
Received: 12 January 2021 Revised: 20 February 2022 Accepted: 22 February 2022 Published on: 29 March 2022

DOI: 10.1002/qj.4259

R E S E A R C H A R T I C L E

Influence of trends on subseasonal temperature
prediction skill

C. Ole Wulff1,2 Frédéric Vitart2,3 Daniela I. V. Domeisen1,4

1Institute for Atmospheric and Climate
Science, ETH Zurich, Zurich, Switzerland
2NORCE Norwegian Research Centre,
Bjerknes Centre for Climate Research,
Bergen, Norway
3European Centre for Medium-Range
Weather Forecasts (ECMWF), Reading,
UK
4University of Lausanne, Lausanne,
Switzerland

Correspondence
C. Ole Wulff, NORCE Norwegian
Research Centre AS, Postboks 22
Nygårdstangen, NO-5838 Bergen, Norway.
Email: owul@norceresearch.no

Funding information
Swiss National Science Foundation,
Grant/Award Number: PP00P2_170523

Abstract
Subseasonal-to-seasonal (S2S) predictions have a wide range of applications.
Improving forecasts on this time-scale has therefore become a major effort. To
evaluate their performance, these forecasts are routinely compared to a reference
that forecasts the climatological distribution at any given time. This distribution
is commonly assumed to be stationary over the verification period on time-scales
longer than the seasonal cycle. However, there are prominent deviations from
this assumption, especially considering trends associated with climate change.
By employing synthetic forecast-verification pairs, we show that estimates of
the probabilistic skill of both continuous and categorical forecasts increase as
a function of the variance explained by the trend over the verification period,
even when there are errors in the trends simulated by the forecasts. We also
show this skill enhancement due to the trend in the ECMWF extended-range
ensemble prediction system. We demonstrate that the effects on the skill in an
operational forecast setting are currently strongest in the Tropics. Our results
show that care needs to be taken when evaluating forecasts that are subject
to non-stationarity on time-scales much longer than the forecast verification
window. This is especially important for determining the skill of categorical fore-
casts, where assumptions on the stationarity of the climatology enter both in
the reference forecast and in the determination of the category thresholds. The
results presented in this study are not exclusive to the S2S time-scale but have
wider implications for forecast verification on seasonal to decadal time-scales,
where the existence of trends can further impact forecast skill.
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1 INTRODUCTION

Stakeholders face decisions related to weather and cli-
mate risks on a continuum of time-scales from minutes
into the future to multiple decades or even centuries.

In recent years, increasing efforts have been made to
move towards ‘seamless’ prediction (Hoskins, 2013) to
bridge the gap between classical weather forecasting for
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lead times of days and climate projections for the next
century. The potential for successful predictions on all
time-scales stems from a multitude of large-scale phe-
nomena in the atmosphere and the ocean that evolve in
different parts of this temporal spectrum. One case in
point is the El Niño–Southern Oscillation (ENSO) – a
coupled ocean–atmosphere phenomenon with a variable
frequency between 2 and 7 years that gives rise to sea-
sonal prediction skill not only in its region of occurrence
but also in the midlatitudes of the globe through atmo-
spheric teleconnections (Shukla et al., 2000). Other sources
of predictability can be found on time-scales from weeks
to months, the so-called subseasonal-to-seasonal (S2S)
time-scales (Vitart et al., 2017 give a general overview),
for instance the Madden–Julian Oscillation (MJO; e.g., Lee
et al., 2019), stratospheric processes (e.g., Domeisen et al.,
2020), land surface processes (e.g., Koster et al., 2011),
and sea ice variability (e.g., Jung et al., 2014). The S2S
time-scale has furthermore been shown to be particularly
relevant for decision makers (White et al., 2017; Robertson
et al., 2020). We will focus on forecasts on these time-scales
in this study.

Despite the potential for predictability, S2S forecasts
generally exhibit significantly lower skill than forecasts on
weather time-scales. It is thus crucial to use ensemble sys-
tems in order to sample the space of possible outcomes
given the uncertainty in the estimate of the initial state
(Leutbecher and Palmer, 2008). Despite the low determin-
istic skill on S2S time-scales, these probabilistic forecasts
can be useful in making decisions that depend on the
weather evolution, given that they quantify the uncer-
tainty in the outcomes correctly. Probabilistic subseasonal
forecasts have, in fact, been shown to be skilful in a vari-
ety of settings (e.g., Alvarez et al., 2020; Materia et al., 2020;
Robertson et al., 2020).

In order to increase users’ confidence in S2S fore-
casts, it is imperative to show under which circumstances
these can provide useful information. In the scientific lit-
erature, skill scores are often used as measures of the
quality of a forecast. A skill score relates some measure
of accuracy (e.g., the mean error with respect to observa-
tions in a location) of the forecast under consideration to
the same measure of a reference forecast (Wilks, 2019).
It thus expresses the improvement of a forecast over this
reference. In subseasonal forecasting, the most typical ref-
erence is a climatological forecast, which represents the
distribution of all possible outcomes of a physical quantity
given the current climate. However, the true climatolog-
ical distribution is not known and needs to be estimated
from the available data. Since there is no unique way of
estimating the climatology and different choices might be
appropriate in different settings, skill scores defined with
respect to climatology can vary substantially depending

on the assumptions made about the climate. In a concep-
tual way this was shown previously by Hamill and Juras
(2006) using synthetic forecast–observation pairs. They
introduced two hypothetical islands with different clima-
tological event frequencies to illustrate how a forecasting
system that always issues the climatological frequency for
each respective island (and thus has no actual skill) can
appear to have skill when the aggregated climatology for
both islands is used as reference. While the solution to
the artificial enhancement of the skill in this hypotheti-
cal example is straightforward, in an operational setting
it might not be trivial to estimate the climatology due to
the available sample size. Manrique-Suñén et al., (2020)
used the operational extended-range predictions from the
European Centre for Medium-Range Weather Forecast-
ing (ECMWF) and found that there can be substantial
differences in the estimates of the skill of subseasonal fore-
casts depending on the chosen method to compute the
climatology from the limited hindcast period.

In a general sense, the aforementioned results illus-
trate the importance of properly accounting for the
non-stationary components in the climatological distribu-
tion when assessing the skill of a forecast with respect to
climatology (also DelSole and Tippett, 2018). While the
seasonal cycle is often accounted for in the reference cli-
matology for the evaluation of forecasts, non-stationary
components that act on longer time-scales are commonly
neglected. One prominent example of a non-stationary
component in temperature is global warming (IPCC,
2013). For dynamical seasonal forecasting systems to pro-
duce realistic warming, the greenhouse gas forcing giving
rise to it needs to be accounted for in the boundary condi-
tions (Doblas-Reyes et al., 2006; Liniger et al., 2007; Boer,
2009). In statistical predictions, trends have been shown
to be among the most important predictors for North
American monthly to seasonal temperatures (Peng et al.,
2012; Johnson et al., 2014). While the magnitude of global
warming shows large regional variability, it is manifest in
temperature time series throughout the globe. In many
places, a shift in the mean temperature can be detected
even when considering only the recent past, e.g. the last
30 years, which is a common period for defining a clima-
tology. Based on the arguments above, this non-stationary
component of the climatology on time-scales longer than
the seasonal cycle, has the potential to affect the estimates
of subseasonal forecast skill.

Our study aims to characterise and quantify the effect
of a trend in the climatological reference period on the
probabilistic skill of subseasonal forecasts. We test if there
is an enhancement of skill and assess how strongly the
magnitude of the improvement depends on the amount
of variance of the respective time series that the trend
accounts for. We introduce the forecast and verification
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data and the processing methods in Section 2 along
with the probabilistic scores for evaluating their perfor-
mance. In Section 3, we quantify the effect of a trend
on different probabilistic skill scores in a set of synthetic
forecast–verification pairs to separate the stationary from
the non-stationary component. Here, we also assess what
happens to the skill scores when there is a trend in the
verification data but the forecasts fail to reproduce it cor-
rectly. We then compare the behaviour of an operational
prediction system (the ECMWF’s extended-range ensem-
ble prediction system) to our synthetic model in Section 4
and show in which geographical areas the subseasonal
forecast skill may be most strongly affected by the presence
of a trend in the mean of the climatological distribution.
We review the results in the context of previous liter-
ature and discuss limitations of the synthetic model in
Section 5. Finally, we present the conclusions of our study
in Section 6.

