?.
We refer to chapter 3 of the MRST textbook [28] for more details regarding mesh

generation in MRST.

nx = 5; ny = 5; nz = 30; % cells

Ix = 1; Ly = 1; Lz = 1; % domain lenght [m]

G = cartGrid([nx, ny, nz], [Lx, Ly, Lz]); % create Cartesian grid
G = computeGeometry (G) ; % compute geometry

% Plotting grid
newplot; plotGrid(G); axis off;
pbaspect ([1, 1, 5]); view([-51, 26]);

Next, we declare the hydraulic parameters of the soil. We use the physical param-
eters of a field sample from New Mexico [37]. Most of the properties can be
accessed from our mini-catalog of soils (see getHydraulicProperties.m).
The properties are stored in SI units inside the phys structure, which, in turn,
contains the f£1low substructure. For coupled problems, the phys structure will also
contain the mech substructure (see next example):

soil = getHydraulicProperties('newMexSample'); % get soil properties
phys = struct(); % create structure to store physical properties

% Flow parameters
phys.flow.rho
phys.flow.mu

1 % gram / (centi  meter)’3; % density
0.01 x gram / (centi x* meter % second); % viscosity

https://doi.org/10.1017/9781009019781.019 Published online by Cambridge University Press


https://doi.org/10.1017/9781009019781.019

534 J. Varela, S. E. Gasda, E. Keilegavlen, and J. M. Nordbotten

phys.flow.g = 980.66 % centi x meter / (second”2); % gravity
phys.flow.gamma = phys.flow.rho * phys.flow.g; % specific gravity
phys.flow.K = soil.K s; % saturated hydraulic conductivity
phys.flow.perm = (phys.flow.K * phys.flow.mu / phys.flow.gamma) .* ...

ones (G.cells.num, 1); % intrinsic permeability
phys.flow.alpha = soil.alpha / meter; % vGM parameter
phys.flow.n = soil.n; % VGM parameter
phys.flow.m = 1-(1/phys.flow.n) ; % VGM parameter
phys.flow.theta s = soil.theta s; % Water content at saturation conditions
phys.flow.theta r = soil.theta r; % Residual water content

Boundary and initial conditions are declared next. For this problem, v, =
—75 cm is set at the top and ¥,,,= —1000 cm at the bottom, and the rest are set
as no flux by default. Initially, we set ¥, = —1000 cm for all cells. Boundary
conditions are declared following the MRST convention (see chapter 5 of the
MRST textbook [28]). In addition, we need to create bcVal (a vector containing
the values of the boundary conditions) for backward compatibility with the
fvbiot module. It is important to mention that if gravity effects are considered,
we must include their contributions to the Dirichlet faces in the bcval vector:

% Extracting grid information

5

% Creating the boundary structure

psiT = -75 % centi % meter; % Top boundary pressure head
psiB = -1000 * centi * meter; % Bottom boundary pressure head
bc = addBC([], z_min, 'pressure', psiT);

bc = addBC(bc, z max, 'pressure', psiB);

bcval = zeros(G.faces.num, 1);

bcval (z_ min) = psiT + zetaf(z min); % assigning Top boundary

bcval (z_max) = psiB + zetaf (z max) ; % assigning Bottom boundary

The problem is discretized using the mpfa routine from the £vbiot module. The
mpfa function takes as input arguments the G structure, the £1ow substructure, and
the boundary conditions structure be. The output contains the discrete operators
that later will be used to construct the model:

%% Discretize the flow problem using MPFA
mpfa discr = mpfa(G, phys.flow, [], 'bc', be, 'invertBlocks', 'matlab');

After declaring parameters structures for time/printing (time param, print
param) we are in position to construct the model. This is done by calling the
function mode1RE (from the models folder) as follows:

%% Call Richards' equation model
modelEgs = modelRE(G, phys, mpfa discr, bc, bcVal, 'arithmetic', 'on');
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Listing 13.1 The principal parts of the workflow of mode1RE.

