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Abstract: Snow melt timing and the last day of snow cover have a significant impact on vegetation
phenology in the Svalbard archipelago. The aim of this study is to assess the seasonal variations of the
snow using a multi-sensor approach and to analyze the sensitivity of the Synthetic Aperture Radar
(SAR) backscatter to vegetation growth and soil moisture in an arctic environment. A combined
approach using time series data from active remote sensing sensors such as SAR and passive optical
sensors is a known technique in snow monitoring, while there is little knowledge of the radar C-
band’s response pattern to vegetation dynamics in the arctic. First, we created multi-sensor masks
using the HV backscatter coefficients from Sentinel-1 and the Normalized Difference Snow Index
(NDSI) time series from Sentinel-2, monitoring the snow dynamics in Adventdalen (Svalbard) for the
season from 2017 to 2018. Second, radar sensitivity analysis was performed using the HV polarized
channel responses to vegetation growth and soil moisture dynamics. (1) Our results showed that the
C-band radar data are capable of monitoring the seasonal variability in timing of snow melting in
Adventdalen, revealing an earlier start by approximately 20 days in 2018 compared to 2017. (2) From
the sensitivity analyses, the HV channel showed a major response to the vegetation component in
areas with drier graminoid dominated vegetation without water-saturated soil (R = 0.69). However,
the temperature was strongly correlated with the HV channel (R = 0.74) during the years with delayed
snow melting. Areas of frozen tundra with drier vegetation dominated by graminoids had delayed
soil thawing processes and therefore this may limit the ability of the radar to follow the vegetation
growth pattern and soil moisture.

Keywords: remote sensing; Sentinel-1 and Sentinel-2; time series analysis; snow melt; Svalbard;
tundra; plant phenology

1. Introduction

The timing of snow melt and the first day free of snow are considered indicators
of Arctic climate and ecosystem status in response to global warming [1]. Moreover,
the depth of snow and the period of snow melt contribute significantly to defining the
phenological phases of vegetation [2,3] and plant biomass [4]. Due to an increase in winter
precipitation [5], as well as in the frequency of extreme weather events in the Svalbard
archipelago [6,7], snow cover monitoring is highly important.
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Along with the ability to detect snow seasonality, there is a growing interest in studying
the relationship between the timing of snow melt and vegetation phenology (late snow,
onset of the growing season, and advanced snow melting). Malnes et al. (2016) [8] used
satellite remote sensing (MODIS) over northern Norway in order to detect the snow covered
season with significant accuracy due to start (r = 0.51, p > 0.05) and end (r = 0.79, p > 0.05)
of the snow covered season for most meteorological stations for the 2000–2010 period.
However, in some areas and some years, the snow covered season could not be detected
due to long overcast periods.

Since cloud cover often dominates the Arctic environment and especially in Svalbard, it
would be useful to monitor phenology with sensors that are unaffected by clouds. Satellite
remote sensing imagery can be used in the analysis and interpretation of the snow-pack
variations of Svalbard [9]. Multi-sensor analysis has proven to be effective to monitor
snow coverage and its relation to vegetation phenology [10,11]. In the optical domain,
the Normalized Difference Snow Index (NDSI) has been successfully used to detect snow
cover [12,13]. This index takes advantage of the high reflectance of snow in the visible
wavelengths and low reflectance in the short wave infrared wavelengths. While optical
sensors are based on surface reflectance, SAR sensors allow evaluating change that is
occurring within the surface. This is because the strong dielectric contrast between the solid
and liquid phases of the water generates changes in the backscatter coefficients. Indeed,
even a small amount of liquid water reduces the depth of penetration of the radar signal,
allowing identifying the start of the snow melting process [14].

The most common approach to snow mapping with Synthetic Aperture Radar (SAR)
is based on multi temporal comparison of images of the same area in snow-free/dry and
wet snow conditions [15–18]. Attenuation due to snow in the frequency range 1–12 GHz is
very low, and dry snow covers cannot be discerned from the bare ground. Conversely, there
is a signal attenuation in wet snow conditions, due to a change in the dielectric properties
of the surfaces [16,19,20].

Due to polar night, SAR data are essential in the arctic during the winter period.
However, because of the high cloud coverage that limits optical images, SAR data are also
important during the summer period. Once the snow has disappeared, the radar beam
can simultaneously penetrate both the vegetation and the soil to a depth that is difficult to
determine [21,22]. Innovative approaches are based on the use of SAR and optical sensors to
follow the phenological phases of vegetation [23]. These approaches may be useful in areas
where cloud cover is widespread during the growing season. Moreover, the sensitivity
of backscattering coefficients to the vegetation of high arctic not yet been investigated to
our knowledge.

