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A B S T R A C T   

Geological CO2 storage is expected to grow dramatically in the coming decades to meet global climate targets. 
Assessment of worldwide storage resources using static methods indicates significant theoretical potential for 
large-scale deployment. Dynamic capacity estimates are needed at the basin-scale that fully capture the impact of 
geological uncertainty and account for regional limits on pressure buildup. Accurate quantification of the risk of 
low or critically low capacity under extreme occurrences of heterogeneity will be increasingly important. There 
are significant challenges associated with efficient computation of low probability capacity within Monte Carlo 
frameworks at these scales. In this paper, we propose a workflow for uncertainty quantification that is able to 
efficiently estimate increasingly outer percentiles of dynamic capacity such as P1, P0.1, or even lower probability 
events. Our approach is based on the rare-event methodology that uses a subset simulation approach to 
concentrate sampling of the parameter space in the tail regions of the capacity distributions. This approach 
greatly speeds up uncertainty quantification for very small probabilities compared to standard Monte Carlo. We 
demonstrate the method by introducing a correlated heterogeneity field to a highly prospective basin-scale 
system that can support regional injection rates of 100 million tons annually. We find that the outer quantiles 
are more sensitive to the underlying geostatistical model compared to the median P50 capacity. This implies that 
for large-scale systems, well characterized heterogeneity is essential to identify the likelihood of very rare yet still 
relevant dynamic estimates of storage capacity.   

1. Introduction 

Millions of tons of CO2 emissions have been stored successfully at 
various sites around the world over the past several decades (Page et al., 
2020). However, a dramatic scale-up of carbon capture and storage 
(CCS) is needed to realize the recommended emissions pathways laid out 
by the Intergovernmental Panel on Climate Change (IPCC) (Masson--
Delmotte et al., 2018). Scale-up analyses indicate that CO2 storage 
deployment at current growth rates could achieve 350 gigatonnes (Gt) 
stored by 2100, implying global injection rates approaching 20 Gt/y by 
the end of the century (Zahasky and Krevor, 2020). This exponential 
growth of CO2 storage will rely on economies of scale in order to manage 
deployment costs, and therefore future storage development will likely 
become concentrated within a few large sedimentary basins. Develop-
ment of several strategic continental margins at rates consistent with 
historic petroleum development could feasibly achieve > 100 Gt CO2 
stored by 2050 (Ringrose and Meckel, 2019). 

Basin-scale storage development involves maturing static capacity 

assessments for sedimentary basins (e.g. Bentham et al. (2014); Halland 
et al. (2014); Gray, 2015) through the use of dynamic simulation. The 
CO2 Storage Resource Management System (SRMS) (Frailey et al., 2017) 
prescribes a process for maturing estimates that involves quantification 
of P10, P50 and P90 statistical quantiles to assess the impact of geologic 
uncertainty. However, the computational challenges associated with 
basin-scale dynamic capacity estimation are significant. Simulation 
grids should cover extensive areas on the order of 104 km2 and consider 
multiple simultaneous storage sites. Multiphase flow processes associ-
ated with CO2 injection and trapping within heterogeneous and 
geological complex systems must be considered. And finally, the un-
certainty associated with a large number of geological parameters is 
significant, requiring 1000s of simulations within a Monte Carlo type 
framework to produce reliable estimates of expected capacity. Esti-
mating very rare but important occurrences of critically low, 
extreme-case capacities would require significantly larger number of 
simulations, as the number of simulations required is inversely propor-
tional to the probability of the occurrence of the event of interest. 
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At the basin-scale, pressure is an important factor determining ca-
pacity that must be considered in addition to CO2 containment (Bir-
kholzer et al., 2015). Basin-scale capacity can be limited by pressure due 
to a number of factors, including multi-site pressure interference (De 
Simone and Krevor, 2021), geologic boundaries (Zhou and Birkholzer, 
2011), groundwater protection (Birkholzer et al., 2011) and fault reac-
tivation (Williams et al., 2014). While modeling and process under-
standing for these pressure-driven risks have advanced significantly in 
recent years, the added impact of permeability heterogeneity and 
associated uncertainty is less well known. Assessing the impact of het-
erogeneity involves a combination of two computationally intensive 
steps: (1) static geological modeling and (2) large-scale multiphase 
simulation. Despite the added challenges of incorporating uncertainty in 
heterogeneity, the use of uncertainty quantification for capacity esti-
mation has received increasing attention. At the local scale of a single 
storage site, the impact of uncertainty on pressure-constrained capacity 
has been performed for synthetic shallow-marine depositional envi-
ronments (Ashraf, 2014) as well as for realistic storage sites (Deng et al., 
2012). A study of Rock Springs Uplift in Wyoming (Pawar et al., 2017) 
demonstrated that uncertainty in permeability heterogeneity signifi-
cantly impacts the extent of the pressurized area, or Area of Review 
(AoR). The authors point to the difficulty in constraining permeability 
uncertainty leads to significant uncertainty in the estimated AoR. 

While site-scale studies may test 10s to 100s of stochastic realizations 
of the permeability field, dynamic estimates of capacity at heteroge-
neous basin-scale systems often select only a few representative 
permeability cases to reduce the overall computational burden of the 
simulation study. Nevertheless, some useful insights have been obtained 
regarding the relation between pressure and heterogeneity for some 
prospective basins. For instance, capacity estimates for the Mount Simon 
basal sandstone increases when high-permeability zones are considered 
(Anderson and Jahediesfanjani, 2019; Birkholzer and Zhou, 2009). The 
capacity of the Utsira/Skade aquifer can be limited either by local in-
jection pressure or by pressure limits in shallower zones depending on 
three chosen cases of heterogeneous aquifer properties (Elenius et al., 
2018). A study of injection into dome structures of the Bunter Sandstone 
(Williams et al., 2013) also indicates that large-scale heterogeneity can 
cause local pressure buildup that constrains injection rates. In con-
trasting basins in the US and China, regional capacity estimates of saline 
aquifers were shown to be influenced by varying heterogeneity (high, 
mid, and low) in addition to a number of other factors such as number of 
wells, boundary conditions and water production (Gorecki et al., 2015). 
While these studies are valuable sensitivity studies, the limited sampling 
of the parameter space is likely insufficient to quantify the full effect of 
geological uncertainty on capacity estimates. Therefore, it would be 
difficult to rely on these estimates for the purposes of commercial 
deployment. 

