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ABSTRACT

Hydrocarbon reservoirs are often located in spatially complex
and uncertain geologic environments, where the associated costs
of drilling wells for exploration and development are notoriously
high. These costs may be reduced with an optimized well-place-
ment strategy based on real-time geologic information, known
as well geosteering. To effectively place the well in an updated
geomodel and support well geosteering decisions in real time,
we apply an iterative inversion approach based on the Leven-
berg-Marquardt form of the ensemble randomized maximum
likelihood method. The method estimates geomodel properties
together with their uncertainties by reducing the statistical misfit
between the measurements acquired with well-logging tools

and the predicted measurements from numerical simulations.
Analyses of synthetic cases indicate that the method’s reliability
and computational speed depend on the distance from the logging
tool to formation boundaries, the contrast of model properties,
and the thickness of formation layers. Our method delivers reli-
able estimates of model properties with only 40 ensemble mem-
bers and 2–10 iterations; hence, it is approximately 10–125 times
faster than Metropolis-Hastings Monte Carlo, which we use as a
baseline condition given its proven track record. Likewise, our
method is amenable to parallelization to further reduce computa-
tional times. Implementation of the method with a synthetic ex-
ample inspired by a historical well geosteering operation yields
accurate formation evaluation and verifies its accurate and reliable
performance under complex geologic conditions.

INTRODUCTION

Recently, well geosteering has emerged as a method to optimally
position wells in real time and significantly increase future production
(Kullawan et al., 2014). Accurate estimation of uncertainty in geomo-
dels while geosteering improves decisions and yields optimal well
placement (Hermanrud et al., 2019). Practical well geosteering work-
flows were proposed by Chen et al. (2015), Kullawan et al. (2018),
and Alyaev et al. (2019). All of these workflows have two main re-
quirements: quantification of the uncertainties in model properties and
a computationally efficient inversion algorithm. However, traditional
deterministic and gradient-based inversion methods do not provide
uncertainty quantification. In addition, correctness of the updated

properties depends on the initial guess and regularization. Alterna-
tively, methods based on Markov chain Monte Carlo (MCMC), such
as Metropolis-Hastings, avoid these problems completely by itera-
tively reducing the error between the available measurements and
the corresponding forward-simulated measurements for different geo-
model realizations. Such methods deliver an optimal inverse solution
and simultaneously estimate the uncertainties in the estimated mod-
eled properties. However, such comprehensive brute-force approaches
require the simulation of typically hundreds of thousands of geomo-
dels (Metropolis et al., 1953; Bottero et al., 2016), which are computa-
tionally expensive. This condition is far from optimal for real-time
analysis while geosteering.
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To mitigate this problem, several research groups have proposed
effective methods, such as the Hamiltonian Monte Carlo method
(Shen et al., 2017) and the Bayesian inference approach (Deng et al.,
2019), to reduce the sampling space without reducing the accuracy of
the final solution. These approaches can be applied in a geosteering
time-constrained setting, but they do not quantify uncertainties of bed-
boundary locations. Ensemble-based methods, including the ensemble
Kalman filter (Evensen, 1994; Aanonsen et al., 2009), are faster alter-
natives to MCMC, which also estimate multiple properties along with
their uncertainties. Chen et al. (2015) and Luo et al. (2015) implement
ensemble-based methods for joint estimation of bed-boundary loca-
tions and petrophysical properties in a geosteering setting, but their
study was limited to synthetic electromagnetic (EM) tools.
In this study, we implement an iterative ensemble-based method,

the Levenberg-Marquardt ensemble randomized maximum likelihood
(LM-EnRML), and verify that this method is reliable for real-time in-
version and uncertainty quantification of different geophysical bore-
hole measurements (i.e., well logs). We accomplish this by estimating
bed-boundary locations and petrophysical properties concomitantly
with their uncertainties, across thinly layered formations exhibiting
large property contrasts. In the presented examples, we use shal-
low-sensing nuclear density and (extra) deep-sensing borehole EM
measurements. Shallow-sensing nuclear density logs are used to esti-
mate the fine-scale properties of the beds close to the well, whereas
deep-sensing EM measurements provide information about formation
boundaries and properties at a coarser scale farther away from thewell.
In the following section, we describe our proposed ensemble-