2 DATA AND METHODS

2.1 Forecast data and verification

For assessing the trend effect in an operational ensem-
ble prediction system, we make use of the extended-range
forecasting system of the ECMWF. This extended-range
forecast ensemble is operationally produced with the most
recent version of the ECMWF Integrated Forecasting Sys-
tem (IFS) by extending the weather forecast runs twice
a week out to 46 days (instead of 15). This is done by
re-starting the forecast runs on day 14 at a reduced hor-
izontal resolution (Tco319 instead of Tco639), but note
that this first day of the re-start is only used as spin-up.
The horizontal resolution corresponds to approximately
16 km up to day 15 and 32 km after this, and the model
has 91 vertical levels. The ensemble in the operational set-
ting consists of 51 members. For each forecast, hindcast
ensembles with 11 members are produced by initialising
the same model version from re-analysis (ERA-Interim up
to and including IFS cycle 45R1, ERA5 from cycle 46R1)
on the same calendar day for the previous 20 years. The
atmospheric component of the IFS is coupled to an ocean
and an interactive sea ice model and uses the HTESSEL
land surface scheme. The IFS uses a boundary forcing with
varying greenhouse gas (GHG) concentrations following
the Coupled Model Intercomparison Project (CMIP3) A1B
scenario (Meehl et al., 2007). Since the GHG forcing thus
does not only enter through the initial conditions, we
expect the model to produce realistic trends at all potential
lead times.

To cover a period that is sufficiently long to consider
an effect of trends on the forecasts, we retrieved 20 years

of hindcast data through the S2S database (Vitart et al.,
2017). We downloaded daily mean 2 m temperatures (T2m)
from the ECMWF’s extended range ensemble forecasts ini-
tialised between 1 January 2018 and 31 December 2018
(twice-weekly initialisation, giving 105 forecasts) as well
as the corresponding hindcasts (same initialisation days
within the year for the period 1998–2017). For each ini-
tialisation, 20 years of hindcasts are produced, yielding a
sample of 2,100 hindcast–observation pairs for each lead
time. In addition, we extended the number of samples in
the forecast period by including all forecasts initialised
between 1 January 2018 and 1 January 2021 resulting in
315 initialisations.

Note that, in order to increase the sample size for the
forecasts and hindcasts, we use varying model versions in
our analysis. In particular, for this period of hindcasts and
forecasts, the ECMWF changed from cycle 43R3 to 45R1
to 46R1 to 47R1 of the IFS (https://confluence.ecmwf.int/
display/S2S/ECMWF+Model#app-switcher; accessed 14
March 2022) and thus the model data considered here were
generated with four versions of the IFS. There are some
important differences in the IFS between versions, which
impact the forecast and hindcast skill to some degree,
but the effect of the changes in model version used here
has been mainly visible on the shorter lead times of the
forecasts (e.g., Vitart et al., 2019).

As verification data for the hindcasts and forecasts, we
use daily mean 2 m temperatures from ERA5 (Hersbach
et al., 2020). The data were downloaded globally at 1◦ × 1◦
resolution for the period 1 January 1997 – 28 February
2021.

2.2 Estimating the seasonal cycle

For the remainder of this study, it is useful to consider
standardised temperature anomalies because it allows us
to easily identify the amount of variance that different
components of the time series account for in the hindcast
period. By accounting for the model’s own climatological
mean and standard deviation, it additionally ensures a cer-
tain degree of calibration of the forecasts, but note that
for a proper calibration, a more sophisticated approach
would be required. For our simple calibration, we compute
the seasonal temperature cycle from the hindcast period
(1998–2017) only.

To transform to standardised anomalies, we need to
estimate the climatological seasonal cycle of the mean and
standard deviation. In a first step, we estimate the mean
temperature Ti,l on each of the 105 initialisation dates i per
year and for each lead time l:

https://confluence.ecmwf.int/display/S2S/ECMWF+Model#app-switcher
https://confluence.ecmwf.int/display/S2S/ECMWF+Model#app-switcher
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Ti,l =
1
N

N∑
n=1

1
M

M∑
m=1

Tm,n,i,l , (1)

where Tm,n,i,l refers to the 7-day mean, detrended tem-
perature, index m ∈ {1, 2, ...,M} indicates the ensemble
member (M = 51 for the forecasts and M = 11 for the hind-
casts), and index n ∈ {1, 2, ...,N} denotes the year in the
hindcast period (N = 20). In order to obtain a smooth sea-
sonal cycle for the climatological mean, we then retrieve
the lowest four harmonics of Ti,l for each l individually,
retaining only variations with periods greater than approx-
imately 90 days. We refer to the climatological seasonal
cycle of the mean, reconstructed from these first four har-
monics as ̃Ti,l. Temperature anomalies are then defined
relative to the seasonal cycle as

T′
m,n,i,l = Tm,n,i,l −

̃Ti,l. (2)

In the next step, we estimate the seasonal cycle of the stan-
dard deviation. We first compute the standard deviation of
the anomalies for each initialisation date i and lead time l
as

sT′
i,l
=

√√√√ 1
(MN) − 1

N∑
n=1

M∑
m=1

(T′
m,n,i,l)

2. (3)

As above, we next estimate the first four harmonics of
sT′

i,l
for each l individually and reconstruct a smooth sea-

sonal cycle of the standard deviation, which we refer to as
s̃T′

i,l
. Dimensionless, standardised temperature anomalies

T∗
m,n,i,l are then computed as

T∗
m,n,i,l =

T′
m,n,i,l

s̃T′
i,l

. (4)

2.3 Processing of hindcasts
and verification

We first average the hindcast, forecast and ERA5 temper-
atures to 7-day averages. In those cases where the data
are detrended, the detrending step precedes the standard-
isation. For the detrending, we compute an annual mean
linear trend over the hindcast period (1998–2017), which
is subtracted from the absolute temperatures. We then
transform the detrended fields into dimensionless stan-
dardised anomalies according to Equation (4) to minimise
contributions from the seasonal cycle to the hindcast skill.

Note that, in the case of the forecasts, the seasonal cycle
(mean and standard deviation) as well as the trend are a
function of the lead time to account for possible drifts in
the model climatology.

For transforming the ERA5 temperatures to standard-
ised anomalies, we follow the same approach as outlined
above for the hindcasts. This means we take ERA5 tem-
peratures for the same 20 years as the hindcasts (1 January
1998 to 31 December 2017) averaged over 7-day periods.
The seasonal cycles in mean and standard deviation are
then computed as in Section 2.2 (with M = 1 and without
the need to account for a lead time dimension l) but using
all 365 days of the year.

Due to the filtering in the above-described estima-
tion of the seasonally varying climatology, the mean and
variance of the standardised anomalies over the hindcast
period deviate from zero and one, respectively. Since it
is mainly their variance that deviates from unity, in a
last step, we standardise the time series again by divid-
ing by the empirical standard deviation of the standardised
anomalies over the entire hindcast period. This ensures
unit variance over the hindcast period for both the verifi-
cation and hindcasts at all lead times.

2.4 Forecast verification

2.4.1 Scoring

There exists a multitude of scores that can be used to assess
the performance of a forecast (e.g., Jolliffe and Stephen-
son, 2012). Since there is no single measure that captures
all aspects of the performance, usually multiple measures
are applied and the choice of the scores often depends on
the specific application. Here, we use a fairly general score
for the evaluation of forecasts of continuous variables, the
continuous ranked probability score (CRPS; Wilks (2019)),
which summarises multiple attributes of a forecasting sys-
tem. For a forecast of temperatures y at a single instance
when a temperature o was observed, the CRPS is given by:

CRPS = ∫
∞

−∞
[F(y) − Fo(y)]2dy, (5)

where F(y) is the cumulative distribution function (CDF)
of the temperatures in the forecast ensemble and Fo(y) is
the CDF of the observations given by:

Fo(y) =

{
0, y < o,
1, y ≥ o,

(6)

which describes a step function with a jump from 0 to 1 at
temperature y = o.

The CRPS describes the error of a probabilistic forecast
by the integrated squared distance between the forecast
and the observed CDFs. The CRPS is negatively oriented,
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meaning the smaller the score, the better the forecast. In
all cases considered, we average the CRPS over the number
of all forecast–verification pairs.