function model = modelRE(G, phys, mpfa discr, bc, bcvVal, relPermMethod, gEffects)

% Soil Water Retention Curves (SWRC) for the theta-psi model
[theta, krw, C theta] = vGM theta (phys) ;

% Discrete mpfa operators

F = @(x) mpfa discr.F * x; % Flux
boundF = @(x) mpfa discr.boundFlux * x; % Boundary fluxes
divF = @(x) mpfa discr.div * x; % Divergence

% Relative permeability at the faces
if strcmp(relPermMethod, 'arithmetic!')

krw_faces = @(psi_m) arithmeticAverageMPFA(G, krw, bc, psi_m);
elseif strcmp(relPermMethod, 'upstream')

krw_faces = @(psi_m) upstreamWeightingMPFA(G, krw, bc, bcval,

mpfa discr, phys, psi m, 'psi', gEffects);

else

error ('Method not implemented. Use either ''arithmetic'' or ''upstream''')
end

% Darcy Flux
Q = @(psi, psi_m) (phys.flow.gamma ./ phys.flow.mu) .» krw faces(psi m) .x ...
(F(psi + gravOn * zetac) + boundF (bcval)) ;

% Mass Conservation Equation

psiEg = @(psi, psi_n, psi m, dt, source) (V ./ dt) . (theta(psi m)
+ C theta(psi m) .+ (psi - psi m) - theta(psi n))
+ divF(Q(psi, psi_m)) - V . source;

The function mode1RE takes as input arguments the grid structure G, the physi-
cal properties structure phys, the discretized structure mpfa discr, the bound-
ary conditions structure and vector values be and bcVal, and two string argu-
ments. The first string argument specifies the way relative permeabilities at the
faces should be calculated (e.g., 'arithmetic' or 'upstream'), and the last
argument is either 'on' or 'of £ ' depending whether gravity effects are included
or neglected.

For completeness, we show the principal parts of the workflow of modelRE
in Listing 13.1. First, we retrieve the SWRC quantities (see (13.6)—(13.8)) using
the utility function vGM_theta. Because the problem is already discretized,
we can create the discrete MPFA operators as introduced in Table 13.1. Next,
we compute the relative permeabilities at the faces using the preferred method.
Finally, we declare the discrete equations as anonymous functions; i.e., Q for the
Darcy flux and psiEq for the mass conservation equation. The function mode1RE
returns the model structure containing the discrete equations together with the
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SWRC-related quantities. We remark the straightforward equivalence between the
mathematical and computational equations.

Now, we can solve the nonlinear set of equations using a nested while loop. The
first corresponds to the time loop and the second to the solver solverRE (shown
in a separate code excerpt). Once we exit the solver loop (provided successful con-
vergence), the timestep dt for the next time level is calculated using the adaptive
timestepping routine t imeStepping:

while time param.time < time param.simTime
psi_n = psi; % current time step (n-index)
time param.time = time param.time + time param.dt; % current time
source = zeros(G.cells.num,1l); % source term equal to zero
% Newton loop
[psi,psi_m,iter] = solverRE(psi_n,modelEgs,time param,solver param,source) ;
°

% Determine next time step
[time param.dt,print_param.print] =timeStepping(time_param, print param,iter) ;

end

The solver solverRE is written in such a way that it exploits the capabilities of
the AD framework:

function [psi, psi_m, iter] = solverRE(psi_n, modelEgs, time param,
solver param, source)

psi_ad = initVariablesADI(psi n); % Initialiazing AD-variable

% Newton loop
while (res > solver param.tol) && (iter <= solver param.maxIter)

psi m = psi_ad.val; % current iteration level (m-index)
eq = modelEgs.psiEq(psi_ad, psi n, psi m, time param.dt,

source) ; % call equation from model
R = eqg.val; % residual
J = eq.jac{1l}; % Jacobian
Y = J\-R; % solve linear system
psi ad.val = psi ad.val + Y; % update
res = norm(R); % compute tolerance