based method. Then, using a series of synthetic examples, we verify
the reliability, robustness, and computational speed of the proposed
method. In one example, rock density is an uncertain model prop-
erty, whereas, in the remaining examples, layer resistivity and bed-
boundary locations are uncertain. Finally, we consider a formation
model inspired by a historic well geosteering operation in the Goliat
field in the Barents Sea, where resistivity and depths of bed boun-
daries are uncertain. The posterior uncertainty of the estimated
model properties is quantified in all cases. We compare our results
with the MCMC method (Metropolis et al., 1953), given that the
latter is a well-established method with high accuracy, albeit slow.

METHOD

An ensemble-based method is used to estimate the posterior
mean of the uncertain model properties (i.e., formation boundaries
and petrophysical properties) and to quantify their uncertainty.
Here, an ensemble of geomodels, consisting of samples drawn from
a Gaussian prior distribution, are conditioned to noisy measurement
using Bayes’ rule, assuming that the measurement error is Gaussian.
An approximate posterior distribution is obtained by solving the
following minimization problem:

min
xj∈R

�
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2

�
xj−x

prior
j

�
TΣ−1

x

�
xj−x

prior
j

�

þ1

2
ðgðxjÞ−djÞTΣ−1

d ðgðxjÞ−djÞ
�
; (1)

where the subscript j is the index of the ensemble member, xj is a
geomodel ensemble member from the posterior, xpriorj is a geomodel
ensemble member from the prior, Σx is the covariance matrix for
the prior ensemble, dj is a realization of the noisy measurements,

and Σd is the covariance matrix for the Gaussian noise in the observed
measurements. The function gð:Þ is the forward simulator and rep-
resents the relationship between the model properties xj and the nu-
merically predicted measurements. When gðxÞ is nonlinear,
equation 1 must be solved iteratively. To this end, we use the Leven-
berg-Marquardt algorithm.
Our predicted measurements are nuclear density measurements

from the simulator developed by Mendoza et al. (2010) and (extra)
deep-sensing EM measurements from a deep neural network
(DNN) method (Alyaev et al., 2021) that approximates the results
of an EM simulator. The DNN is trained by using data sets from a
high-fidelity physics-based simulator with software provided by the
tool vendor (Sviridov et al., 2014).

Algorithm

Our algorithm (Algorithm 1) is based on the method introduced
by Chen and Oliver (2013). Its two main parts are the initialization
and the update procedure.

Initialization

To minimize equation 1, our algorithm starts in line 2 by setting
the initial guess x0;j equal to the prior ensemble xpriorj . The distri-
bution of the prior sample is Gaussian with mean xprior, covariance
Σx, and Ne realizations. The initial predicted measurements d0;j are
the output of the forward function gðx0;jÞ. Afterward, in line 3, the
ensemble of observed measurements dj is generated by adding real-
izations of Gaussian noise ϵj to the observed logging-while-drilling
measurements dtrue;j. Then, in line 4, we calculate the initial data
misfit and use this to set the initial value of the Levenberg-Mar-
quardt damping factor λ (line 6).

Update

The update of the model properties from minimization of equa-
tion 1 using the Levenberg-Marquardt method at the lth iteration is
given by

δxl; j ¼ −ðð1þ λlÞΣ−1
x þ GT

l−1Σ−1
d Gl−1Þ−1

×
h
Σ−1
x ðxl−1;j − xpriorj Þ þGT

l−1Σ−1
d ðgðxl−1; jÞ − djÞ

i
; (2)

where Gl−1 is the sensitivity of measurements to model properties,
which is calculated as the differentiation of function gðxl−1Þ with
respect to model properties xl−1. By neglecting the terms containing
the property mismatch and applying the Sherman-Woodbury-Mor-
rison matrix inversion formulas (Sherman and Morrison, 1950), in
equation 2 we obtain