Quantifying the impact of geological uncertainty on capacity esti-
mates involves consistent and statistically meaningful approaches to 
sample the underpinning parameter distributions. Approaches such as 
standard Monte Carlo (MC) can be readily applied, but the random 
sampling is often inefficient, resulting in many thousands of realizations 
to converge on a reliable estimate. There exists many available methods 
for accelerating uncertainty quantification (UQ) beyond standard MC 
methods. Sampling-based methods include variance reduction tech-
niques, e.g., multilevel MC (Giles, 2015), latin hypercube sampling 
(Huntington and Lyrintzis, 1998), and importance sampling (Smith 
et al., 1997). Deterministic MC, e.g., space-filling methods such as 
quasi-MC, can be used to achieve higher convergence rates in the 
number of model evaluations (Caflisch, 1998). Another option is 
generalized spectral expansions, e.g., Karhunen-Loeve expansions and 
generalized polynomial chaos (Le Maître and Knio, 2010). These classes 
of methods have all been applied successfully in many different fields 
involving simulations of fluids, e.g., computational fluid dynamics 
(Barth et al., 2016; Najm, 2009), groundwater flow (Cliffe et al., 2011; 
Müller et al., 2011), flooding (Mondal and Mandal, 2020; Shaw et al., 

2020), and weather forecasting (Gregory and Cotter, 2017; Sochala 
et al., 2020). Application of accelerated UQ methods within CO2 storage, 
however, is more limited. Generalized polynomial chaos was used to 
quantify leakage of CO2 from an aquifer in Oladyshkin et al. (2011), 
simulate residual trapping with a vertical equilibrium model in Pet-
tersson (2016), and compared to other accelerated UQ methods for CO2 
storage in Köppel et al. (2019). Markov chain Monte Carlo (MCMC), a 
strategy for more efficient sampling, has been applied at the site-scale to 
estimate capacity under uncertainty (Deng et al., 2012). In Wriedt et al. 
(2014), the authors employed a surface response approach within a 
classical MC framework to efficiently quantify risk factors for CO2 
storage. The authors examined the impact of heterogeneity uncertainty 
on pressure development for random permeability fields in a simple box 
model. In Cao et al. (2020), a quasi-MC approach was used to train a 
surrogate model that was used to further predict impact of uncertainty 
on formation response. The above studies have been carried out for 
idealized or small-scale systems, and no study at this writing has applied 
UQ methods to basin-scale systems under uncertainty. We also note that 
while the surrogate approach in the latter two papers is a widely 
accepted substitute for full-physics models in applications such as clas-
sical fluid dynamics problems, their acceptance within subsurface ap-
plications such as reservoir engineering or CO2 storage is limited. 

Our study addresses the need for reliable and practical approaches 
for quantifying the impact of extreme occurrences of geologic uncer-
tainty on basin-scale capacity estimation in heterogeneous systems. As 
many standard approaches can give good estimates of the expected 
value, or the median value (P50), we instead focus on estimation of the 
outer percentiles (i.e. P1, P0.1, ...) that are substantially more difficult to 
estimate efficiently and accurately using MC methods. Our approach is 
based on the so-called “rare-event” methodology, which is an umbrella 
term for estimating very small but presumably important probabilities. 
The advantage of this approach is that the estimation of increasingly 
unlikely events builds upon the previous more likely ones, such that 
there is natural and efficient path from one percentile to the next, e.g., 
from P10 to P1, from P1 to P0.1 and so forth. As an analogy, rare-event 
analysis can be applied to flood prediction to easily quantify the likeli-
hood of a 1000-yr flood based on the likelihood of 100-year flood. For 
CO2 capacity, the approach can be flipped such that one can identify the 
probability of a pre-defined critical capacity, i.e. the capacity at which 
regional, centralized storage development is not feasible. In other words, 
the rare event simulation allows one to effectively rule out the risk of not 
achieving some minimum acceptable capacity. 

Rare-event simulation requires efficient conditional sampling 
restricted to regions of random space corresponding to critical events. By 
using MCMC sampling instead of standard MC, it is possible to 
concentrate sampling close to the region of interest without wasting 
computational resources on less important events. The efficiency can be 
improved by using surrogate models for the physical model, cf. Dostert 
et al., 2009; Ma and Zabaras, 2009 for examples from porous media, 
where sparse-grid collocation is used to reduce the number of full-scale 
simulations. Alternatively, the efficiency can be increased by more 
efficient MCMC sampling by reducing correlation between Markov 
states. Adaptive adjustment for nearly optimal performance was inves-
tigated in Zuev et al. (2012). Surrogate models and adaptive MCMC 
sampling can also be combined as in Elsheikh et al. (2014a), where 
polynomial chaos response surfaces were used to adjust the step lengths 
of the Markov chains used in nested sampling for subsurface flow 
models. Rare-event simulation within the context of CO2 storage was 
proposed in Elsheikh et al. (2014b), where CO2 leakage through an 
abandoned well was investigated. 

In this paper, we perform rare-event simulation by means of the 
subset simulation methodology (Au and Beck, 2001) combined with 
conditional Karhunen-Loeve expansion to sample increasingly extreme 
and rare occurrences of the random permeability field. This rare-event 
framework is efficient and can be implemented easily with any stan-
dard forward simulator. We apply the proposed framework to a realistic 
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aquifer based on the Utsira formation, a large aquifer located offshore on 
the Norwegian continental shelf. The formation is currently host to the 
Sleipner CCS project, and in addition has been subject of several 
large-scale injection studies, e.g. Gasda et al., 2017; Lindeberg et al., 
2009; Møll Nilsen et al., 2015. In this study, we do not focus on further 
maturing capacity estimates for the Utsira. Instead, we use this forma-
tion as a test case for demonstrating the rare-event methodology. The 
Utsira is characterized by varying depth and topography, which makes it 
an interesting case for examining the impact of heterogeneity on the risk 
of triggering early pressure failure in shallower zones versus being 
constrained by local injection limits. However, we sample a larger range 
of permeability values than what is expected for the Utsira. We note that 
we focus solely on the constraints due to regional pressure buildup in 
order to characterize the link between heterogeneity, uncertainty and 
far-field pressure response that is thus far poorly understood. Overall, 
our motivation in choosing the Utsira is to understand the impact of 
heterogeneity on pressure-constrained saline aquifers that have optimal 
storage properties, i.e. thick, permeable sands with extensive 
well-connected pore volume. 

2. Approach and numerical methods 

The overall approach used to attain efficient and reliable estimates of 
extreme-case storage capacities is pictured schematically in Fig. 1. Our 
approach consists of three main elements: (1) a geostatistical model for 
heterogeneity to generate samples of the permeability field, (2) a 
method for targeted sampling of the parameter space, and (3) a forward 
simulator. These elements are connected together in a workflow that 
progressively zooms in and resolves the probability density function 
(PDF) in the extreme event region. The starting point is the full PDF, or 
level 0 distribution, for storage capacity using standard MC that samples 
the full geologic parameter space. Then, a MCMC method is applied to 
generate new levels of distributions that zoom in within intermediate 
critical regions. In this paper, we first concentrate on samples that fall 
within P10, when these are resolved we zoom in on P1, and so on, but 
other approaches are possible as long as the current focus region is a 
subset of the previous focus region. The main idea is that each new level 
progressively resolves a subset of the previous level PDF in a hierarchical 
manner. For instance, using samples from level 1 as seeds, level 2 

resolves the subset below P1 to estimate P0.1, then level 3 resolves 
below P0.1 to estimate P0.01 where samples from level 2 have been used 
as seeds, and so forth. The end result is a set of highly resolved estimates 
of increasingly smaller probability events in the rare-event region. In 
this work it is convenient to let them be defined by percentiles, and then 
tenths of percentiles, and so forth, but any choice of increasingly small 
or increasingly large quantiles is possible. We note that the choice of 
how many levels to include in the estimation depends on the application, 
e.g., risk assessment. However, including very high number of levels is 
typically unnecessary since we only get estimates of highly unlikely 
events at an extraordinary computational cost. 

The methods we use for each component are chosen to allow for 
high-resolution PDF in targeted regions to be carried out in an efficient 
and robust manner. Without efficient methods, it would be nearly 
impossible to resolve estimates of rare events within a reasonable 
computational time. We have applied methods to increase efficiency in 
all three components of the workflow:  

• Sampling method: To maintain the number of model evaluations at a 
feasible level: A method to concentrate sampling of the parameter 
space to critical regions (cf. Section 2.1).  