end
psi = psi ad.val; % return updated pressure head

In case the solver does not converge in the prescribed maximum number of
iterations, an error is printed in the console. The options to enforce convergence are
either to increase maxIter or decrease tol. The results can be easily accessed
via the sol object for all printing times. In Figure 13.5, we show the pressure
head and water content distributions corresponding to 21.6 hours. Alternatively, the
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Figure 13.5 Solutions to the water infiltration problem in an initially dry soil.
We show the pressure head (left) and water content (right) after 21.6 hours of
water infiltration from top to bottom. Note that approximately half of the domain
remains in dry conditions.

interested user can explore further plotting functionalities via the plotToolBar
interface from the mrst -gui module.

13.4.3 Desiccation of a Clayey Soil in a Petri Dish

In this numerical experiment, we study the desiccation process of a clayey sample
in a Petri dish using real parameters (see desiccationUnsatBiot .m). The
desiccation is driven by an evaporation process that is modeled using atmospheric
boundary conditions, allowing us to resemble with more precision a realistic evap-
oration scenario. Our main motivation to study soil desiccation is the formation
of cracks. Even if fractures are not included in this model, it is useful to predict
whether the conditions before cracking exist. The desiccation process involves a
gradual reduction of saturation with a simultaneous reduction in the pressure and
soil shrinkage [18].

The domain consists of a standard Petri dish (10 cm in diameter and 1.5 cm
thick) containing a sample of clay. In such a setup, the soil is constrained every-
where but the top, where the evaporation takes place at stress-free conditions (see
Figure 13.6). The evaporation at the top of the Petri dish can be either flux con-
trolled or pressure controlled. In an atmospheric evaporation scenario, the soil
initially dries at a maximum evaporation rate (thus a flux-controlled top boundary
condition is imposed) and then smoothly decreases, approaching zero in the limit
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Figure 13.6 The Petri dish domain showing the boundary and initial conditions.

when §,, — §/, (in this second stage a pressure-controlled boundary condition is
used). The criteria can be written as

to
FP_

flow — crit

to) i
Emax’ pwp Z prI‘It’
py,",  otherwise,

where I'y", is the flow boundary condition at the top of the domain (note that the

word “flow” does not refer to a “flux” boundary condition but rather the subproblem
as in the flow/mechanics coupled problem), E .« is the maximum evaporation rate,
and pﬁfit is the water critical pressure [15]. There are several correlations to estimate
E . for field-scale applications [25]. In this case, we adopt an experimental value
obtained by Stirling [42] and more recently employed in numerical experiments
in [10]. The critical pressure p¢it is the minimum allowed pressure at the soil

surface. This value is a function of the ambient psychrometric conditions and can
be estimated as

pcrit — 10g(¢)Rpr
w M ’
where ¢ is the relative humidity, R is the universal gas constant, T is the absolute
temperature, p,, is the water density, and M is the molecular weight of water [47].
The soil is initially at virtually saturated conditions — i.e., S,, = 0.9996 — and
the final simulation time is 2 hours. Now, we describe each step of the simulation
process. We highly encourage the interested reader to use desiccationUnsat
Biot .m along with this explanation.
As usual, we start by generating the computational grid. First, we create a Delau-
nay triangulation on a circle using the (freely available) mesh generator distemsh
[36]. To add distmesh to MRST, we follow the procedure described in [28]:

pth = fullfile (ROOTDIR, 'utils', '3rdparty', 'distmesh'); mkdir (pth)
unzip ('http://persson.berkeley.edu/distmesh/distmesh.zip', pth);
mrstPath('reregister', 'distmesh', pth);
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Listing 13.2 Grid construction for the Petri dish.