δxl;j¼−ΣxGT
l−1

h
ð1þλlÞΣdþGl−1ΣxGT

l−1

i
−1ðgðxl−1;jÞ−djÞ:

(3)

Following Gu and Oliver (2007), we approximate Gl−1 from the
ensemble as

Gl−1 ¼ Σ1∕2
d ΔDl−1ðΔXl−1Þ−1; (4)

whereΔXl−1 is the centered and scaled ensemble of model properties
at the ðl − 1Þth iteration, and ΔDl−1 is the centered and scaled
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ensemble of predicted measurements at the ðl − 1Þth iteration. The
term ΔXl−1 is calculated in line 12 as

ΔXl−1 ¼
h
xðl−1;1Þ; : : : ;xðl−1;NeÞ

i�
INe

−
1

Ne
AAT

�
∕

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne−1

p
;

(5)

where ½xðl−1;1Þ; : : : ; xðl−1;NeÞ� is the Ne members of the ensemble of
model properties, INe

is the Ne × Ne identity matrix, and A ∈ RNe is
the column vector of ones. Thereafter, in line 13, ΔDl−1 is calculated
as

ΔDl−1 ¼
h
gðxðl−1;1ÞÞ; : : : ;gðxðl−1;NeÞÞ

i�
INe

−
1

Ne
AAT

�
∕

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne−1

p
;

(6)

where ½gðxðl−1;1ÞÞ; : : : ; gðxðl−1;NeÞÞ� is the ensem-
ble of predicted measurement, i.e., the result of
applying the forward simulator gð:Þ to the ensem-
ble of model properties at the ðl − 1Þth iteration.
Following Chen and Oliver (2013), we estimate
Σx in the Hessian term of equation 3 from the en-
semble using

Σx ¼ ΔXl−1ΔXT
l−1: (7)

Note that equation 7 is a positive semidefinite ma-
trix, and it is different in each iteration.
To stabilize the method, in line 14, we perform

truncated singular-value decomposition (SVD)
of ΔDl−1 as

ΔDl−1 ¼ UpSpVT
p; (8)

where the subscript p denotes the truncation. In
this numerical study, we sort the singular values
in descending order and retain the first p values
such that the sum of the first p values corre-
sponds to 99% of the sum of all singular values.
The remaining singular values, with their corre-
sponding singular vectors, are discarded. Hence,
we keep 99% of the information (Anderson et al.,
1999). By inserting equations 5–7 into equation 3
and simplifying, we obtain

δxl; j ¼ −ΔXl−1ΔDT
l−1½ð1þ λlÞId

þ ΔDl−1ΔDT
l−1�−1Σ−1∕2

d

	
gðxl−1;jÞ − dj



:

(9)

Insertion of the SVD from equation 8 into equa-
tion 9 gives

δxl;j ¼−ΔXl−1VpSp
h
ð1þ λlÞIp

þS2p
i
−1
UT

pΣ
−1∕2
d ðgðxl−1;jÞ−djÞ; (10)

which is the update equation in line 16. Equa-
tion 10 is repeated until the stopping criteria

(c) are reached (see lines 11–21). Here, we stop the iteration when
the relative improvement in data misfit is below a predefined thresh-
old. To improve the convergence behavior, the first term of equa-
tion 2 is modified with a multiplier λ, which is calculated first in line
6 and is used in line 16. For each iteration that provides a reduction
of the objective function, we set λlþ1 ¼ λl∕10 (line 24).
The output of the update procedure is an ensemble of models that

approximately sample the posterior distribution of the model prop-
erties. The estimated model properties with their corresponding un-
certainty are obtained from the mean and standard deviation of the a
posterior ensemble, respectively.

SYNTHETIC EXAMPLES

In this section, we verify that the proposed ensemble-basedmethod
is reliable, robust, and computationally efficient for interpreting

Algorithm 1. Pseudocode for the ensemble-based workflow.