• Geostatistical model: An efficient parameterization of permeability 
(and other) uncertainty that honors data and allows for concentrated 
sampling by generating new samples that are in some sense similar to 
existing samples (cf. Section 2.2). This is in contrast to black-box 
methods where proximity of samples cannot be easily inferred. 

• Forward model: An efficient numerical solver for the storage simu-
lation to allow sufficient sampling at acceptable computational cost 
(cf. Section 2.3). 

Next, we describe how these needs are satisfied in this work by 
means of subset simulation, geostatistical models based on conditional 
Karhunen-Loeve expansions of random fields, and vertical equilibrium 
models, respectively. 

2.1. Monte Carlo subset simulation of extreme events 

The standard MC method is a widely used approach to approximate 
integrals such as the expectation. Given a set of N samples η(1),…, η(N) of 

Fig. 1. Schematic figure of the overall approach for estimation of rare occurrences of storage capacity. A standard MC approach is used to generate the full PDF (level 
0) from samples of geologic heterogeneity. MCMC is then used to sample the parameter space in the extreme event region. New levels of PDF (levels 1, 2, ...) are 
generated by subset simulation to progressively zoom in on smaller probability events (P1, P0.1, ...) with increased resolution. 
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a vector of random variables η = (η1,⋯, ηM) ∈ RM on the parameter 
space of interest, the MC method approximates the expectation of a 
quantity of interest (QoI), Q(η), using the arithmetic mean, 

QMC =
1
N

∑N

n=1
Q
(
η(n)). (1)  

The law of large numbers ensures that the arithmetic mean converges to 
the true expectation as N→∞. The main advantages with MC over 
deterministic numerical integration methods is that the convergence is 
not dependent of the dimension of the problem, and the QoI can be 
treated as a black box; that is only input-output interaction with Q(η) is 
needed. The QoI in this paper is the total amount of stored CO2, which 
we calculate from simulation results, and the vector of input parameters, 
η, is a parameterization of the permeability field. We assume that η has a 
product-type PDF π(η) = π1(η1)⋅π2(η2)⋯πM(ηM). We note that, in addi-
tion to approximation of the expectation, the MC samples can also be 

used to visualize the distribution of the QoI using, e.g., histograms or 
density estimations. 

In this work, we are interested in computing the quantiles or prob-
abilities of critical storage scenarios, i.e. capacities that are lower than 
some minimum threshold. In general terms, this can be described as 
computing the failure probability, denoted pF, where “failure” should be 
interpreted in a wide sense, i.e. failure to meet expectations rather than 
system breakdown. An interesting feature of failure probability simu-
lation with MC is that the accuracy of the resulting estimator, encoded as 
the coefficient of variation COV(⋅) (relative variability with respect to 
the mean value), has a simple expression that holds independent of 
physical model for the problem of interest: 

COV
(
pMC

F

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − pF

NpF

√

.

This shows that for a desired accuracy, the number of MC samples N 
needed is proportional to 1/pF which can be prohibitively expensive for 
realistic physical models since failure hopefully occurs only with a very 
small probability for robust systems. Subset simulation remedies this 
issue by successively zooming in to regions of parameter space of 
decreasing probability until a target region has been reached. In the 
context of critically low storage capacity, these regions or subsets of the 
space of all possible capacities, can be defined by certain quantiles, e.g. 
P10, P1, etc. More generally, let Qcrit be a critically low value of a QoI Q 
whose probability is very small but needs to be estimated to mitigate 
risk. In this work Qcrit will be understood as a storage capacity but the 
following description is general and the quantity of interest can be 
anything where unusual behavior needs to be quantified. Then pF =

P(Q ≤ Qcrit), where P(⋅) denotes the probability measure. 
We now outline the subset simulation procedure introduced in the 

seminal work Au and Beck, 2001. Introduce a sequence of intermediate 
failure events {Fℓ}

L
ℓ=0 where Fℓ denotes the outcome that Q ≤ Qℓ, for 

some value Qℓ with the property Qcrit = QL < QL− 1 < ⋯ < Q0. Then the 
probability of an intermediate failure is P(Fℓ) = P(Q ≤ Qℓ). Note that 
these intermediate failure thresholds Qℓ do not need to correspond to 
any values that have some practical meaning. In fact, they will be esti-
mated by the numerical method as a means to obtain the QoI Qcrit. The 
situation is illustrated schematically in Fig. 2 with F2⊂F1⊂F0 subsets of 
the stochastic domain Ω. The boundaries between the subsets can be 
interpreted as the contour curves of the QoI Q at values Q0,Q1,Q2. 

By the definition of conditional probability, the probability of failure 
is given by 

pF = P(FL|FL− 1)P(FL− 1|FL− 2)⋯P(F1|F0)P(F0), (2)  

where P(A|B) denotes the probability of outcome A given that B has 
occurred. Even if pF is very small, if the intermediate failures are 
appropriately chosen, all factors of the right hand side of Eq.  (2) can be 
large enough to be efficiently computed by a reasonable number of MC 
samples. For instance, if pF = 10− 6 and all terms P(Fℓ|Fℓ− 1) = 0.1, then 
instead of using O (106) standard MC samples for accurate estimation, 
subset simulation requires 6 × O (10) samples. 

The last factor of Eq.  (2) can be efficiently computed with standard 
MC: 

P(F0) ≈
1
N

∑N

n=1
1Q≤Q0

(
Q(n)),

where Q(n) = Q(η(n)), and the indicator function 1Q≤Q0 is 1 if Q ≤ Q0 and 
0 otherwise. Computing the remaining factors of Eq.  (2) with standard 
MC is not efficient as it does not address the increasing rarity of the 
events simulated, i.e. the full random domain would be sampled to find 
increasingly rare events. However, the event Fℓ|Fℓ− 1 is not very unlikely 
even though both Fℓ and Fℓ− 1 occur with very small probability. 
Mathematically, the estimator 

Fig. 2. Schematic figure of intermediate failure subsets. Sampling from the full 
domain Ω yields samples in F0, which are used as seeds when sampling F1|F0, 
and so on for smaller subsets. 

1. Generate candidate sample η̃(n+1) given η(n).
1: for j=1:M do
2: Draw sample ξ j from proposal PDF p(·|η(n)j )
3: Compute ratio r j =

π j(ξ j)
π j(η(n)j )

.

4: Draw u from Uniform[0,1].
5: if u ≤ min(r, 1) then
6: η̃(n+1)j = ξ j.
7: else
8: η̃(n+1)j = η(n)j

9: end
10: end

2. Accept or reject sample η̃(n+1).
11: % Check location of η̃(n+1).
12: if Q(η̃(n+1)) ∈ Fi then
13: % Accept new sample
14: η(n+1) = η̃(n+1)

15: Q(n+1) = Q(η̃(n+1))
16: else
17: % Reject new sample
18: η(n+1) = η(n)

19: Q(n+1) = Q(n)

20: end

Algorithm 1. Modified Metropolis algorithm (adapted from Au and 
Beck (2001)). 
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P(Fℓ|Fℓ− 1) ≈
1
N

∑N

n=1
1Q≤Qℓ

(
Q(n)

ℓ
)
,

with Q(n)
ℓ being samples from the subset {Q ≤ Qℓ}, does not suffer from 

the needle-in-a-haystack phenomenon. The challenge is to make sure 
that Q is sampled within this set to avoid unnecessary and expensive full 
model evaluations. To sample the distribution restricted to a small 
subset rather than the full domain, a MCMC approach is used. The 
Modified Metropolis algorithm (MMA) generate samples that converge 
to the target distribution by means of Markov chain random walks 
starting from seeds within the probability domain of interest. Hence, all 
Markov chains start from their stationary states so there is no initial 
burn-in period of samples to be discarded. All samples generated will be 
used in the rare-event estimators, which is an example of so-called 
perfect simulation (Robert et al., 2004). Algorithm 1 outlines the 
MMA in pseudocode for the generation of a single new sample η(n+1)

from an existing sample η(n). Note that the new sample is either a copy of 
the existing sample, or generated by taking a step determined by a 
user-defined proposal distribution p(⋅

⃒
⃒η(n)). Algorithm 2 summarizes the 

full subset simulation method which calls Algorithm 1 to generate 
samples from the subsets. 