The Copernicus program allowed free access to time series of different sensors, which
can be used in synergy. Sentinel-1A and 1B SAR sensors (centre frequency of 5.405 GHz)
provide medium and high-resolution time series of C-band data, while Sentinel-2A and 2B
optical sensors acquire 13 spectral bands in the optical domain [24,25]. The two sensors used
simultaneously can improve the characterization of the snow season and vegetation growth,
allowing us to derive multi-sensor products with a high temporal and spatial resolution.
The central aim of this study was to derive wet snow maps and snow maps from the
time series of S-1 and S-2, in order to assess the seasonal variations of the snow. Then,
a sensitivity analysis of the backscattering coefficient σ0 to vegetation and soil moisture was
made and related to snow dynamics. The final phase enabled an overall understanding of
the sensitivity of the SAR signal to vegetation in relation to snow dynamics. The novelty of
our study is to assess the impact of vegetation growth and soil moisture on the SAR signal
in the Arctic, taking into account the variability of the snow seasonality.

Compared to the studies presented above, our main objectives of the study are:

1. to apply a combination of radar and optical satellite data (Sentinel-1 and Sentinel-2) to
map the spatial and temporal pattern of wet and dry snow conditions, and its relation
to the vegetation growth season;
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2. to understand how polarized radar data (HV- horizontal transmit and vertical re-
ceived) can contribute to detect the pattern of arctic vegetation growth and soil
moisture.

2. Materials and Methods
2.1. Study Area

The study area is the Adventdalen valley and the surrounding plateaux, close to the
town of Longyearbyen (78◦13′N 15◦33′E), in the Svalbard archipelago (Figure 1).

Figure 1. Adventdalen valley and the study area as shown by the Sentinel-1 HV channel in a
RGB composition: 17 June 2018 Red band; 16 August 2018 Green band; 1 March 2018 Blue band.
The location of the study area on Svalbard (the white arrow points to the Adventdalen valley) and
the five selected ground stations are shown.

The study area lies approximately between latitudes 78◦20′ and 78◦07′N, and lon-
gitudes 15◦10′ and 17◦10′E. The periglacial landscape is characterized by vast plateaux
intersected by wide glacial valleys and alluvial plains. Precipitation is low and the mar-
itime environment strongly influences the snowpack characteristics [26]. Adventdalen
is characterized by a polar-tundra climate [27] and is located in the Middle-Arctic and
Northern-Arctic tundra zone. The Middle-Arctic zone is characterized by dwarf-shrub
heaths, where Cassiope tetragona often dominates, and in the study area small patches of
Betula nana are found, whereas in the Northern Arctic Tundra zone, the genus Luzula is char-
acteristic with Salix polaris, Saxifraga oppositifolia and Dryas octopetala [28,29] also common.
The meteorological station located in Adventdalen (Station number SN99870, Norwegian
Meteorological Institute) recorded an average air temperature in July of 6.8 ◦C and 7.2 ◦C
for the years 2017 and 2018, respectively. Within the projects SnoEco (NRC ref. 230970), Sen-
tinels Synergy Framework (EC FP7 collaborative project), and SIOS (www.svalbard-sios.org,
accessed on 18 September 2019), ten ground stations were set up in Adventdalen. Each
station [30] was equipped with data loggers, environmental sensors for soil temperature
and moisture at 10 cm depth and time-lapse ordinary RGB cameras and NDVI sensors
positioned at 2 m above the ground. Since the location of some stations changed between
2017 and 2018, we selected only five stations; their characteristics are listed in Table 1, while
an example of images is shown in Figure 2. Camera images covered an area of approx. 1.4
square meters.

www.svalbard-sios.org
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Table 1. Description of ground stations location (UTM zone 33 north, datum WGS84), equipment
and vegetation in Adventdalen during season 2017 and 2018.