% Two-dimensional grid

r = 50 * milli * meter; % radii of the Petri-dish

fd = @(p) sqgrt(sum(p.”2, 2)) - r; % circular domain function

min X = -r; max x = r; % min and max values in x-axis
min y = -r; max y = r; % min and max values in y-axis

h = (2%x)/25; % step size

[p, t] = distmesh2d(fd, @huniform, h, [min x, min y; max x, max yl, []);

o°

o) =p + r; shifting triangulation points
G triangleGrid(p, t); creating triangular grid
G pebi (G) ; % creaing Voronoi diagram

o°

% Extrude in the z-direction

Lz = 15 » milli = meter; % thickness of the Petri-dish
vz = 5p number of layers in z-axis
dz = Lz/nz; % thickness of each layer
thick = dz .% ones(nz, 1); % thickness vector

G = makeLayeredGrid(G, thick); % extrude grid

G = computeGeometry (G) ; % compute geometry

o°

We employ the function distmesh2d to triangulate a circle of radius r, with step
size h. With the triangulation points p and the connectivity map t available, we
can generate the triangular grid using triangleGrid and then apply a Voronoi
diagram using the pebi routine to obtain the hexagonal grid. Finally, to generate
the three-dimensional grid, we extrude the hexagonal grid in the z-direction using
the function makeLayeredGrid? (see Listing 13.2).

After extracting useful topological data, we declare the physical parameters for
the mechanics and the flow problem using the phys structure:

% Mechanics parameters [Kaolinite]

phys.mech.lambda = 1.229E11 .x ones(Nc, 1) = Pascal;

o°

first Lame parameter

phys.mech.mu = 4.7794E10 .* ones(Nc, 1) % Pascal; % second Lame parameter
phys.mech.C s = 5.618E-11 / Pascal; % solid compressibility
phys.mech.rho = 1769 % kilo * gram / meter’3; % solid density
phys.mech.stiff = shear normal stress(Nc, Nd, % stiffnes matrix

phys.mech.mu, phys.mech.lambda, 0 .* phys.mech.mu) ;

Here, we assume homogeneity in the physical properties. However, the code is
flexible to include heterogeneous permeability and elasticity coefficients. The elas-
tic parameters were taken from [32] for a sample of kaolinite and the hydraulic
properties from [11] for clay. The mechanic discretization requires the construction
of the stiffness matrix. This is done using the function shear normal stress
from the £vbiot module.

2 Technically speaking, these grids are referred to as 2.5—-dimensional grids.
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We use the soil catalog to get the hydraulic properties of the clay. The critical
pressure is determined using computeCriticalPressure. For this example,
we assume standard laboratory psychometric conditions; i.e., 7 =298.15K and
¢ =0.5:

% Flow parameters [Water]
soil = getHydraulicProperties('clay');

phys.flow.temperature = 298.15 x Kelvin; % Ambient temperature
phys.flow.relativeHumidity = 0.5; % Ambient relative humidity
p_crit = computeCriticalPressure (phys) ;

Now, we proceed to declare the boundary conditions. For the mechanics, we set
u = 0 at the sides and bottom of the domain, whereas the top is assumed to be
stress-free by default (note that the keyword 'pressure' indicates a displacement
condition and ' f1ux' indicates a traction condition):

% Creating the boundary structure for the mechanics problem
bcMech = addBC([], sides, 'pressure', 0); % u=0 at the sides
bcMech = addBC(bcMech, z _max, 'pressure', 0); % u=0 at the bottom

bcMechvals = zeros(Nd % Nf, 1);

For the flow boundary conditions, we have two scenarios: flux and pressure
controlled. For the flux-controlled scenario we have only flux conditions:

% Creating the boundary structure for flux-controlled BC
bcFlow_f = addBC([], z_min, 'flux', Qtop f);
bcFlowVals f = zeros (Nf, 1);

bcFlowVals_f(z min) = Qtop f;

whereas for the pressure-controlled, we have zero flux except at the top:

% Creating the boundary structure for pressure-controlled BC
bcFlow p = addBC([], z_min, 'pressure', p crit);
bcFlowVals p = zeros (Nf, 1);

bcFlowVals _p(z min) = p crit + phys.flow.gamma .x zetaf(z_min);