In case F(y) is known, the CRPS can be computed
directly from Equation (5). This will be the case for our
climatology forecasts that predict a standard normal dis-
tribution at any time. Because the actual forecasts (both in
Sections 3 and 4) have a finite number of ensemble mem-
bers, we estimate their score using the kernel represen-
tation of the (adjusted) CRPS as presented in Leutbecher
(2019). This adjusted version of the score accounts for the
effects of having a finite number of ensemble members and
is thus a more fair comparison to the reference score.

We also employ a categorical score to evaluate the per-
formance of the forecasts. For this, we use the RPS as
defined by Wilks (2019):

RPS =
K∑

k=1
(Yk − Ok)2, (7)

where K is the number of categories that verifications and
forecasts are sorted into. The observation Ok attains a value
of 0 or 1 if the verification at the considered time step
lies outside of or inside category k, respectively. The fore-
cast probability Yk can have values between 0 and 1 and
indicates what fraction of ensemble members were in cate-
gory k. Choosing K = 3 equiprobable categories makes the
RPS the natural choice for evaluating tercile forecasts. This
requires the tercile thresholds to be defined. In the case of
the synthetic model (Section 3.1.1) we know the exact val-
ues for these thresholds at any time step since we prescribe
the distribution from which the forecasts are drawn. In
reality however, the thresholds have to be estimated from
the climatology. We discuss the issue of estimating the
thresholds from the hindcast period further in Section 3.2.

Like the CRPS, the RPS shows some dependence on the
ensemble size (e.g., Richardson, 2001; Müller et al., 2005)
that reflects the ‘intrinsic unreliability’ of an ensemble
with a finite number of members (Weigel et al., 2007). Fol-
lowing Ferro et al., (2008), this effect can be approximately
accounted for by scaling the RPS of the forecasts and hind-
casts with a factor D = M∕M + 1, which allows for a fair
comparison with the RPS of the reference forecast.

2.4.2 Skill

In the following sections, we further evaluate the skill of
the forecast by considering the relative improvement in
its score S over the score Sref of a reference forecast. For
this, we define a skill score SKS, which can vary between
−∞ and 1, where 0 indicates no improvement over the
reference and 1 means that the score S attains its optimal

value (Sopt = 0, for all scores considered here). The skill
score SKS is thus given by:

SKS = S − Sref

Sopt − Sref
= 1 − S

Sref
. (8)

Here, overbars denote the average over all
forecast–verification pairs. Since we only consider aver-
ages over the entire sample (either hindcasts or forecasts),
the overbars are dropped in the following. In our case, S is
either the CRPS or the RPS and SKS is the CRPSS or RPSS,
respectively.

As can be seen from Equation (8), the skill score
depends on Sref, the score of the reference forecast, and
is thus sensitive to the definition of the reference fore-
cast itself. A common choice in the verification of sub-
seasonal forecasts is a climatological reference forecast.
In the following sections, we will show in detail how a
non-stationarity in the climatology in the form of a linear
trend can affect the score of the reference and thus the skill
scores of subseasonal forecasts.

3 DEPENDENCE OF THE SKILL
ON UNDERLYING TRENDS:
SYNTHETIC ENSEMBLE SYSTEM

In the following, we consider a linear trend in a verifi-
cation time series to test how the probabilistic skill of a
simple hypothetical ensemble prediction system changes
as a function of the magnitude of the trend. We define a set
of synthetic forecast–verification pairs to be able to cleanly
separate the stationary random and predictable parts of the
time series from the non-stationary component (the lin-
ear trend). Since any real forecasting system is also subject
to errors, we relax the assumption of a perfect simulation
of the trend in the forecast and employ the toy forecast to
assess how such an imperfect estimation of the trend can
further affect the skill. This assessment provides a bench-
mark for the potential magnitude of the effect that a trend
in the forecast period can have on the skill of the fore-
cast ensemble depending on the trend magnitude and the
mis-estimation.

3.1 Set-up of the artificial
forecast–verification pairs

In the next sections, we describe the synthetic ensem-
ble forecast–verification pairs that we generate in order to
answer the questions posed above. We follow the approach
of Weigel et al., (2008) who used a similar toy forecast
model (without a trend but with a parameter controlling
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the forecast dispersion) to study why multi-model ensem-
bles can outperform the single best models. We use the
notation  (𝜇, 𝜎2) to denote a Gaussian distribution with
mean 𝜇 and variance 𝜎2.

3.1.1 Verification time series

We first generate an artificial verification time series vt
consisting of a predictable signal 𝜙t, an unpredictable
noise component 𝜖t and a linear trend Δt:

vt = Δt + 𝜙t + 𝜖t, (9)

with index t ∈ {0, 1, ...,Lhc,Lhc + 1, ...L} indicating the
time step and L the length of the entire time series. The
first interval [0,Lhc − 1] has length Lhc and is referred to
as the hindcast period. The interval [Lhc,L] of length Lfc =
L − Lhc + 1 is the forecast period.

Δt is a linear trend defined as

Δt = 𝛾

(
t − Lhc

2

)
, (10)

with 𝛾 being the slope of the trend. By definition, the trend
line has mean 𝜇Δ = 0 in the hindcast period [0,Lhc − 1].
The variance contribution of the trend line in the hindcast
period is a function of the slope 𝛾 and the length of the
hindcast period Lhc only:

𝜎2
Δ = (𝛾Lhc)2

12
. (11)

We let both the signal 𝜙 and the noise 𝜖 be white noise
with values for each t drawn from  (0, 𝜎2

𝜙
) and  (0, 𝜎2

𝜖 ),
respectively. The combination of signal 𝜙 and noise 𝜖 rep-
resents the detrended part of the verification, which has
variance 𝜎2

x = 𝜎2
𝜙
+ 𝜎2

𝜖 . We want to ensure unit variance of
v over the hindcast period, which requires

𝜎2
x = 1 − 𝜎2

Δ. (12)

We further choose
𝜎2
𝜙
= 𝛼2𝜎2

x , (13)

where 0 ≤ 𝛼2 < 1 defines the fraction of the detrended
variance contained in the signal (Section 3.1.2 has a further
discussion of the meaning of 𝛼).

3.1.2 Ensemble prediction system

We generate a prediction ensemble with M members at a
time step t in a similar fashion to Weigel et al., (2008). In

the following, we refer to the predictions for the hindcast
period ([0,Lhc − 1]) as the hindcasts and the predictions
for the forecast period ([Lhc,L]) as the forecasts. We let
each ensemble member fm (m ∈ [1, 2, … ,M]) predict the
signal 𝜙, a trend component 𝜏 and Gaussian noise 𝜀m ∼
 (0, 𝜎2

𝜀 ): ⎛⎜⎜⎜⎜⎜⎝

f1

f2

⋮

fM

⎞⎟⎟⎟⎟⎟⎠t

= 𝜙t + 𝜏t +

⎛⎜⎜⎜⎜⎜⎝

𝜀1

𝜀2

⋮

𝜀M

⎞⎟⎟⎟⎟⎟⎠t

. (14)

The trend 𝜏t of the prediction is defined as the observed
trend Δt multiplied by a factor p, which represents the
mis-estimation of the trend in the prediction system:

𝜏t = pΔt. (15)

To achieve calibration of the predictions to the verification,
we set the variance of the hindcasts to 𝜎2

fm
= 1. Since the

variance of each ensemble member is given by 𝜎2
fm
= 𝜎2

𝜙
+

p2𝜎2
Δ + 𝜎2

𝜀 , conditions (11) and (13), together with 𝜎2
fm
= 1,

imply

𝜎2
𝜀 = 1 −

(
p2 (𝛾Lhc)2

12
+ 𝛼2𝜎2

x

)
. (16)

In this way, we ensure that hindcasts have zero mean
and unit variance, as is the case for the verification in
the hindcast period. Note that, due to setting the vari-
ance of hindcasts and verification to 1, the variances of
the different components in the verification and predic-
tions are equivalent to the fraction of explained variance
in the hindcast period of the respective time series. For
instance, 𝜎2

Δ describes the fraction of variance of the ver-
ification accounted for by the trend during the hindcast
period, while 𝛼2𝜎2

x is the fraction of variance explained by
the predicted, detrended part.