1: procedure INITIALIZE

2: x0;j←xpriorj ; d0;j←gðx0;jÞ; for j ¼ 1; : : : ; Ne;

3: dj←dtrue þ ϵj; for j ¼ 1; : : : ; Ne;

4: O0←
1
Ne

PNe
j¼1ðd0;j − djÞTΣ−1

d ðd0;j − djÞ;
5: l←0;

6: λl←10
Floor

	
log10

O0
2Nd



;

7: end procedure

8: procedure UPDATE

9: function LM-EnRML (lmax; c; γ)

10: l←1; ▹ Set the iteration number

11: while l < lmax do

12: ΔXl−1←
�
xðl−1;1Þ; : : : ; xðl−1;NeÞ

��
INe

− 1
Ne

AAT
�
∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne − 1

p
;

13: ΔDl−1←
�
gðxðl−1;1ÞÞ; : : : ; g

	
xðl−1;NeÞ


��
INe

− 1
Ne

AAT
�
∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ne − 1

p
;

14: UpSpVT
p←ΔDl−1;

15: for j ¼ 1; : : : ; Ne do

16: xl;j←xl−1;j − ΔXl−1VpSp½ð1þ λlÞIp þ S2p�−1UT
pΣ

−1∕2
d ðdl−1;j − djÞ;

17: dl;j←gðxl;jÞ;
18: end for

19: Ol←
1
Ne

PNe
j¼1ðdl;j − djÞTΣ−1

d ðdl;j − djÞ;
20: if Ol ≤ Ol−1 then

21: if 1 −Ol∕Ol−1 < c then

22: Exit;

23: else

24: λlþ1←λl∕γ;
25: l←lþ 1;

26: end if

27: else

28: λlþ1←λl × γ;

29: xl;j←xl−1;j; dl;j←dl−1;j; for j ¼ 1; : : : ; Ne;

30: end if

31: end while

32: end function

33: end procedure
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shallow-sensing density and (extra) deep-sensing EMwell logs while
quantifying uncertainty. First, we construct synthetic examples in
which our method is applied to estimate layer bulk densities (using
density logs), and resistivities and bed-boundary locations (using EM
logs). We then consider a case inspired by the Goliat field; the method
uses (extra) deep EM logs to estimate layer resistivity and bed-boun-
dary locations. We evaluate the computational efficiency of our
proposed ensemble method by performing the same example with
the Metropolis-Hastings Monte Carlo method (Metropolis et al.,
1953), which is the most commonly used MCMC method.

Bulk density estimation

In this example, we interpret density logs acquired across thinly
laminated formations by constructing a synthetic case (see Figure 1)
with layer thicknesses alternating between 0.5 and 5.5 m. Each
layer has a uniform density of 2.5 (thin layers: thicknesses are less
than 2 m) or 2.7 g∕cm3 (thick layers: thicknesses are between 4
and 5.5 m).
The prior ensemble is a realization of density in each layer, and it

is modeled with a Gaussian distribution. We run two cases, one with
an ensemble of 50 realizations and another with 100 realizations.
The estimated density is given by the mean of the posterior ensem-
ble, whose standard deviation expresses the estimate’s uncertainty.
Density measurements are generated from the numerical simulation
of the synthetic model. We construct the measurement ensemble by
sampling a Gaussian with standard deviation equal to 1.5% of the
available measurements. In this example, the well path is vertical,
whereas well logs are acquired at each meter along the depth of
the well.
Figure 2 shows the posterior ensemble realizations (case with 50

realizations), their mean (i.e., the estimated density from LM-
EnRML), the density estimated by the MCMC method, and the true
value for each layer. The figure shows that, for each layer, true den-
sity lies within the posterior ensemble and is close to its mean.
Our estimates also agree well with the MCMC method, which

used 10,000 sampling steps, but only three iterations of equation 10
were sufficient to achieve convergence for our LM-EnRML
method. Increasing the number of realizations from 50 to 100 does