For the initial conditions, we assume an initially undeformed sample — that is,
u(x,y,z,0)=0 m — and a homogeneous pressure field of p,(x,y,z,0) = —0.1 kPa:

u_init = zeros(Nd * Nc, 1) * meter;
p_init = -0.1 * kilo » Pascal * ones(Nc, 1);
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Once the boundary and initial conditions have been declared, we can discretize
the different problems. On one hand, we have the mechanical problem, which is
discretized using the mpsa routine from fvbiot, and, on the other hand, we have
the flow problem which is discretized using mpfa. Note that the flow problem
is divided into the flux- and pressure-controlled subproblems, because different
boundary conditions result in different discrete operators:

% Discretize mechanics problem
mpsa_discr = mpsa(G,phys.mech.stiff, [], 'invertBlocks', 'matlab'’, 'bc',bcMech) ;

% Discretize flow problem for flux-controlled boundary conditions
mpfa discr flux = mpfa(G,phys.flow, [],'invertBlocks', 'matlab', 'bc',bcFlow f);

% Discretize flow problem for pressure-controlled boundary conditions
mpfa discr pres = mpfa(G,phys.flow, [],'invertBlocks', 'matlab', 'bc',bcFlow p);

After declaring the time and printing parameters, we set up the two different
scenarios (flux and pressure controlled) using the function modelUnsatBiot:

%% Calling the model for the unsaturated poroelastic equations

% Setting up model for flux-controlled problem
modelEgsFlux = modelUnsatBiot (G, phys, mpfa discr flux, mpsa discr,
bcFlow f, bcFlowVals f, bcMech, bcMechvals, 'upstream', 'on');

% Setting up model for pressure-controlled problem
modelEgsPres = modelUnsatBiot (G, phys, mpfa discr pres, mpsa_discr,
bcFlow p, bcFlowVals p, bcMech, bcMechvals, 'upstream', 'on');

Note that modelUnsatBiot now uses both the mechanics and flow boundary
conditions as well as discretization structures. The last two string arguments are
the same as in modelRE. To avoid being repetitive, and because modelUnsat
Biot is essentially the same as modelRE (structure-wise, not complexity-
wise), we prefer not to show this function and proceed with solving the coupled
systems.

To solve the coupled problem we create two time loops, one for each flow
scenario. The flux-controlled time loop is shown in Listing 13.3. The process is
essentially the same as in waterInfiltrationRE.m, except for some tech-
nicalities. Note that after calling solverUnsatBiot we calculate the value of
the top pressure of the domain using the function computeTopPressure. This
function uses a TPFA discretization to approximate the mean value of the surface
pressure. Next, we check whether the critical pressure is reached or not. If the pres-
sure is higher, we proceed to determine the next timestep using timeStepping.
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Listing 13.3 Flux-controlled time loop.

while (time param.time < time param.simTime) && (p top > p crit)
&& (pControlled == false)

p_n = p; % current time level (n-index)
un=u; % current time level (n-index)
time param.time = time param.time + time param.dt; % cumulative time

o

% Source terms
o

sourceFlow = zeros(Nc, 1); % no sources for the flow
sourceMech = modelEgsFlux.body(p n); % sourceMech = body force

% Calling Newton solver
[p, p.m, u, iter] = solverUnsatBiot (G, p_n, u n, modelEgsFlux,
time param, solver param, sourceFlow, sourceMech) ;

% Approximating top pressure
fluxTemp = modelEgsFlux.Q(p, p_m);
p_top = computeTopPressure(G, phys, p, fluxTemp, modelEgsFlux) ;
% If it is flux controlled, update time step and store solution
if (p_top > p crit)
% Calling time stepping routine
[time param.dt, print param.print] = timeStepping(time_param,
print param, iter);

: % store solution if necessary
else

: % change to pressure controlled loop
end

end

If the pressure is less than (or equal to) the critical pressure, we switch to the
pressure-controlled time loop.