At this point, we want to briefly discuss the meaning of
the parameter 𝛼. Since the predicted part of the variance of
the verification and the hindcast ensemble in the absence
of a trend (𝜎2

Δ = 0) is 𝛼2, 𝛼 can be understood as the correla-
tion between the detrended verification and the ensemble
mean hindcast. By setting 𝛼, we thus set the theoretical
skill of our synthetic prediction system at predicting vari-
ability on the time-scale of interest. We will refer to 𝛼 as
the detrended correlation skill of the system. Note that,
once a trend is introduced to the model, the actual corre-
lation between the verification and the hindcast’s ensem-
ble mean increases. Since a trend constitutes a perfectly
predictable component in the time series, it will impact
other measures of forecast skill (Section 2.4) as well. Our
simple model allows us to separate the skill arising due
to the changing climatology from the skill at forecasting



1286 OLE WULFF et al.

variability on the time-scale of interest. In the operational
forecasts considered in Section 4, these time-scales are sub-
seasonal but note that the definition of the synthetic model
is general enough for the results to be applicable to other
time-scales.

In a last step, we have to choose the parameters of our
model. Our aim is to mimic the set-up of the actual pre-
diction system. At the same time, since the uncertainty of
the scores is smaller for a larger sample size, we aim for
a larger sample than in the operational system to obtain a
more robust estimate. Since we suspect the trend effect to
partially depend on the length of the forecast period rel-
ative to the length of the hindcast period, we keep this
ratio the same by letting our synthetic prediction system
have the same number of forecast and hindcast years as the
operational system (3 and 20, respectively), but with more
initialisations in each year. Thus, we set Lfc = 1,050 and
Lhc = (20∕3)Lfc = 7,000. Consistent with the operational
system, we only use Mhc = 11 ensemble members for the
ensemble hindcasts but Mfc = 51 members for the fore-
casts. The remaining parameters, 𝛾 , 𝛼 and p are varied.
Setting Lhc and fixing the variance of the verification to 1
in the hindcast period sets a limit to the possible values of
the slope of the trend 𝛾 , which is readily understood when
we consider 𝜎2

Δ as the fraction of variance explained by the
trend; this value cannot exceed 1. Thus, we obtain 0 ≤ 𝛾 <√

12∕Lhc. Since 𝛼 represents the correlation between ver-
ification and prediction, we let the prediction system vary
from having no skill at all to having nearly perfect corre-
lation with the verification, that is, 0 ≤ 𝛼 < 1. Finally, the
mis-estimation factor p of the trend can be varied. The unit
variance of the hindcasts allows us to vary it within the
limits 0 ≤ p < 𝜎 −1

Δ

√
1 − 𝛼2𝜎2

x .
Note that, when using the model, for every combi-

nation of parameters, we use the same verification and
forecast time series. In practice, this means that we draw
L values for each component in Equations 9 and 15 only
once and scale them according to the variance ratios given
above, which depend on the chosen parameters.

3.2 Effects of varying trend and
detrended skill on probabilistic skill scores

3.2.1 An illustrative example

To illustrate the expected effect of a trend in the verifica-
tion, consider the synthetic verification time series shown
in Figure 1a, which is an extension of figure 10.2 in Livezey
(1999). In this case, the trend explains 6% of the variance
in the hindcast period. At each time step t, the verification
is a single draw from a normal distribution  (Δt, 𝜎

2
x ). The

tercile thresholds of this distribution as functions of t are

shown by the green dashed lines. However, in a real fore-
cast situation, the tercile thresholds have to be estimated
from the hindcasts. It is common to use all time steps in
the hindcast period for estimating the climatological dis-
tribution. Due to the way we defined the verification, this
distribution has mean zero and unit standard deviation.
The tercile thresholds of a corresponding standard normal
distribution (±0.431) are shown by the black solid lines.
Figure 1b illustrates what happens when these thresholds
are used to define the tercile categories for the forecasts.
For this, we split the time series by years (one year consist-
ing of 350 time steps). Only in the centre of the hindcast
period, approximately 1∕3 of values fall into each cate-
gory. Towards the beginning, 50% of values end up in the
lower tercile, while towards the end of the hindcast period,
almost half of the values are sorted into the upper tercile.
Since it lies after the hindcast period, this effect is even
stronger in the forecast period where more than 50% of
values are in the upper tercile even though the trend only
explains 6% of the variance. If we now imagine a fore-
cast which is able to reproduce this trend correctly and
has realistic dispersion (as our synthetic predictions) but
no skill at predicting any other part of the detrended vari-
ability in the verification, it similarly sorts more than a
third of the forecast values into the upper tercile. When
evaluated with a categorical score such as the RPS, the
score for the hindcasts will inevitably be better than if we
had used the changing percentiles (green dashed lines in
Figure 1a) of the verification. Note especially that the score
of the forecasts will be better than the score of the hind-
casts despite the forecasts not having any more actual skill.
Finally, the RPS also improves as the forecast period over
which the skill is evaluated is extended. This illustrates
the problem we face when evaluating categorical forecasts
over a period that is subject to a trend using empirical
category thresholds estimated from the hindcast period.

3.2.2 Quantitative analysis

To assess the effect of any underlying trend on different
probabilistic scores of the toy model and their skill esti-
mates for different levels of correlation skill 𝛼, we now
vary the prescribed slope 𝛾 of the trend. For the following
results, we assume that the prediction system simulates
the observed trend Δt perfectly, that is, p = 1 and thus 𝜏t =
Δt. We then compute the average CRPS and RPS over all
time steps t as described in Section 2.4 in both the hindcast
and forecast periods. Note that for the computation of the
RPS (Equation (7)), we need to define the tercile thresh-
olds. To highlight the effect described above, we show
both the RPS estimated with a constant tercile threshold
over the entire period (as would be estimated under the
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(a)

(b)

F I G U R E 1 Illustration of trend effect on a categorical forecast. (a) shows a synthetic verification time series generated as described in
Section 3.1.1. The grey line indicates the hindcast period and the orange part the forecast period (separated by dotted lines). The black solid
lines show the 33.3 and 66.7 percentiles of the distribution of a standard normal distribution. Green dashed lines show the same percentiles
but accounting for the underlying trend which here explains 6% of the variance in the hindcast period. (b) shows the fraction of time steps in
each year (consisting of 350 time steps) in which the verification falls into the lower (blue), middle (grey) and upper (red) tercile of a standard
normal distribution based on the percentile thresholds shown by the black solid lines in (a). Green dashed lines indicate the theoretical
tercile bins for tercile thresholds that account for the trend, corresponding to the green dashed lines in (a) [Colour figure can be viewed at
wileyonlinelibrary.com]

assumption of a stationary climatology) and the RPS esti-
mated with the changing tercile thresholds that increase
monotonically over time, following the trend. We further-
more compute the skill scores (Equation (8)), namely the
CRPSS and the RPSS. This requires us to define a reference,
which we choose to be a climatological forecast. This fore-
cast predicts the climatological distribution for every time
step t, which is assumed to be Gaussian in all of our analy-
ses. Under the assumption of a stationary climatology, the
predicted distribution is the same for every t and given by
 (0, 1) since we consider standardised anomalies. If we
account for the changing climatology however, the clima-
tological forecast for every t is given by  (Δt, 𝜎

2
x ). In the

following, we compare the skill computed with respect to
either of these references.

We first consider the effects of defining the climatol-
ogy for the CRPS and CRPSS (Figure 2a–d). The CRPS
itself does not depend on the definition of the climatol-
ogy, which is manifest in the fact that the black contour
lines are the same for Figure 2a–d. Comparing the black
contours with the blue contour lines, which show the pre-
scribed detrended skill 𝛼 of our system, it also becomes
clear that the CRPS does not follow 𝛼 but instead decreases
with stronger trends (i.e., larger amounts of variance
explained by the trend). This is unsurprising and similarly,
if we were to compute a correlation between raw fore-
casts and verification, we would observe the same effect,