not yield a significant improvement; hence, 50 realizations are
considered sufficient. This yields a total of 150 forward runs com-
pared with the 10,000 of MCMC; the proposed method is 67 times
computationally less expensive than MCMC.
Shoulder-bed effects, which refer to the effect of adjacent beds on

well logs, are stronger across thin beds, especially when the thick-
ness of a layer falls below the tool’s resolution (Torres-Verdin et al.,
2010; Masoudi et al., 2017). In our density simulator, shoulder-bed
corrections are not applied to well logs acquired across thin beds.
Therefore, the uncertainty of identifying formation properties in-
creases across thinly bedded formations. This effect also is visible
in Figure 2.

Resistivity estimation

In this example, we verify the speed and accuracy of the pro-
posed method to estimate layer resistivities and bed-boundary lo-
cations of a geomodel with horizontally homogeneous and
isotropic layers. Deep-sensing EM measurements are generated
from the simulation of the synthetic geomodel. The measurement
ensemble has a standard deviation equal to 1%–3% of the ob-
served measurements. Furthermore, the well path is defined by
its inclination, and well logs are acquired at each meter along
the measured depth (MD) of the well.
Using three synthetic conditions, we study the sensitivity of the

method to three properties: (1) distance between logging tool and
layer boundaries, (2) property contrast across layer boundaries, and
(3) layer thicknesses. The three synthetic cases are as follows:

1) variable distance between logging tool and layer boundaries
2) formation layers with high-resistivity contrast (3 versus

50 ohm-m)
3) layers with variable thickness (0.7–10 m).

Figure 1. A synthetic earth model: layer thicknesses alternating be-
tween 0.5 and 5.5 m. The dashed red lines indicate the true bulk
density of each layer.

Figure 2. Estimated bulk density (g∕cm3) with MCMC and our en-
semble method with 50 realizations. The lower box includes only
and all thin layers.
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Case 1: Variable distance

In Figure 3, the tool is moving toward a high-resistivity target
layer, passing through a low-resistivity layer above it. Distance from
the tool to the target layer’s upper boundary decreases from 18 (at
true vertical depth [TVD] 1522 m) to 1 m (TVD 1539 m). The ob-
jective is to calculate the distance from the tool to the bed boundary
and quantify its uncertainty. The ensemble used for this example has
100 realizations of the depth of the bed boundary with a prior stan-
dard deviation of 2.5 m.
Figure 4 shows the posterior distribution of the estimated upper

and lower boundaries of the target layer versus the distance from the
logging tool. Standard deviations of each posterior distribution are

shown in Figure 5; as expected, uncertainty increases when the log-
ging tool is farther away from bed boundaries.
From Figure 5, it is clear that the uncertainty of the position

of upper and lower boundaries decreases as the tool comes closer.
Results indicate that the estimation of distance to the nearest
(i.e., upper boundary) is accurate because the mean of the posterior
realizations is always close to the true value. This behavior agrees
with the study by Larsen et al. (2019), who report similar bed-boun-
dary detection results.

Case 2: Resistivity contrast

We now consider the geomodel in Figure 6. It contains six hori-
zontal layers with a high contrast in resistivity among them, alter-
nating between 3 and 50 ohm-m. The first five layers from the top
are drilled with a high angle (90°–80°), then the well path becomes
nearly horizontal such that the bottom layer is not penetrated by the
well trajectory.
We use an ensemble of 40 realizations and perform five iterations,

giving a total of 200 forward runs. The plot in Figure 7 displays the
resulting prior and posterior ensembles. Only in the first layer does
the ensemble provide a good estimate within the 2% range of meas-
urement noise; results are less reliable in other layers, especially those
with higher resistivity. The estimated properties in layers with higher
resistivity also exhibit a visibly larger ensemble spread, which is
highest in the last layer located farthest away from the tool. The rea-
son for such a high uncertainty is that, for the same EM logging tool
configuration, the measured EM signal in the resistive formation
cases is weaker compared with the conductive formation cases.
This condition results in a reduced EM tool’s sensitivity to the high
formation resistivity.