The performance of subset simulation is dependent on the correla-
tions between successive states of the output samples. Theoretically 
optimal acceptance rates are available for some distributions, with the 
frequently cited and perhaps surprisingly low number 0.234 for high- 
dimensional problems (Roberts et al., 1997). In practice, the exact dis-
tribution is usually not known, and one can rely on various 
rules-of-thumbs or empirical estimates to scale the proposal distribution 
to obtain acceptance rates within some interval, e.g., [0.3, 0.5] as sug-
gested in Zuev et al. (2012). 

In this work, we perform adaptive scaling of the proposal distribution 
in Algorithm 1 by grouping the seeds of the Markov chains into smaller 
batches, run a batch and then evaluate its local empirical acceptance 
rate. If the rate is above 0.5, the scaling of the proposal distribution is 
increased by 50%. If the acceptance rate is below 0.3, the scaling is 
decreased by 50%. For the first batch on each level, the scaling is equal 

to the standard deviation of the sample seeds, where any correlation 
between conditional random variables has been ignored. This correla-
tion could however be accounted for by scaling the proposal distribution 
with a Cholesky factorization of the covariance matrix of the seeds, 
instead of the main diagonal of the same covariance matrix, as done 
here. 

2.2. Geostatistical modeling 

The samples of the permeability field, which are used in the MCMC 
method (Section 2.1), are generated using a geostatistical modeling 
approach. In reservoir characterization, geostatistical methods are 
widely used since they capture the heterogeneity seen in many geolog-
ical formations, and realizations of uncertainty can be generated with 
relatively simple procedures. Perhaps the simplest procedures are based 
on the underlying assumption of Gaussian random fields, leading to 
realizations generated using only a mean field and covariance matrix. 
While the mean is easily made as the most likely permeability field from 
prior knowledge, much effort can be made in the generation of the 
covariance matrix. 

In this paper, we use a covariance function conditioned on data 
corresponding to fixed permeability values in the well cells. Further-
more, we assume that the permeability field, k, follows a log-normal 
distribution. The resulting Gaussian process, descibed in more detail 
in Rasmussen (2004), is GP (logkcond,Ccond) where 

logkcond(x) = logk(x) + C(x, xdata)C− 1(xdata, xdata)(logkdata − logk(xdata)), (3)  

Ccond(x, x
′

) = C(x, x
′

) − C(x, xdata)C− 1(xdata, xdata)C(xdata, x
′

), (4)  

where k is the mean permeability field, C(⋅, ⋅) is the assumed covariance 
function, and kdata is a vector of permeability data, located at the well 
positions xdata. 

A parameterization of the uncertainty in permeability is both desir-
able for analysis purposes, and necessary for the subset simulation in 
Algorithm 2. It can be achieved by means of a truncated Karhunen-Loeve 
expansion of the conditional Gaussian process, 

1: User-defined parameters:
2: p (intermediate failure prob.), NL (samples per level), Qcrit. (critical value of QoI)
3: NM.chains = pNL
Level 0.

4: L = 0.
5: Run standard MC to produce QoI samples {Q(n,L=0)

L=0 : n = 1, . . . ,NL}.
6: Nfail = #{Q(n,L) ≤ Qcrit : n = 1, . . . ,NL} % Compute number of failures
Level 1,2,3,…

7: while Nfail ≤ pNL do % As long as only a small number of failures detected
8: Sort the samples: Q(1) ≤ Q(2) ≤ · · · ≤ Q(NL).
9: Set intermediate failure boundary QL = (Q(NM.ch) + Q(NM.ch+1) )/2 to define region FL.
10: Save the smallest NM.ch samples as seeds for the next level.
11: L = L + 1 % Go to next subset level
12: for m = 1 : NM.ch do % Total of NL samples per level.
13: Produce 1/p samples of QoI within FL−1 using MMA [Alg. 1].
14: end
15: Collect new samples Q(n,L).
16: Nfail = #{Q(n,L) ≤ Qcrit : n = 1, . . . ,NL} % Compute number of failures
17: end

Outputs:
18: pF = pLNfail/NL
19: Q0,Q1, . . . ,QL−1 % Quantiles p, p2, . . . , pL

Algorithm 2. Subset simulation (adapted from Au and Beck (2001) and Zuev (2013)).  
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logkcond(x, η) ≈ logkcond +
∑M

j=1

̅̅̅̅
λj

√
vj(x)ηj, (5)  

where {ηj} are assumed standard Gaussian random variables, and {λj, vj}

are the pairs of eigenvalues and eigenfunctions of the generalized 
eigenvalue problem 
∫

D
Ccond(x, x

′

)v(x
′

)dx
′

= λv(x), (6)  

where D denotes the physical domain. The generalized eigenvalue 
problem, Eq. (6), has analytical solutions for specific covariance func-
tions (Ghanem and Spanos, 2002), but in most cases it must be solved 
using a numerical approach. In this paper, we approximate the integral 
in Eq. (6) with the midpoint rule on an equidistant grid, resulting in the 
following eigenvalue equation 

CV = ΛV, (7)  

where 

Cij = Ccond
(
xi, xj

)
Δ.

Here, Δ is the grid size, and xi is the cell center of grid cell i. Further-

more, V = [v1, v2, …, vM], where vj = [vj(x1), vj(x2),…, vj(xn)]
T with n 

being the number of grid cells, and Λ is the diagonal matrix Λ = diag(λ1,

λ2,…,λM). Lastly, we note that M ≤ n, and that the eigenvalue Eq. (7) is 
solved using a standard QR method. 

2.3. Storage simulation 

A vertical equilibrium (VE) model (Gasda et al., 2011) was used to 
perform the storage simulations. The VE model assumes an instanta-
neous gravity segregation of CO2 and brine at the time scale of the 
simulation (Nordbotten and Celia, 2012). We employ a sharp interface 
assumption, meaning that capillary pressure between CO2 and brine is 
neglected. By neglecting capillarity, the CO2 will migrate due to pressure 
and buoyancy faster than if capillarity is considered, and thus reflects 
the “worst-case scenario” with respect to storage security (Gasda et al., 
2012). Variable CO2 properties are modeled. Residual and structural 
trapping processes are considered, while solubility and mineral trapping 
are neglected. The VE model simulates the pressure and saturation 
change in the storage aquifer in space and time. Pressure is simulated at 
the formation top, and the pressure profile at depth is known due the VE 
assumption (fluid-static in the vertical dimension) and gravity segre-
gation (CO2 is lighter and overlies brine). Saturation is a depth-averaged 
quantity, which can be used to reconstruct the thickness of the CO2 
plume under the assumption of complete gravity segregation. 