namely the correlation increasing with a stronger trend.
We next compute the skill score, namely the CRPSS, which
is shown by the shading in Figure 2a–d. In Figure 2a, c,
the CRPSS is computed with respect to a reference fore-
cast that assumes a stationary climatology. Clearly, the skill
score in these panels is not aligned with the detrended skill
(blue contours) either. For the hindcasts (Figure 2c), the
CRPSS follows the decrease in the CRPS exactly. For the
forecasts (Figure 2a), it increases even more strongly as a
function of the trend. The reason is that the stationary cli-
matology is a worse model in the forecast period than in
the hindcast period. While verification anomalies in the
hindcast period all lie well within the stationary clima-
tological distribution ( (0, 1)), verification anomalies in
the forecast period will regularly lie far in the upper tail
of the assumed climatological distribution when there is
a trend. These ‘outliers’ will occur more often if the trend
is stronger, making the stationary climatology a much less
competitive model during the forecast period. This again
shows the issue of a trend in the verification period: the
synthetic prediction model as we define it does not make
better forecasts for any period, and its skill is stationary.
Yet, when the skill is evaluated under the assumption of
a stationary climatology, it will be computed to be higher
during periods that lie outside of the hindcast period over
which the climatological distribution is estimated. To com-
pensate for this effect, it is possible to use a changing
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F I G U R E 2 Dependence of
skill scores on the choice of the
reference climatology in the
synthetic model. In all panels, the
skill score (CRPSS in a–d, RPSS in
e–h) is depicted by the shading. The
reference score in (a, c, e, g) is
computed from a climatological
forecast assuming a long-term
stationary climatology. In (b, d, f, h),
the long-term trend is subtracted
from the climatology. The respective
score (CRPS in a–d, RPS in e–h) of
the forecasts is shown by the black
contours. In (a, b, e, f) [c, d, g, h] the
synthetic forecasts are verified over
the forecast [hindcast] period. Blue
dashed lines indicate the prescribed
level of skill 𝛼 [Colour figure can be
viewed at wileyonlinelibrary.com]

climatology as a reference forecast instead. To illustrate
that this compensation works, the shading in Figure 2b, c
shows the CRPSS with respect to a reference forecast that
accounts for the trend in the climatology. The thus defined
CRPSS follows the detrended skill of the system (compare
shading to blue contours) exactly and thus is a more fair
estimate of the skill of the system.

Considering the RPS (black contour lines in
Figure 2e–h), we can see an additional effect to that

observed above. Note that for the definition of the ter-
cile thresholds, we assumed stationary terciles in the left
column (Figure 2e, g), but accounted for the changing
climatology in the right column (Figure 2f, h). In the
hindcast period, the changing thresholds have no effect
on the RPS (same black contours in g and h). In the fore-
cast period however, assuming stationary thresholds leads
to the estimation of very low RPS values and a strong
decrease of the score with increasing trends. Considering
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changing terciles (Figure 2f) compensates for much of
this effect. Although there is still a decrease of the RPS
with the trend, this decrease is strongly reduced com-
pared to the forecast RPS with stationary climatology
but also compared to the hindcasts (steeper black lines
in Figure 2e, g, h compared to f). When we consider the
skill score (i.e., the RPSS, shading in Figure 2e–h), we
can see that, as for the CRPSS, when we account for the
changing climatology in the reference forecast the esti-
mate of the skill comes to lie very close to the detrended
skill of the system (compare shading in Figure 2e, g
with f, h).

3.2.3 Forecast skill inflation

We saw that, in the presence of a trend, the estimated
skill of the synthetic prediction system depends on the
definition of the climatology and can vary between hind-
cast and forecast period, despite the synthetic model hav-
ing constant detrended skill. The skill increase that we
described above can be entirely explained by the changing
climatology. To measure the effect of assuming a station-
ary climatology, we define the inflation I as the difference
between the skill estimated under the assumption of a
stationary climatology SKSstat and the detrended skill of
the system SKSdetr:

I = SKSstat − SKSdetr. (17)

The inflation is thus the difference between the shading in
the left and the right columns of Figure 2 and is displayed
in Figure 3. Here, it is readily evident that the changing
climatology leads to an inflation of both the CRPSS and
the RPSS with increasing trend. The inflation is much
stronger in the forecast period (Figure 3a, c) than in the
hindcast period (Figure 3b, d), which is mainly due to the
fact that a stationary reference climatology is a poorer
model for a period outside of the hindcast period when
the climatology is in fact changing. The inflation is par-
ticularly severe when the model has little to no skill 𝛼

while I increases much less with increasing trend when
the detrended skill is high. For a forecast without any
detrended skill, the forecast CRPSS increases by approxi-
mately 0.05 for a 5% increase in trend variance. The RPSS
increases by 0.075 for a 5% increase in trend variance when
the system has no detrended skill. However, it should be
noted that the inflation as we define it in Equation (17)
is an absolute measure. We can also consider the infla-
tion relative to the actual system’s skill by dividing I by
SKSdetr. This relative inflation is mainly a function of the
trend variance. We find that the forecast (hindcast) CRPSS
is inflated by approximately 5% (3%) for a 5% increase
in variance explained by the trend. The forecast (hind-
cast) RPSS inflates more strongly at approximately 8.5%
(4%) for a 5% increase in trend variance. The increase of
the inflation with trend is well approximated by a linear
function (somewhat less so for the forecast CRPSS, not
shown) for trends that explain less than 60% of the variance
(𝜎2

Δ < 0.6).

F I G U R E 3 Skill inflation I
as defined in Equation (17) in the
synthetic model. Shading denotes
the inflation I for the skill scores
evaluated over the forecast and
hindcast periods as indicated in
the respective panel titles. Blue
contours show the prescribed
correlation 𝛼 for reference
[Colour figure can be viewed at
wileyonlinelibrary.com]

(a) (b)

(c) (d)
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When the prediction system reproduces the trend in
the verification perfectly, the scores of both hindcasts and
forecasts improve (corresponding to decreasing CRPS and
RPS) the larger the trend is. This happens despite the
fact that the model’s skill at predicting the variability on
the time-scale of interest (the detrended variability) does
not change. The decisive factor for this inflation is the
amount of variance explained by the trend 𝜎2

Δ during the
hindcast period. An increase in 𝜎2

Δ leads to an increase
in the sharpness of the prediction ensemble (i.e., a nar-
rower ensemble distribution), while the reliability of the
forecasts remains unaltered. For a categorical score like
the RPS, this effect is further exacerbated when the cate-
gories’ thresholds are considered constant over the hind-
cast and forecast periods. When computing the skill score
for these forecasts with respect to a climatological refer-
ence forecast, the non-stationarity of the time series can be
accounted for in the reference forecast to avoid inflation of
the skill scores. Only if the reference captures the changing
climatology does the skill score reflect the skill of the pre-
diction system at forecasting variability on the time-scale
of interest.

3.3 Effects of mis-estimation of the
trend in forecasts

Since we do not expect an actual prediction system to per-
fectly reproduce the observed trend, we test the sensitivity

of the skill improvement to the error in the trend. Thus, we
next allow the parameter p (Equation (15)) of our model to
vary where p < 1 means an underestimation of the trend
in the prediction system and p > 1 an overestimation. The
inflation I as a function of the trend and the mis-estimation
p are displayed in Figure 4. Note that the choice of p as
a coordinate results in lower absolute errors eΔ = 𝜎2

𝜏 − 𝜎2
Δ

occupying a larger area in the plot, which is evident from
the grey contour lines that show eΔ. For Figure 4, we use
a fixed level of 𝛼 = 0.4, which is the approximate global
average correlation skill for week 3 subseasonal 2 m tem-
perature forecasts.

Along the horizontal grey line in Figure 4 (p = 1) we
see the same increase of the skill score as in the respec-
tive panels of Figure 2. However, even when the trend
is over- or underestimated (moving up or down, respec-
tively, relative to the horizontal grey line) inflation is
generally positive. In fact, the inflation is even stronger
when strong trends are underestimated. The reason is that
SKSdetr decreases more rapidly than SKSstat with larger
mis-estimation. This effect is present in both hindcasts
(Figure 4b, d) and forecasts (a, c) but is much more pro-
nounced in the forecasts. This contrast between hindcasts
and forecasts can be explained by the fact that the fore-
casts exhibit a large unconditional bias when the trend
is more strongly mis-estimated, while the hindcasts do
not. In addition, as discussed above, a reference forecast
with a stationary climatology has more skill for larger
trends in the forecast period. The combination of the
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F I G U R E 4 Dependence of
the skill inflation I (Equation (17))
on the mis-estimation p of the trend
by the forecasts for the synthetic
model for a fixed level of detrended
correlation skill 𝛼 = 0.4. I is shown
for (a, b) the CRPSS and (c, d) the
RPSS and for both (a, c) forecasts
and (b, d) hindcasts. The shading
shows I as a function of the fraction
of variance of the verification
contained in the trend (𝜎2

Δ), and the
relative error p of the forecasts at
reproducing the trend. Grey contour
lines indicate the absolute trend
error eΔ (see text). Black lines
indicate where the non-inflated skill
SKSdetr is zero (SKSdetr is positive
between black contours) [Colour
figure can be viewed at
wileyonlinelibrary.com]
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(a) (b)

(c) (d)

F I G U R E 5 Trend (1998–2017) of 7-day mean T2m in (a, b) ERA5 and (c, d) the week 3 hindcasts. In (a, c), the trend is shown as the
fraction of variance it explains during the hindcast period (𝜎2

Δ), multiplied by the sign of the trend. (b, d) show the absolute temperature trend
(K per decade). Hatching in (a, c) shows where the trend explains more than 10% of the variance of the time series [Colour figure can be
viewed at wileyonlinelibrary.com]

aforementioned factors results in the inflation being
stronger in the forecast period and I having a tendency to
become larger for deviations of p from 1 when the actual
trend is strong.