Because the pressure-controlled loop is essentially the same, we show the solver
and the sparsity of the system in Listing 13.4. The Jacobian matrix consists of four
blocks, which are characteristic of the monolithic approach:

Upper-left: displacement contribution to the momentum equation, eq1l.
— Upper-right: pressure contribution to the momentum equation, eq2.

Lower-left: displacement contribution to the storage equation, eq3.

Lower-right: pressure contribution to the storage equation, eqg4.

The simulation results are shown in Figures 13.7-13.10. In Figure 13.7, we show
the saturation profile for the final simulation time. As expected, the lower saturation
zones are located at the top layer due to the evaporation process, whereas the bottom
layer remains at nearly saturated conditions. In Figure 13.8, we show the variation
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Listing 13.4 Solver for the unsaturated Biot equations.

function [p, p_m, u, iter] = solverUnsatBiot(G, p_n, u n, modelEgs,
time param, solver param, sourceFlow, sourceMech)

% Initializing AD-variables
p_a initVariablesADI (p n) ;
u a initVariablesADI (u_n) ;

d =
d =

% Newton loop
while (res > solver param.tol) && (iter <= solver param.maxIter)
% Calling equations
p.m=p ad.val; % current iteration level (m-index)
egl = modelEgs.uEql(u_ad) ;
eqg2 = modelEgs.uEq2(p_ad, p_n, sourceMech) ;
modelEgs.pEgl(p n, u ad, u n);
modelEgs.pEQ2 (p_ad, p_n, p_m, time param.dt, sourceFlow) ;

8 8
[
LI | | | 1}

= [eql.jac{1} eq2.jac{1}; eg3.jac{1}, egs.jac{1}];
[egl.val + eg2.val; eg3.val + egd.vall;
= J\-R; % solve linear system
u_ad.val = u ad.val + Y(1:Nd«Nc); %
p_ad.val = p ad.val + Y(Nd«Nc+l:end); % update p

o

res = norm(R); % compute tolerance

<o
I

end
p = p_ad.val; % updating pressure value
u = u_ad.val; % updating displacement value

Figure 13.7 Saturation field for the final simulation time.

of the top pressure head and flux with respect to time. The change in boundary
condition modes that takes place at 0.44 hours highly influences the evaporation
process. After this point, the pressure declines abruptly toward the critical value,
whereas the flux smoothly approaches zero as the driven force for the evaporation
vanishes.
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Figure 13.8 Top pressure head (left) and surface flux (right) evolution.
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Figure 13.9 Magnitude of the displacement for the final simulation time. The
deformation is maximum where the evaporation takes place.

In Figure 13.9, we show the magnitude of the displacement field for the final
simulation time. Note that the displacement is maximum at the top layer, which
again is in agreement with the expected results. Finally, in Figure 13.10 we show a
closeup of the positive quarter domain of the top layer, where the arrows depict the
direction of the displacement field, demonstrating the tensile nature of the stresses
that eventually cause the rupture of the material.

13.5 Concluding Remarks

In this chapter, we presented a flexible solver based on robust multipoint finite-
volume schemes (MPFA/MPSA) for simulating flow in unsaturated soils. We stud-
ied the case where deformations effects are neglected (Richards’ equation) and the
case where small deformations and linear elastic behavior of the soil are assumed
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Figure 13.10 Positive quarter domain (top layer). The arrows show the character-
istic tensile nature of stresses of clayey soils when subjected to desiccation.

(equations of unsaturated poroelasticity). Numerical tests showed that convergence
rates previously found for saturated media are preserved when the models are
extended to the (nonlinear) unsaturated case. In addition, we provided two numer-
ical applications, a classical water infiltration case using Richards’ equation and a
fairly realistic desiccation process of a clayey soil driven by atmospheric evapora-
tion. In both cases, physically coherent results are obtained. Thanks to the AD-
based approach, the models presented herein can be extended to include other
processes such as scalar transport, chemical reactions, or heat transfer.
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