We choose the VE method as it is an efficient forward model, which is 
a desirable property for speeding up the computational time of this 
study. VE methods have been tested in the literature and are suitable at 
large scales (e.g. Class et al. (2009)). We emphasize that at the basin 
scale, 99% of the total pore volume remains saturated with formation 
water even after 50 years of CO2 injection. In addition, our focus is on 
pressure build-up, where full resolution of plume dynamics is a sec-
ondary effect. In any case, the subset simulation methodology described 
earlier can be combined with any forward simulator. 

3. Test case parameters 

3.1. Utsira formation description 

The Utsira formation has been well described in the literature. In this 

Fig. 3. Utsira formation geometry. Data provided by Kirby et al. (2001). In (a) the injection locations are indicated by black dots.  

Table 1 
Formation and fluid properties for storage simulations.  

Property Description Value 

Porosity homogeneous 0.38 
Pore compressibility constant 9 GPa− 1 

Initial pressure hydrostatic 100 bar @ 1000 m 
Temperature isothermal, 35 C/km 39 C @ 1000 m 
Brine density constant 1020 kg/m3 

Brine viscosity constant 0.69 mPa⋅s 
CO2 density variable table (Span and Wagner, 1996) 
CO2 viscosity variable function (Vesovic et al., 1990) 
Relative permeability under drainage conditions  
Brine end-point value 1.0  

residual sat. 0.11 
CO2 end-point value 0.75  

residual sat. 0  
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study, data on top surface (Fig. 3(a)) and thickness (Fig. 3(b)) are pro-
vided by the British Geological Survey (Kirby et al., 2001). The spatial 
domain is divided into 8110 active cells of equal size: 1070 m x 3000 m. 
The rock, petrophysical and fluid properties are taken from literature, 
see Table 1. The domain is initially fully saturated with brine. As 
migration and trapping of CO2 is not the primary focus, a simplified 
model for capillarity is used and dissolution of CO2 in brine is neglected. 
As CO2 is injected continuously during all simulations, the system is 
exclusively under drainage conditions. Therefore, residual brine satu-
ration is set to 0.11, while CO2 residual saturation under drainage 
conditions is set to zero to be consistent with a fully brine-saturated 
initial condition. 

The boundary conditions for the full Utsira model assume an 
impermeable top seal and bottom boundary. All outer lateral boundaries 
are impermeable to flow. The injected volume of CO2 is constrained by 

the maximum overpressure (Fig. 3(c)), which is defined as the pressure 
that exceeds the least compressive stress assuming negligible tensile 
strength of the rock. Following Bohloli et al. (2015), the horizontal stress 
is the minimum stress and can be estimated by 

σh = 0.134z, (8)  

where the units of σh is bars and for z is meters below sea level (mbs). If 
the initial pore pressure (Pa) is estimated by hydrostatic pressure given 
the sea depth hsea (m), sea water density ρw, and brine density ρb, 

p0 = ρwghsea + ρbgz, (9)  

where g is the gravitational constant, then, the maximum allowable 
overpressure at any given depth is 

Δpmax = σh − p0. (10)  

3.2. Geostatistical properties 

To generate realizations of the permeability field for the test cases, 
we use the conditional Karhunen-Loeve method presented in Section 
2.2. A common choice for the covariance function in geostatistical 
modelling is the spherical covariance function, 

C
(
xi, xj

)
= C

(
hij
)
= β

⎧
⎪⎨

⎪⎩

1 −
3hij

2γ
+

h3
ij

2γ3, for 0 ≤ hij ≤ γ,

0, for hij > γ,

Table 2 
Geostatistical parameters to generate logk realizations for the test cases in Sec-
tion 4.  

Case logk [-] β [-] γ [km] α [-] M 

Base case –27.63 0.18 40.125 0.28 1861 
Low-var –27.63 0.018 40.125 0.28 1861 
High-perm –26.53 0.018 40.125 0.28 1861 
Short-corr –27.63 0.18 20.63 0.28 3701 
Low-perm –28.32 0.018 40.125 0.28 1861 
Equal-corr –27.63 0.18 40.125 1.00 853 
Vert-corr –27.63 0.18 9.63 9.35 1494  

Fig. 4. Permeability maps (logk) for each test case. Plotted are representative samples close to the median.  
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where hij = ‖ xi − xj ‖2, β is the variance, and γ is the correlation length. 
To allow for correlations that are predominately in one direction 
(anisotropy), we scale the y-coordinate with a factor α. 

In all test cases, the mean permeability field, k, will be homogeneous, 
such that the structure of the generated permeability fields derives from 
the shape of the covariance function. Thus, we can systematically test 
different combinations of geostatistical parameters and investigate the 
impact they will have on the outcome of the subset simulations. The 
combinations investigated in Section 4 are given in Table 2. Represen-
tative realizations from each case are shown in Fig. 4. Lastly, we note 
that we only use 90% of the largest eigenvalues when generating re-
alizations in Eq. (5) to lower the computational cost while still keeping 
the dominating features of the permeability fields. The number of ei-
genvalues, M, preserved in each case is also given in Table 2. 

3.3. Injection locations and schedule 

A total of 8 injection locations are spaced equally in the deepest and 
thickest zone of the southern Utsira (Fig. 3a). These wells are located 7.5 
km apart in the easting direction and 21 km apart in the northing di-
rection. In order to maintain a simplified computational approach, in-
jection wells are not explicitly represented. Instead, the injection cells 
are average representations of a well at the subscale. 

Large-scale deployment of CO2 storage will likely start with smaller 
rates that gradually increase over time. The injection rates used in this 
study begin at 1 Mt/y and increase at a rate 1 Mt/y for 12 years. The 
maximum injection rate is 12 Mt/y for all cases except in the low-var 
case where it is 11 Mt/y. If the average pressure in the injection cell 
reaches the pre-defined limit, a well control function decreases the in-
jection rate by a factor of 5. As wells are not explicitly defined, this 
control is not equivalent to BHP control, but is a control on the pressure 
at some effective radius from the well. 

Injection continues until a pressure limit is reached anywhere in the 
domain outside of the injection cells, at which time the simulation is 
stopped. The subset simulation algorithm records the total amount of 
CO2 in the domain, the simulated time, and the cell number that has 
reached the pressure limit. 

4. Results 

The subset simulation algorithm described in Section 2.1 is run on a 
total of six levels (0–5) with 10,000 samples per level, and intermediate 
failure threshold p = 0.1. With 1000 samples as seeds from the previous 
level, this results in 10,000 + 5⋅9000 = 55,000 VE model evaluations 
for each of the seven test cases. The choice p = 0.1 is common in the 
literature and has the advantage that the percentiles P10, P1, etc., are 
directly given by the output intermediate failure thresholds in Algo-
rithm 2. Note that in the current problem setup there is no natural 
definition of the failure event Qcrit with corresponding probability pF, so 
these values are not reported. If such QoIs are wanted, they can be 
computed directly from the simulation results used to estimate the 
quantiles and histograms to be reported next. 