In summary, our analyses show that the skill can
be inflated in the presence of a trend even if it is not
perfectly reproduced in the prediction system. The infla-
tion is more severe in the forecast period and espe-
cially strong – in fact stronger than if the trend were
perfectly reproduced – when large trends in the ver-
ification are underestimated by the prediction system.
For weaker and perhaps more realistic trends, how-
ever, the inflation is fairly similar for all levels of
mis-estimation.

4 TREND EFFECT IN AN
OPERATIONAL SUBSEASONAL
PREDICTION SYSTEM

In order to compare to the synthetic forecasts from
the example above (Section 3.3), we now analyse the
behaviour of the ECMWF hindcasts. We first consider the
trends of the verification (ERA5) over the hindcast period.
The trends of the standardised and absolute anomalies
are shown in Figure 5a, b, respectively. Over large parts
of the globe the 20-year trends are generally in agree-
ment with global warming signals computed over much

longer periods (compare with IPCC, 2013, e.g., figure
2.21). For instance, strong absolute temperature trends
(Figure 5b) are found in the Arctic regions, consistent with
the well-known Arctic amplification signal (Screen and
Simmonds, 2010). We can further see enhanced warm-
ing over Siberia, as well as generally stronger trends over
land than over the ocean. There is also a pronounced
lack of warming in the North Atlantic, consistent with
the North Atlantic warming hole (Drijfhout et al., 2012).
Despite these consistencies there are also some differences
to longer-term trends. Specifically, negative trends south
of South America, the relatively strong warming over large
parts of the tropical and eastern North Pacific Ocean and
some smaller-scale trend patterns are not typically identi-
fied as long-term temperature change signals. The reason
for this is that the available hindcast period (1998–2017) is
not long enough to average out decadal to multi-decadal
variability. The warming in the Pacific in Figure 5 is a
manifestation of the Pacific Decadal Oscillation having
mainly resided in its negative phase from the late 1990s
until approximately 2015 and a subsequent switch to more
positive conditions within the last couple of years (figure
1 in Newman et al., 2016). Thus, although the linear
trends computed from the hindcast period are not purely a
manifestation of global warming, they do represent devi-
ations of each grid point’s temperature time series from
stationarity during the hindcast period and can thus be
treated approximately as the trends in our synthetic model.
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In Section 3.2, we saw that the effect of the trend on
the prediction skill is determined by the amount of a time
series’ variance that is explained by the trend. The absolute
trends are thus not appropriate to identify regions where
the forecast skill could be affected by inflation. Figure 5a
shows the fraction of variance explained by the trends of
7-day mean T2m from ERA5 in the hindcast period. Clearly,
in many regions with strong absolute trends, the trends
are actually small in comparison to the week-to-week vari-
ance and thus are not necessarily contributing strongly to
the forecast skill. This is the case for large parts of the
Arctic (except for the Barents Sea and parts of the Kara
Sea) and many land areas. Instead, in terms of the vari-
ance explained by the trend, the oceans and tropical belt
show rather stronger signals. The regions where the trend
explains more than 10% of the variance are hatched in
Figure 5a. Following the synthetic model from the previ-
ous section, the hindcast skill could be enhanced by up to
5% (not accounting for a mis-estimation of the trend) and
the forecast skill could be enhanced even more strongly.
We expect the skill to be most affected by the trend in these
highlighted regions.

The temperature trends estimated from ERA5 are
reasonably well reproduced by the forecast model
(Figure 5c, d). On average, there is a weak tendency of
the model to underestimate the trends, both in absolute
terms and when considering the amount of variance
they explain. However, there are substantial spatial vari-
ations in this mis-estimation, which is discussed further
in Section 4.2. The fact that the mis-estimation is largely
similar - independent of whether we consider the abso-
lute trends or their contribution to the variance - indicates
that the total variance in ERA5 is well reproduced in the
forecast model (not shown). Although we only show the
trend computed from the hindcast temperatures at week 3
to represent a subseasonal lead time, in any other forecast
week the fraction of variance explained by the trend is
almost the same as in week 3 (not shown).

4.1 Comparison of the ECMWF system
with the synthetic model

Knowing the trend patterns in the hindcast period and
their differences in both the verification and the hindcasts,
we now assess how the probabilistic skill of the opera-
tional prediction ensemble behaves in comparison to the
synthetic ensemble from the previous section. For this, we
sort the grid points of the model by the variance explained
by the trend in the verification 𝜎2

Δ and the ratio p of the
relative trend slopes in the hindcasts and the verification
and bin the data into 100 bins in each of these dimensions
(same dimensions as in Figure 4). Note that we exclude

grid points where the sign of the trend disagrees between
the model and reanalysis (p < 0), since we did not con-
sider these cases in our synthetic model. We thus retain
approximately 91% of all grid points. We then compute the
bin-average of the inflation I of both hindcasts and fore-
casts as defined in Equation (17). These are shown for
forecast week 3 in Figure 6. Focusing first on the infla-
tion in the hindcast period (Figure 6b, d), we can see some
agreement with the synthetic model (Figure 4b, d) for both
the CRPSS and the RPSS. While the inflation is generally
low for the hindcasts, some darker green bins are located
where the trends are larger and p < 1, which indicates a
similar tendency for I in the operational hindcasts as in the
synthetic ones.

Inflation in the operational forecasts (Figure 6a, c)
shows notably stronger deviations from the simple model
(Figure 4a, c) than the hindcasts. For the forecast CRPSS
(Figure 6a), inflation is mostly positive and shows a ten-
dency to increase with stronger trends, much like in the
synthetic model. However, there is also a notable area
where I is negative. Negative values of I in the context of
the synthetic model would imply a detrended skill that
is higher than the skill estimated without accounting for
the underlying trend and hence does not occur in the syn-
thetic model for the forecast CRPSS. The reason for the
occurrence of ‘deflation’ (I < 0) lies in the violation of the
assumption that the trend estimated from the hindcast
period is continued in the forecast period. In our synthetic
model, this assumption is valid by design, which results in
the climatological reference forecast that accounts for the
trend being perfectly calibrated in both the hindcast and
the forecast periods. Additionally, accounting for the trend
results in a narrower spread of the climatology as com-
pared to one estimated under the assumption of stationar-
ity. Thus, the reference score in the synthetic model will
always be better when accounting for the trend. In real-
ity, the assumption does not hold, because a linear trend
estimated from a period of 20 years is not a robust esti-
mate of the actual long-term changes in the climate as they
are affected by other low-frequency (e.g., multi-annual to
multi-decadal) variability. As a result, the reference clima-
tology including a trend can be poorly calibrated to the
forecast period. Note, for instance, that a climatology fore-
cast that includes the trend will produce a non-zero chance
for the occurrence of previously unobserved temperatures.
Especially when the long-term temperature tendency in
the forecast period is actually weaker than estimated from
the hindcast period or even reversed, values outside of
the climatological range have a much reduced chance of
occurrence. In those cases, a stationary climatology will
be better calibrated during the forecast period than one
assuming a trend, thus presenting a more competitive
reference forecast, which results in SKSstat >SKSdetr and
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(a) (b)

(c) (d)

F I G U R E 6 Inflation I as in Figure 4 but for week 3 forecasts and hindcasts of the subseasonal model. Note the different colour scale
from Figure 4. Every grid point of the model was sorted into a bin according to the variance explained by the trend in the verification during
the hindcast period (𝜎2

Δ) and the factor p by which the trend is mis-estimated by the hindcasts. The grid point values of I are then averaged
over 100 × 100 equally spaced bins between 0 ≤ 𝜎2

Δ < 1 and 0 ≤ p < 3 (without weighting by grid-cell area). The inset in (b) shows the density
of points in each bin on a logarithmic scale (valid for all panels). The black dashed line shows where the observed trend is perfectly reproduced
by the forecasts. The black solid line shows the theoretical upper limit for p, which is pmx = 𝜎−1

Δ
(
1 − 𝛼2𝜎2

x
)

where we use the average of the
detrended correlations in the hindcasts (b, d) and forecasts (a, c) at all grid points as 𝛼 [Colour figure can be viewed at wileyonlinelibrary.com]

consequently I < 0. We also used our synthetic model to
test the effect of a trend that is different in the forecast
period than in the hindcast period and found that in these
cases it is possible to get negative inflation (not shown).