Figure 3. Synthetic case 1: the tool gradually approaches the target
layer.

Figure 4. Synthetic case 1: dashed lines indicate the true distance from (a) the upper and (b) lower boundaries of the target layer (see Figure 3),
and dots represent the ensemble realizations, 100 at each step.

Ensemble-based well-log interpretation IM61

Downloaded from http://pubs.geoscienceworld.org/geophysics/article-pdf/87/3/IM57/5603868/geo-2021-0151.1.pdf
by Norwegian Research Centre NORCE user
on 09 June 2022



Figure 8 compares the ratio of standard deviations of prior and
posterior ensembles, and it shows that the uncertainty decreases
after the update. Layers with higher resistivity exhibit consistently
higher standard deviation in comparison with other layers. The low-
est standard deviation is found in the fifth layer and is due to the
high number of measurements in this layer because it is in this layer
that the well path becomes nearly horizontal (see Figure 6). The
estimated resistivity in the bottom layer, farthest from the logging
tool, exhibits visibly higher standard deviation.

Case 3: Variable layer thickness

To verify the method’s applicability across thin layers, we
consider a synthetic case with different layer thicknesses, ranging
from 0.7 to 10 m. To focus only on the effects of layer thickness,

Figure 5. Synthetic case 1: posterior standard deviation of the es-
timations of the target layer’s upper and lower boundaries versus
distance between each boundary and the logging tool.

Figure 6. Synthetic case 2: geomodel with high-resistivity contrast.

Figure 7. Synthetic case 2: estimated layer resistivities compared with true and prior values. The 2% bands around the true value represent
measurement noise.

Figure 8. Synthetic case 2: standard deviation of the prior and pos-
terior ensembles.
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resistivity is set to 50 ohm-m in all layers. The well path inclination
is 80°. We use 100 realizations, in which the mean resistivity of the
prior model is 45 ohm-m and the measurement error is 3%, applied
as standard deviation to the observed measurements.
Results are plotted in Figure 9, in which we observe that thin

layers give rise to an estimate with a noticeably higher uncertainty.
This behavior is evident from the plot of standard deviations versus
layer thickness of Figure 10. Such a general trend can be explained
by the low number of data points acquired within thin layers and the
associated shoulder-bed effects.

Simplified field example: Goliat field paradigm

In this section, we test our method on a case inspired by a real
geosteering operation in the Goliat field, located in the Barents Sea,
as described by Larsen et al. (2015). The geomodel, shown in Fig-
ure 11, covers a small section without faults before the well lands in
the drilling target layer in the Upper Kobbe Formation. The forma-
tion includes thin layers and high-resistivity contrasts. Compared to
the actual formation, the earth model and the well path have been
rotated 5° to make the layering horizontal. The well path is from
MDs 1000 to 1105 m, sampling a total of 106 positions along
the well path. Well inclination increases with depth from 80° to 85°.
Unknown model properties are layer resistivities and boundary

depths, and they are estimated simultaneously. We construct the
measurement ensemble by sampling a Gaussian with standard
deviation equal to 1% of the observation value. The prior ensemble
has 100 realizations, with standard deviations of 3% for resistivities
and 0.25% for bed boundaries (which, for the depths considered in
Figure 11, is approximately 2.5–3.2 m).

Resistivity estimation

Figure 12 shows the standard deviation of the resistivities of the
prior and posterior ensemble. In general, uncertainties decrease after
the update, although not significantly for the two bottom layers,
which are located farther away from the tool. This behavior is

expected because the sensitivity of the EM tool decreases with
distance to the layers.
The posterior resistivity distribution for each layer is shown in

Figure 13, normalized to the true value. True resistivity values
of layers 4 and 6 lie inside the interquartile range of the posterior
ensemble, with layer 3 barely outside.
Layer 5, which is the first layer below the tool, has an estimated

resistivity between the prior estimate and the true value, and the
lowest standard deviation of all layers. This result is consistent
with layer 5 having the lowest true resistivity. As observed in case
2, low resistivities give rise to lower uncertainties because the EM
response from conductive formations is relatively stronger. Con-
versely, the second layer’s high standard deviation is due to its high
resistivity, in addition to it being a thin layer.