We use adaptive scaling of the proposal distribution so that all 
acceptance rates fall in the interval [0.3, 0.5], as described in Section 2.1. 
Although the literature suggests Gaussian or uniform proposal distri-
butions with no clear preference (Au and Beck, 2001), we have found 
that uniform proposal distributions perform better for the test cases 
investigated here, and that has been used in all reported results. The 
reason for this is that in the high-dimensional spaces we sample, 
acceptance often occurs when the Markov chain moves in only one or 
very few out of up to more than 3000 dimensions. With a Gaussian 
proposal distribution with step size σprop, obtaining at least one proposed 
random step of size on the order of 1/σprop is quite likely even for big 
values of σprop. As a result, one may have to increase the scaling by or-
ders of magnitude with a Gaussian proposal distribution before 
observing a significant decrease in the acceptance rates. This is not the 
case with uniform proposal distributions, where relatively modest 
changes in the proposal distributions yields observable effects in 
acceptance rates. 

We provide histograms of the storage distributions (in Gt) for all 
levels. These are estimates of the conditional PDFs, e.g. the PDFs given 
QoIs below some threshold value. For all cases, we provide histograms 
for the full distribution with MC (level 0), and levels 1 to 5. For the latter 
the left vertical axis show the estimated PDF density, i.e., it is normal-
ized to integrate to unity. The right vertical axis has the same scale as the 
level 0 histogram to aid in assessing how small these event regions are 
compared to the full level 0 PDF. Histogram appearance is sensitive to 
the number of bins, which can be chosen according to various rule-of- 
thumbs. An inappropriate choice of bins can make the histogram 
appear to display peaks not present in the underlying data, or gaps that 
are also not expected for a continuous distribution. To avoid such arti-
facts, the number of bins in the following histograms have been set 
manually. We emphasize that this design parameter does not affect the 
numerical results presented, i.e., the percentiles in Table 3. 

It is a delicate matter to make sure that acceptance rates remain 
within the interval [0.3 0.5]. Even if the prescribed rates are maintained 
on average, batches generated before the scaling of the proposal distri-
bution has been suitably adapted may show unwanted behavior such as 
excessive smearing and multimodality (locally too high acceptance 
rates), or sharp peaks (locally too low acceptance rates). The histograms 
of the base case, low-var and high-perm are qualitatively similar, as 

Fig. 5. Base case. Mean permeability 1 D. Histograms of samples of storage capacity on all levels.  

Table 3 
Percentiles for the different test cases. All values in Gt.  

Case P50 P10 P1 P0.1 P0.01 P0.001 

Base case 6.24 5.97 5.73 5.50 5.18 4.99 
Base case5000 6.24 5.97 5.74 5.52 5.23 5.02 
Base case1000 6.25 5.97 5.70 5.47 5.28 5.09 
Low-var 6.38 6.29 6.21 6.15 6.10 6.06 
High-perm 6.88 6.79 6.72 6.67 6.63 6.60 
Short-corr 6.25 6.06 5.62 5.21 5.04 4.69 
Low-perm 4.98 4.88 4.79 4.73 4.68 4.63 
Equal-corr 6.30 6.04 5.83 5.67 5.54 5.43 
Vert-corr 6.34 6.14 5.97 5.77 4.82 4.74  
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Fig. 6. Low-var. Permeability field variance reduced by a factor 10. Histograms of samples of storage capacity on all levels..  

Fig. 7. High-perm. Mean permeability of 3 D. Histograms of samples of storage capacity on all levels..  

Fig. 8. Short-corr. Correlation length reduced by a factor 2 compared to base case. Histograms of samples of storage capacity on all levels..  

Fig. 9. Low-perm. Mean permeability of 0.5 D, and correspondingly decreased injection rate. Histograms of samples of storage capacity on all levels..  

Fig. 10. Equal-corr. Same correlation length in horizontal and vertical direction. Histograms of samples of storage capacity on all levels..  
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shown in Figs. 6 and 7. This is not surprising as the permeabilities of the 
low-var and high-perm cases are simple multiplicative and additive 
transformations of the base case permeability random field. 

Decreasing the correlation lengths of the geostatistical model leads to 
more pronounced local effects, see Fig. 8. This test case is likely the most 
challenging for the subset simulation method as the problem has 3701 
dimensions - almost twice as many as the base case. Repeating the 
simulations led to similar shapes of the histograms, and the adaptive 
scaling of the proposal distributions vary only moderately (between 0.3 
and 1.5 times the initial scaling with the empirical standard deviation of 
the seeds). The low-perm test case is a relatively simple variation of the 
base case, and the results are qualitatively similar as can be seen by 
comparing Fig. 9 to Figs. 6 and 7. Finally, it is interesting to compare the 
different outcomes when the orientation of the correlation structure is 
varied. Assuming equal correlation leads to an almost symmetric 
Gaussian-like distribution, see Fig. 10. A vertical correlation structure 
leads to a long tail of small-valued capacities of varying probability, as 
can be observed in Fig. 11. At the finest levels, the distributions appear 
poorly resolved with spurious peaks. 

The percentiles estimated from the subset simulations are displayed 
in Table 3. To quantify the reliability of these numbers, confidence 

Fig. 11. Vert-corr. Correlation length in vertical direction is increased by a factor 9.35 compared to horizontal direction. Histograms of samples of storage capacity 
on all levels.. 

Fig. 12. Efficiency factors for all test cases as a function of level.  

Fig. 13. Comparison of permeability, overpressure, and percentage of maximum pressure for representative cases of high and low capacity.  
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Fig. 14. Bubble plot showing the distribution of pressure-limiting locations (red circles) for the base case as a function of subset simulation level (left to right) and 
correlation (top to bottom). Circle radius are scaled by the frequency of occurrence. The injection sites are given in dark filled circles. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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intervals can be estimated for the quantiles. Let FQ(Q) be the unknown 
cumulative distribution function of the QoI Q at some level ℓ = 0,⋯,L. 
Then each sample Q(n) takes a value lower than F− 1

Q (q) with probability 
q, i.e., it follows a binomial distribution B(Nℓ,q). Hence, if the samples 
are ordered so that Q(1) ≤ Q(2) ≤ … ≤ Q(N), then [Q(lq), Q(uq)] is an 100(1 
− α)% two-sided confidence interval for the q-quantile, where lq 

= B− 1(α /2,Nℓ, q) − 1 and uq = B− 1(1 − α /2, Nℓ, q)+ 1. For the base 
case, a two-sided 95% confidence interval for the P10, P1, and P0.1 
percentiles are respectively [5.959, 5.978], [5.726, 5.734], and [5.486, 
5.501]. These are considered sufficiently narrow that the numbers in 
Table 3 are good approximations up to one digit. However, these 
numbers rely on the assumption that the samples are uncorrelated, 
which is not the case for subset simulation samples. Two alternative 
measures of accuracy will therefore be presented, both of which take 
empirical correlations into account. 

An empirical measure of the accuracy of the computed percentiles is 
given by repeating the experiments with varying numbers of samples per 
level. The percentiles using 1000 and 5000 samples per level for the base 
case are also shown in Table 3, and the correpsonding histograms are 
displayed in Appendix A. These results also indicate that the results are 
good up to about a single decimal point. 

Rather than repeating the experiments for all cases and percentiles, 
one may instead estimate so called efficiency factors based on the 
existing results using the framework presented in  Au and Beck (2001); 
Papaioannou et al. (2015). The efficiency factor is the relative perfor-
mance compared to the ideal case of completely uncorrelated sampling, 
and defined as 

effℓ =
1

1 + γℓ  

where 

γℓ = 2
∑1/p− 1

k=1
(1 − kp)ACℓ(k), for ℓ = 1,⋯, L,

with ACℓ(k) being the lag − k auto-correlation of the set 
{1Q≤Qℓ (Q(n,ℓ))}n=1:Nℓ 

averaged over all Markov chains of level ℓ. The 
efficiency factors are shown in Fig. 12. They are all comparable to those 
for the base case, and we conclude that the accuracy of all percentiles are 
of the same order. 