The inflation of the forecast RPSS (Figure 6c) is dom-
inated by bins with I < 0 with only few bins indicating
an actual inflation (I > 0). The reason for the occurrence
of deflation is, as for the CRPSS, the poor representa-
tiveness of the estimated trend for future low-frequency
changes in the forecast period. However, while the trend
estimate enters only in the climatological reference fore-
cast for the CRPSS, for the RPSS it also enters in the tercile
definition, which makes the RPSS much more sensitive to
inaccuracies in the climatology than the CRPSS, explain-
ing the dominance of I < 0 for the forecast RPSS, while
for the CRPSS I is still mostly positive. This stronger sensi-
tivity of the RPSS can also be seen in the synthetic model

when letting the trend in the forecast period be different
from the trend in the hindcast period (not shown). As a
result of this sensitivity, the estimated inflation of the RPSS
in the operational prediction system during the forecast
period is mainly negative.

In summary, the inflation in the hindcasts indicates
that the synthetic model captures the effect of a trend over
the hindcast and forecast periods fairly well. This confirms
the general suitability of our synthetic model to measure
the inflation due to a known long-term trend. However,
since only a small part of the bins in the 𝜎2

Δ–p domain is
populated (inset of Figure 6b) in the operational system,
direct comparison with the synthetic model is rendered
difficult. Additionally, while all hindcasts in Figure 4 have
the same level of detrended skill (𝛼 = 0.4) and the aver-
age skill over all grid points is close to 0.4, the forecasts
at individual grid points naturally have different levels

http://wileyonlinelibrary.com
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of detrended skill. For the forecasts, there is an apparent
inconsistency between the operational prediction system
and the synthetic model, especially for the RPSS. This
inconsistency is not necessarily due to the lack of real-
ism of the synthetic model. It rather reflects the fact that
the linear trends estimated from 20 years of data are poor
representations of the actual long-term non-stationarity
of the climate. The estimated trends are influenced by
multi-annual to multi-decadal variability and thus do not
realistically represent the linear change of the climatology
in the forecast period. We thus conclude that our simple
model is suitable to represent the effect of a long-term lin-
ear trend on the forecast skill, but the exact quantification
of this inflation is hampered by the difficulty of robustly
estimating the trend from a limited hindcast period.

4.2 Geographical distribution of the
trend effect in hindcasts

In addition to our above consideration of the inflation in
the ECMWF system in coordinates that facilitate compar-
ison with the synthetic model, we now consider the geo-
graphical distribution of the effect in the hindcasts. This
serves the purpose of identifying regions where inflation
could be a factor in the evaluation of subseasonal forecast
skill. In the previous section, we saw that there is negative
inflation in the forecast period, mainly as a result of mis-
matches between the estimated trends and the long-term
temperature tendency during the forecast period. To ana-
lyze the potential inflation due to trends in the data, the
hindcast period is thus more suitable, since the trend rep-
resents the optimal linear fit to the temperatures in this
period.

Figure 7a, b show the inflation of the week 3 hindcast
CRPSS and RPSS, respectively. The skill inflation is posi-
tive throughout most of the globe and consistent between
CRPSS and RPSS with the latter appearing slightly more
noisy. Generally, the magnitude of I is small (I < 0.1), but
given the low skill of the forecasts for week 3 or longer
lead times, inflation can regionally be a decisive factor in
whether a forecast has skill or not. Figure 7a, b indicate
strongest inflation in the eastern North Pacific, the south-
ern Indian Ocean, western and central Africa, and equa-
torial South America. Substantial inflation also occurs in
the central to eastern tropical Pacific, which is particularly
interesting in the light of the unresolved future changes
in ENSO under climate change, e.g., Heede et al., (2020).
Although slightly smaller in amplitude compared to the
aforementioned regions, part of the Barents and Kara Seas
appears as another regional maximum of inflation. All
these regions are highly consistent with the strongest pos-
itive relative temperature trends over the hindcast period

(Figure 5a). As was already indicated in Section 4.1, the
mis-estimation p (Figure 7c) of the trend plays only a sec-
ondary role. Comparing Figure 7c with Figure 7a, b, it
becomes clear that inflation occurs predominantly where
the ERA5 trend is well reproduced (p ≈ 1, no shading) or
underestimated (p < 1, blue shading), although it should
also be noted that areas of p > 1 are generally less abun-
dant, and even entirely absent for strong trends (also
Figure 6). In summary, skill inflation due to the pres-
ence of a trend in the hindcast period occurs to varying
degrees globally with the largest magnitudes where rela-
tive trends are strongest during the hindcast period, which
is predominantly the case in the Tropics.

5 DISCUSSION

We have used a simple synthetic forecast model to show
that probabilistic forecast skill can be enhanced in the
presence of a trend. Especially in the case of categorical
forecasts, it is already visible from a simple illustration like
Figure 1 why a trend in the verification period can have an
effect on the predicted category and thus on the skill score:
if the categories are defined as percentiles of the climato-
logical distribution and estimated under the assumption
of a stationary climate in the hindcast period, for a pos-
itive trend the upper category is more likely to occur in
the forecast period. A prediction system that knows only
this trend but has no skill at predicting variability on the
time-scale of interest will appear to have skill since its
(random) forecasts also lie in the upper category more
often. This concept was illustrated and discussed before by
Livezey, (1999, specifically their figure 10.2). Our results
confirm Livezey’s arguments quantitatively for a categor-
ical skill score, namely the RPSS. We further show that
there is an enhancement of the probabilistic skill for con-
tinuous forecasts (namely, the CRPSS) which do not rely
on the definition of categories that are estimated from the
hindcast period. We refer to the aforementioned enhance-
ment of the skill scores in the presence of a long-term trend
as inflation. While a prediction system is correct in fore-
casting higher temperatures more frequently when there
is a positive temperature trend, it is eventually up to the
forecast user to decide whether the skill that arises from
the trend justifies the use of a computationally expen-
sive dynamical model any more than the skill arising
from reproducing the seasonal cycle does. After all, a
trend can be understood as a shift or non-stationarity in
the mean of the climatological distribution and can be
estimated reasonably well from a sufficiently long past
period.

The issue of skill inflation by not accounting for vary-
ing climatologies has also been addressed by Hamill and
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Hindcast RPSS inflation week 3Hindcast CRPSS inflation week 3

week 3 trend mis-estimation p

0.0 0.4 0.8 1.2 2.0 3.0 4.0
p

I CRPSS I RPSS

(a)

(c)

(b)

0.09 0.06 0.03 0.00 0.03 0.06 0.09 0.09 0.06 0.03 0.00 0.03 0.06 0.09

F I G U R E 7 Inflation I of the (a) CRPSS and (b) RPSS of the ECMWF week 3 hindcasts of 7-day mean, standardised 2 m temperature
anomalies at every grid-point. (c) shows the mis-estimation factor p between the temperature trend during the hindcast period in ERA5 and
in the model [Colour figure can be viewed at wileyonlinelibrary.com]

Juras (2006). They showed that categorical skill scores
(both deterministic and probabilistic) can appear higher
when locations with different climatologies are pooled
to estimate the climatological reference as opposed to
accounting for the different event frequencies when scor-
ing the forecasts. Our results are in line with this finding,
the difference being mainly that we do not consider spa-
tially varying climatologies but a monotonously changing
(and thus non-stationary) climatology over the prediction
period. The effect of this monotonous change is especially
obvious for the RPSS; in case the trend is not accounted
for, the average RPSS increases when evaluating a longer
forecast period, which is at odds with our understanding
of skill. This problem is in fact one of the reasons why the
subseasonal hindcasts at the ECMWF are computed for
only 20 years instead of 30–40 years, which is a common
hindcast period for seasonal forecasts.