Figure 9. Synthetic case 3: estimated resistivity for variable layer
thickness.

Figure 10. Synthetic case 3: standard deviation of the resistivity
estimates shown in Figure 9.

Figure 11. Approximation of the geology near the well landing
point for the case from Larsen et al. (2015) (MD of 1000 corre-
sponds to ×000 in Larsen et al. [2015]). The target layer is the sec-
ond to last from the bottom.
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Figure 14 compares the estimated resistivity from the ensemble
method with the resistivity obtained using the Metropolis-Hastings
Monte Carlo method (Metropolis et al., 1953) and with the true re-
sistivity. Estimated resistivities using the Metropolis-Hastings
Monte Carlo exhibit higher accuracy for the first two top layers.
For layers 3 and 4, both methods show comparable accuracy be-
cause there are enough data from the measurement sampling points.
Neither of the methods are reliable in estimating the resistivity of
the bottom layer due to lack of data.
The ensemble-based method requires 3–5 iterations, yielding

300–500 runs of the forward simulators. By comparison, Metropo-
lis-Hastings Monte Carlo requires at least 10,000 runs of the

forward simulator to minimize the data misfit and estimate the
resistivity with comparable accuracy.

Bed-boundary estimation

The ensemble method can simultaneously estimate multiple
unknowns. In this example, we estimate bed-boundary locations
along with layer resistivities. The relative standard deviation of
bed boundaries in the prior ensemble is 0.25%, equivalent to ap-
proximately 2.5–3.2 m.
The posterior standard deviation, shown in Figure 15, signifi-

cantly decreases compared to the prior one for boundaries 2–5.
Boundaries 1 and 6–8, which are located farther away from the tool
are, as expected, more uncertain.

Figure 12. Prior and posterior standard deviations of layer resistiv-
ities.

Figure 13. The posterior resistivity distributions normalized to their
respective true values. For comparison, the mean of the prior ensem-
ble also is included. The boxes indicate the interquartile range (the
middle 50% of data points), with a line representing the median.
The whiskers extend at most 150% of the interquartile range.

Figure 14. Resistivities estimated by the ensemble-based method
(prior and after five iterations) and the Metropolis-Hastings Monte
Carlo method (10,000 iterations) compared to the true value.
The plots are split between low- and high-resistivity layers for
readability.
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CONCLUSION

In this paper, we proposed an ensemble-based method for petro-
physical inversion based on the iterative LM-EnRML and verified it
on several petrophysical inverse problems. It can simultaneously
estimate bed-boundary locations and layer petrophysical properties
from noisy measurements, in addition to providing uncertainty es-
timates at no extra computational cost. Results indicate that the
method reduces uncertainties in the depths of layer boundaries
and petrophysical properties within the depth of investigation of
well-logging tools. Estimation results are less precise in geologic
models that include thin layers and rock formations with highly re-
sistive layers, and in layers farther away from the logging tool.
The main advantages of the proposed method are (1) the number

of forward simulations required is at least 20 times lower than for
a standard Metropolis-Hastings MCMC method while yielding
similar results and (2) the method is amenable to parallelization,
making it especially attractive for computationally expensive appli-
cations when performance time is critical. Such applications include
real-time ensemble-based interpretation while geosteering, training
of machine-learning models, real-time testing of geologic hypoth-
eses against the measurements, and other applications in which
a large number of forward simulations is needed within a lim-
ited time.
Finally, we emphasize that our implementation enables the pos-

sibility of joint inversion of multiple well logs in the same frame-
work, enabling consistent, unbiased, and effective interpretation of
multiple types of while-drilling measurements for real-time geo-
steering decision support.
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