4.1. Comparison of median to rare-event pressure maps 

It is useful to make a comparison of the physical behavior of two 
cases that represent low and high capacity, respectively. For the low 
capacity case, we select one sample from the level 5 extreme region 
(P0.001), with estimated capacity of 5 Gt. For the high capacity case, we 
take a sample from the upper tail of the level 0 histogram, choosing a 
case where the estimated capacity is 7.5 Gt. Both representative cases 
are selected from the base case (1 D mean permeability and horizontal 
correlation). 

We recall that the underlying geostatistics for each capacity case are 
identical, however the permeability map (Figs. 13(a) and 13(d)) shows a 
stark contrast in distribution. Both cases have correlated regions of 
lower and higher permeability that extend across the width of the 
domain, but the difference lies in the highs and lows. The low capacity 
permeability field varies between several moderately high and low 
permeability regions, while the high capacity permeability field is 
marked by a few focused regions of very high and low permeability. 

The differences in the permeability field are evident in the maps of 
overpressure (difference between dynamic pressure and initial pressure) 

at the end of the simulation time, which is 57 years (low capacity) and 
96 years (high capacity). In the low case (Fig. 13(b)), the more frequent 
but moderate low permeability regions inhibit pressure dissipation into 
the northern region of the domain. In the high peremability case (Fig. 13 
(e)), pressure can dissipate easily around the more severe but isolated 
low permeability regions. 

The result of the differences in pressure dissipation is that pressure 
build-up becomes concentrated in the lower portion of the domain in the 
low capacity case (Fig. (c)), reaching the maximum allowable pressure 
in the region in between the injection sites. For the high permeability 
case (Fig. 13(f)), the pressure approaches the maximum pressure more 
evenly across the domain. 

4.2. Location of pressure limitation 

The capacity for each simulation is defined by the time at which the 
maximum pressure limit is reached. For the Utsira-based test case, the 
maximum allowable pressure is heterogeneous across the domain as a 
function of the formation top (see Fig. 3(c)). Thus, the capacity can be 
limited by locations in shallower regions rather than the location where 
the overpressure is highest, i.e. at the injection sites. Due to uncertainty 
in permeability, the location of the pressure limit can vary significantly 
from one sample to the next. For the base case, the simulated samples in 
the level 0 distribution (P50 quantile) indicate that many different lo-
cations across the lower Utsira can be controlling the capacity (Fig. 14 
(a)), ranging from near the injection sites to along the far boundaries. 
However, for the progressively zoomed in subsets of the rare-event re-
gion, we see that the location becomes increasingly concentrated in a 
few central locations with increasing levels. For level 5 (P0.001 quan-
tile) shown in Fig. 14(c), there is essentially only one location that 
controls capacity, which is located just north of the lower row of in-
jection sites. These results related to the base case correspond with the 
observations of pressure build-up made earlier regarding Fig. 13. 

The observed trend for the predominantly horizontal correlation 
(base case) is also evident for other correlations. For the equally corre-
lated case (Figs. 14(d)-14(f)), the shift from wide to narrow distribution 
is not as stark, but we observe an increasing occurrence of pressure limit 
towards the north-west and south-west corners. For the predominantly 
vertically correlated case, there is shift in level 3 towards the east 
(Fig. 14(h)) that reverses slightly in level 5 (Fig. 14(h)). This fluctuation 
is likely due to the orientation of the correlation perpendicular to the dip 
of formation and the two rows of injection. In any case, it is interesting to 
observe that although the three correlation cases appear similar at level 
0 (P50), the level 5 results are quite different. This shows that the rare- 
event capacity is clearly more controlled by the type of heterogeneity 
than the median expected capacity. 

5. Discussion 

In this study, we applied a rare-event uncertainty quantification 
workflow to estimate critically low storage capacity with low proba-
bility of occurrence for a heterogeneous storage aquifer. A few inter-
esting points of discussion can be made given the results of this study. 

5.1. Extension to other constraints or quantities of interest 

Our study quantifies storage capacity as constrained by pressure, 
where the upper limit on pressure is heterogeneously distributed across 
the study area. A pressure constraint on capacity is appropriate for 
basin-scale resource assessment for which the emphasis is placed on 
estimating maximum injected volumes over several injection sites. In 
this instance, pressure plays an important role due to pressure 
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interference between sites and/or with regional boundaries. Local site- 
scale constraints such as trapping or other leakage risk features such 
as faults would need to be handled separately. 

The workflow applied in this study is not limited to estimating 
pressure-limited basin-scale capacity, and other performance metrics of 
CO2 storage that depend on uncertainty in heterogeneity can be esti-
mated with the same approach. For instance, it is straightforward to 
change the forward simulator shut-off criterion to other constraints of 
interest, including those related to CO2 migration and trapping. For 
example, if capacity is constrained by CO2 migration beyond a spill point 
or other defined boundary, then these constraints can be implemented in 
the forward simulator. 

With regard to the uncertainty quantification approach, the QoI 
could be adjusted to estimate quantiles of trapped CO2, fault reac-
tivation or leaked CO2, or any number of quantities whose importance 
will depend on the question being posed. However, it remains to be seen 
if the subset simulation method will perform as well for another QoI as 
we observed in this study for estimate of storage capacity. We observe 
that storage capacity is a relatively smooth and well behaved distribu-
tion with respect to geologic heterogeneity. A heavily skewed, bi-modal 
or other complicated distribution may require additional research for 
the subset simulation method to be reliable and efficient approach for 
quantification of rare events. 

5.2. Implications for basin-scale storage assessment 

This study has demonstrated a fast and reliable approach to quan-
tifying critically low capacity that can be very valuable for application to 
real systems. Basin-scale systems are large and the uncertainty in 
geologic parameters is often significant. This implies that estimating 
very low quantiles such as P1, P0.1 or lower using standard Monte Carlo 
approaches may lead to extraordinary computational times. The tar-
geted sampling approach presented here can be used to give comparable 
confidence in capacity estimates under geologic uncertainty with fewer 
forward simulations. 

The concept of critical storage capacity adds increased understand-
ing of the behavior of a system under geologic uncertainty. For the high- 
quality sand formation we studied with extensive thickness and mean 
permeability of 1 D, we found a high expected median capacity of 
several Gt and some degree of variability around the P50 value. How-
ever, while the impact of heterogeneity uncertainty is significant, one 
can still expect to achieve 75% of the P50 capacity for even the most rare 
capacity occurrences (P0.001). For a system with lower mean perme-
ability of 0.5 D, the P50 capacity is lower due to the lower overall 
injectivity, but the P0.001 capacity is only 15% lower than the P50 value 
in this case. These results imply that the risk of capacity being so low 
that large-scale CO2 storage would be no longer feasible is essentially 
zero. 