The hindcasts of the operational prediction system,
on average, broadly follow the behaviour of the synthetic

prediction system that we designed in terms of the effect
of a trend on the probabilistic skill. This is despite the fact
that the toy model represents a strong simplification of
the statistical properties of the operational system. Here,
we would like to point out what we consider the four
main limitations on the realism of the synthetic model
that likely play a role in causing some of the differences
with respect to the operational prediction system. The
limitations are largely coincident with those discussed by
Weigel et al., (2008) who used a similar set-up of synthetic
forecast–verification pairs.

1. The verification is drawn from a normal distribution at
every time step. Although this assumption might hold
in reality for weekly means of standardised 2 m tem-
perature in many regions of the globe, it is certainly
violated in places where temperatures are subject to
feedbacks at certain times of the year. For instance, this
could be the case for ocean regions with sea ice during

http://wileyonlinelibrary.com
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(a) (b)

F I G U R E 8 Corrected skill of the ECMWF system over a climatological reference with linearly changing mean. (a) shows the CRPSS
for week 3 forecasts initialised between 1 January 2018 and 31 December 2020 for 7-day mean, standardised temperatures with ERA5 as
verification. (b) shows the respective RPSS for tercile forecasts. Both the CRPSS and RPSS were computed with respect to a reference that
accounts for the trend in ERA5 [Colour figure can be viewed at wileyonlinelibrary.com]

parts of the year, land regions where snowmelt occurs
or places in which land–atmosphere feedbacks tend to
be relevant.

2. Just as the synthetic verification follows a normal dis-
tribution, so do the synthetic predictions. This leads to
almost perfect calibration, that is, an optimal reliabil-
ity component of the CRPS and RPS. Since we apply
a rather crude calibration to the operational predic-
tions, the reliability is certainly worse than optimal.
This affects the considered scores (Ferro et al., 2008)
and we hypothesise that the less-than-perfect calibra-
tion is responsible for parts of the deviations between
Figures 6 and 4.

3. The synthetic model has stationary skill. While we do
prescribe a change in the climatology, the skill of the
synthetic model does not change over the simulated
period. This assumption is likely violated in the oper-
ational forecasts, as has been indicated for instance
for seasonal forecast skill for the North Atlantic Oscil-
lation (Weisheimer et al., 2017). To what degree this
affects the 23-year period that we consider is diffi-
cult to quantify and could vary considerably between
regions.

4. The synthetic model only considers a linear change in
the mean of the climatology. Non-stationarity can be
assumed to be more complex and affect other moments
of the climatological distribution (e.g., Schär et al.,
2004). Related to this, the real trend itself likely exhibits
seasonal variations.

Regardless of these limitations, the synthetic model
describes the average behaviour of the hindcasts of the
ECMWF prediction system quite well.

Despite the simplicity of the synthetic model, its con-
sistency with the operational hindcasts indicates that it
is suitable to represent the potential inflation of the skill
that can be introduced by a long-term trend over the joint
hindcast and forecast periods. We also showed that this
consistency breaks down in the forecast period. Part of this
mismatch could be due the aforementioned lack of real-
ism of the synthetic model. However, we also discussed
in Section 4.1 that the trend estimated from the hindcast
period can be a poor representation of actual long-term cli-
matological changes over the forecast period (also Livezey
et al., 2007; Wilks, 2013; Wilks and Livezey, 2013). Further
analysis confirms that – rather than a lack of realism of
the simple model – this poor suitability of the trend to rep-
resent temperature changes during the forecast periods is
in fact the major reason for the inconsistency between the
synthetic model and the operational forecasts (Appendix
S1).

Furthermore, in the synthetic model, we can separate
the trend clearly from all other variability. In reality, even
if we knew there were in fact some underlying, perfectly
linear long-term change in the temperature climatology,
correctly estimating this change from a time series of only
20 years would be strongly hampered by the presence
of other low-frequency variations. A longer observational
record would provide a more robust estimate of the trend
in the verification, which could be used to get an estimate
of the potential skill inflation using Figure 3. Whether the
models reproduce this trend, however, cannot be clearly
determined from the more limited hindcast period but
matters for the strength of the inflation. This makes a real-
istic estimation of the inflation in any prediction system
difficult.

http://wileyonlinelibrary.com
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Finally, keeping in mind that the estimation of the
inflation effect is made difficult by the fact that the trend
cannot be robustly estimated from the 20-year hindcast
period, we compute the corrected global skill estimates
for ECMWF week 3 forecasts initialised between 2018
and 2020. Figure 8 shows the CRPSS and RPSS for the
7-day mean, standardised temperatures with ERA5 as ver-
ification, indicating where the forecasts have skill over a
climatological forecast that accounts for linear changes in
the mean. The overall pattern is very similar between the
CRPSS and the RPSS, with generally higher skill over the
ocean and in the Tropics. The reason for the enhanced skill
over the ocean is the longer persistence of ocean anoma-
lies. In the Tropics, the atmosphere additionally exhibits
strong coupling with the ocean, which is the major cause
for the extended predictability of phenomena like the
ENSO and the MJO. The remote influence of these highly
predictable phenomena is likely responsible for parts of
the enhanced week 3 skill in extratropical regions like the
North Pacific and west of Australia. Week 3 forecast skill
is also high in the Barents and Kara Seas but note that the
observed large and potentially nonlinear long-term tem-
perature changes in this region likely have an effect on the
forecast skill that goes beyond the inflation we accounted
for (Section 4.2).

6 CONCLUSION

A trend in a time series represents a non-stationary com-
ponent in the climatology. We have shown that a simple
linear trend can improve the forecast skill of a toy fore-
cast even in the absence of any actual predictive skill on
the time-scale of interest. This skill ‘inflation’ is a func-
tion of variance explained by the trend but also of the
mis-estimation of the trend in the prediction system. The
effect is present both in skill estimates based on categorical
scores (here, the RPSS) and continuous scores (CRPSS).
The effect is stronger for the RPSS and is further enhanced
when averaging the RPSS over a longer forecast period.
The reason for the strong sensitivity of the categorical skill
is that the estimate of the climatology enters both in the
reference forecast and in the determination of the category
thresholds. In a simple synthetic model that simulates
the overall statistical properties of an ensemble forecast-
ing system, the forecast (hindcast) CRPSS is enhanced
by 5% (3%) for a 5% increase in trend variance while the
forecast (hindcast) RPSS is enhanced by 8.5% (4%) per
5% in the chosen set-up. The inflation can become even
stronger if the trend is mis-estimated in the synthetic fore-
casts relative to the trend in the verification. The inflation
simulated by the synthetic model is in good agreement
with the average effect in the hindcasts of an operational

prediction system (the ECMWF extended-range
forecasting system). In the forecast period, the estimation
of the inflation is strongly hampered by the difficulty to
robustly estimate the true trend from a limited hindcast
period of 20 years and the influence of other low-frequency
variations on the estimated trend. The inflation is strongest
in the Tropics where the trend accounts for a larger part
of the variability than in other regions, which is consistent
with the simple model. Even though we here focus on sub-
seasonal forecasts, our results can be generalised to some
degree to forecasts at any time-scale and lead time. The
trend effect is a function of the signal-to-noise ratio, that
is, the trend relative to the internal variability on the con-
sidered time-scale. Thus, considering for instance decadal
forecasts where annual means are predicted, we would
expect to see a stronger effect of the trend than for the pre-
diction of weekly means in subseasonal forecasts, mostly
because interannual temperature variance is expected to
be lower than weekly variance, which results in a larger
fraction of total variance being explained by the long-term
trend. Similarly, spatial aggregation has an effect on the
signal-to-noise ratio and thus the effect on skill scores of
regional averages will be different than shown here, even
when the same time-scale is considered, since the trend
could make up for larger parts of the variance of spatially
aggregated data. The results of our synthetic model allow
for a simple benchmark estimate of the contribution of a
(known) long-term trend on the skill of a forecast. It can be
argued that this potential increase needs to be accounted
for when reporting the skill of a forecast. We here call
this skill increase inflation since – similar to the seasonal
cycle, which is usually subtracted before computing the
skill – the trend can be estimated from a sufficiently long
observational record without the need for a dynamical
prediction system. In reality, however, it is not straight-
forward to accurately quantify the inflation of the forecast
skill because the trend can often not be estimated robustly
from the available hindcast periods. We nevertheless think
that forecasters should be aware of the potential effect
that a changing climatology can have on the forecast skill
because clearly communicating where the forecast skill
stems from will enhance the users’ confidence in forecast
products.
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