This study gives an important contribution to improving under-
standing of how geological complexity affects pressure dissipation and 
thus capacity. We have found that the underlying geostatistics of the 
permeability field do not significantly affect the median P50 value for a 
given mean permeability. However, pinpointing parameters such as 
variance and correlations become increasingly important for the outer 
quantiles. Additional geological features not investigated here include 
regional faults, vertical pressure leak-off, geological boundaries, and 
stacked storage systems. Uncertainty in these features will have an 
important effect on quantifying pressure dissipation and capacity esti-
mates. The subset simulation methodology can be applied to investigate 
additional geology, but will require a different approach to geostatistics 
modeling than applied herein. This topic is the subject of ongoing work. 

Further work is needed to examine other types of storage systems not 
represented by the model system studied here. But our results indicate 

that the ultimate lower bound on capacity can still be an acceptably high 
value that would enable further appraisal of basin-scale storage re-
sources. Our work also indicates that while pressure evolution is sensi-
tive to heterogeneity, the very rare occurrences in heterogeneity do not 
severely impact the overall response of the system to multi-site injection. 
That said, quantification of the extremely low (or high) percentiles is 
still a necessary exercise to determine the outer bounds on capacity in a 
way that P10 and P90 percentiles do not fully capture. 

The methods we present here can also be adapted to aid in designing 
effective pressure management strategies such as injection schedules 
and brine production. Optimizing strategies under uncertainty is a 
challenging task, and the targeted subset simulation approach can be 
combined with optimization algorithms to increase the efficiency of 
those workflows. 

5.3. Geostatistical model 

In this paper, we chose a relatively simple approach to geostatistical 
modeling by employing the assumption of Gaussian random fields. The 
advantage to this approach is the ability to parameterize the uncertainty 
in permeability by the Karhunen-Loeve expansion, which is necessary to 
achieve targeted sampling in the subset simulation step. However, there 
are many geological systems that require more complex approaches to 
heterogeneity modeling, which is often achieved by employing com-
mercial earth modeling software. These packages are closed source and 
thereby will not provide the same opportunity for combining with the 
subset simulation approach described here. More work is needed to 
examine the underlying modeling in other types of geostatistical soft-
ware, e.g. facies modeling, and to explore the potential to include these 
different modeling approaches with the rare-event methodology we 
have presented herein. 

5.4. Numerical methods 

Subset simulation is a versatile tool that scales well with the number 
of random dimensions, and can be applied to a very wide class of 
problems, including highly nonlinear and nonsmooth problems without 
any significant changes to the simulator setup. The problem investigated 
in this paper is a good example of that, featuring between 853 and 3701 
random dimensions, and nonlinear input-to-output dependence. 
Compared to standard Monte Carlo sampling, the computational budget 
is greatly reduced: a total of 55,000 samples with 10,000 samples per 
levels (of which 1000 are the seeds taken from the previous level for all 
but the zeroth level). One would need approximately 109 standard 
Monte Carlo samples to expect as many as 10,000 samples to fall within 
the sample space defined by the most extreme region given by level 5. 
Unlike standard Monte Carlo, the subset simulation samples are not 
independent, so one should not come to the conclusion that the proposed 
method is (1⋅109)/55,000 ≈ 18, 000 times more efficient, but the 
numbers still give a feeling for the possibilities of exploring otherwise 
unknown regions of stochastic space. 

The VE simulation approach is an efficient way to achieve basin-scale 
simulations of multi-site CO2 storage systems. The reduction in dimen-
sionality from 3D to 2D is critical for achieving the computational re-
quirements of uncertainty quantification even with the acceleration 
achieved by subset simulation. We also greatly simplified the CO2 
migration and trapping to only the essential features of compressible 
two-phase flow under drainage conditions, which is reasonable given 
the focus on pressure dissipation over very large scales where over 95% 
of the system is fully saturated with brine. With this set-up, each forward 
simulation takes approximately 1 minute to run on a standard laptop 
computer. By deploying a small computing cluster, we are able to 
perform each test case in a few hours. That said, one might prefer to 
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increase the complexity of the VE simulation to include hysteresis, 
capillary trapping and dissolution, and these are readily done given 
existing literature but the computational times will increase slightly. 
However, there are well-known limitations to the use of VE for CO2 
storage simulation in general. For detailed site-scale appraisal, a full 3D 
simulation could be desired. The workflow for critical capacity estima-
tion presented herein is independent of the forward simulation, and the 
only requirements are a readable output file of the quantity of interest. 
However, it will likely be necessary to explore simplifications to reduce 
the computational burden when combining this approach with 3D flow 
simulation. 

6. Summary and conclusions 

In this study, we have applied rare-event methodology in order to 
estimate very unlikely but still relevant values of CO2 storage capacity 
for heterogeneous basin-scale systems. The methodology presented 
herein involves a subset simulation approach for sampling a random 
permeability field within a rare-event region by using Markov chain 
Monte Carlo combined with conditional Karhunen-Loeve expansion to 
successively zoom in on increasingly low probability occurrences. This 
approach is highly efficient for quantifying very low probability events 
compared to application of standard Monte Carlo alone. This accelerated 
approach to uncertainty quantification is complemented by an efficient 
numerical solver suitable for basin-scale storage analysis, which gives a 
distinct advantage in maintaining acceptable computational cost. 

We demonstrate our approach on a realistic basin-scale storage 
resource based on the Utsira Sand formation in the northern North Sea. 
We choose a set of test cases to evaluate the performance of the rare- 
event method for quantifying the increasing outer percentiles – P10, 
P1, P0.1, P0.01 and P0.001 – given a specified set of geostatistical pa-
rameters. The applied methodology was successful in resolving per-
centiles up to P0.001. In certain instances, non-monotonic behavior in 
the outer region is resolved well by the subset simulation method. Thus, 
we can conclude that the subset simulation method functions as ex-
pected for a realistic system. The method is also exceedingly efficient, 
performing accurate estimates of rare probability events for a given 
system in a couple of hours on a small computing cluster. 

In all, seven sets of geostatistical parameters, including correlation 
length, orientation, variance and mean permeability, were tested in 
order to understand their impact on the estimated quantiles. We found 

that for a given expected permeability (basin-wide mean), the median 
behavior exhibits little variation for a variety of different choices of 
geostatistical parameters. The P50 percentile varies by only small mar-
gins, particularly compared with the variation for different mean 
permeability. However, the impact of the same underlying statistics 
increases for estimates of outer percentiles in the tail region. The con-
trolling impact of geostatistics in the extreme region is supported by 
differences in pressure behavior at the large scale. 

And finally, we have identified and quantified a set of increasingly 
rare occurrences of storage capacity for a realistic basin-scale system. 
The extreme instances capacity only occur for very rare realizations of 
the random permeability field, but their estimation is relevant for un-
derstanding the ultimate lower bound on capacity, however unlikely it 
may be. The actual values we estimated are highly dependent on many 
factors, and thus should not be taken as truth. However, we gained 
important insight that the quantified value of extreme-case capacity is 
greater than anticipated even for very rare occurrences of the perme-
ability field. Our study indicates that rare occurrences of heterogeneity, 
that themselves cannot be ruled out, may not lead to a very severe 
reduction in basin-scale capacity. This result is promising for reducing 
risks of large-scale storage deployment. 
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Appendix A. Base case with varying number of samples per level 

Figs. A.15 and A.16 show the storage capacity samples from each 
level 0–5 for the base case using 1000 and 5000 samples per level, 
respectively. 

Fig. A1. Base case. Mean permeability 1 D. Histograms of samples of storage capacity on all levels using 1000 samples per level..  

Fig. A2. Base case. Mean permeability 1 D. Histograms of samples of storage capacity on all levels using 5000 samples per level..  
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