Station UTM X UTM Y Vegetation and Site Description Sensors

ST1 523620 8677555

Moist moss tundra with Alopecurus ovatus,
Bistorta vivipara and Salix polaris.
Depressions with Equisetum arvense,
patches of Saxifraga hirculus,
and scattered Dupontia fisheri
and Eriophorum scheuchzeri.
Vegetation cover: 100%

NDVI sensor, soil temperature/moisture,
Infrared radiometer, PhenoCams

ST3 524461 8677707

Mosaic of the shrub Dryas octopetala,
and graminoids, e.g., Luzula confusa,
Poa pratensis alpigena and Alopecurus ovatus.
Lots of Salix polaris and Bistorta vivipara on
moist to wet moss tundra dominated by silty sand.
Small landscape feature dominated by soil frost
polygon with little vegetation in the center. Vegetation cover: 90–100%

NDVI sensor, soil temperature/moisture,
Infrared radiometer, PhenoCams

ST6 519008 8680756

Grass dominated sandy sediment plain.
Festuca rubra, Poa pratensis ssp alpigena,
and Alopecurus ovatus.Thin organic layer,
with lots of Salix polaris
in between the grasses.
Vegetation cover: 80–100%

NDVI sensor, soil temperature/moisture,
PhenoCams

ST7 519655 8679964

Wetland vegetation on flat silty and sandy substrate,
dominated by large polygon soil patterns.
Puccinellia phryganodes, Dupontia fisheri
and Eriophorum scheuchzeri in the interior
part of polygons, while Ranunculus pygmeaus
and bryophytes such as Scorpidium cossonii
and Scorpidium revolvens dominate the wettest
part in polygon cracks. Vegetation cover: 100%

NDVI sensor, soil temperature/moisture,
PhenoCams

ST9 519280 8679794

Heath dominated by Luzula confusa.
Other species present are Salix polaris,
Poa pratensis alpigena, Cerastium arcticum
and bryophytes such as Sanionia uncinata
and Tomentypnum nitens.
Some cryoturbation and silty soil.
Vegetation cover: 70–100%

NDVI sensor, soil temperature/moisture,
PhenoCams

(a) (b) (c) (d) (e)

Figure 2. Images recorded on 27 July 2018 from stations (a) ST1, (b) ST3, (c) ST6, (d) ST7, and (e) ST9.

2.2. Datasets

The analyzed data sets are composed of time series from Sentinel-1, Sentinel-2,
and ground station data. 115 S-1A and S-1B images acquired from February 2017 (4
February 2017) to December 2018 (26 December 2018) were processed. With a revisit
frequency of six days, the C-band (wavelength, λ = 5.5 cm) images were acquired in
Interferometric Wide swath mode (IW), with one relative orbit (track 014), and ascending
pass. The images were available in cross polarized HV (‘Horizontal transmit’ and ‘Vertical
receive’) channel, with a spatial resolution of 10 m. The S-2 Multi Spectral Instrument (MSI)
acquires 13 spectral bands in the Visible, Near-Infra-Red (NIR) and Short Wave Infra-Red
(SWIR) domains, with a spatial resolution of 10 to 60 m. Time series of S-2A and S-2B were
processed starting from Level-1C Top-Of-Atmosphere reflectance. The high latitude results
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indeed in low solar elevation angles, which generate an under-correction of the atmospheric
signal for the Bottom-Of-Atmosphere (BOA) processing level 2A [31] Due to polar night,
images were acquired from April to September of each year. The polar orbit of S-2 enables
daily data of Adventdalen to be obtained. However, only 43 images were processed in this
study because of fog and frequent clouds, which reduced the number of images available.
The ground stations were equipped with Meter Group SRS-NDVI Sensor [32] and soil
temperature/moisture sensors (5 TM [33]). Water content and temperature of soil were
measured at 10 cm depth. Station ST1 and ST3 additionally included infrared thermometers
(SI-421 [34]) to monitor surface temperature. Data were recorded every four hours from
mid-April to the end of September. The 5TM soil moisture and temperature sensors were
not installed before the beginning of June, as the active layer was frozen until then. Time
lapse cameras (WingScapes, model WCT-00122), with 8 MP of resolution, recorded images
three times a day (9 am, 12 am and 3 pm). April to the beginning of October for three of the
stations (6, 7 and 9), while station 1 recorded from mid of August to October, and station 3
from end of July to October)

3. Methodology

In this study, we primarily applied known techniques to define the melting of snow
and the last day of snow. Following snowmelt, a study on the radar response to vegetation
growth and soil moisture was carried out. The scheme of the suggested methodology is
shown in Figure 3 and briefly described in the following sections.

Figure 3. Flow chart of the proposed approach to detect the main features of snow season and phenology.

3.1. SAR, Optical and Ground Data Processing

The pre-processing of S-1 data includes several standard steps to derive geocoded in-
tensity images from Level-1 GRD (Ground Range Detected) data. Each scene was geocoded
in the Norut software package GSAR [35] and stored as geotiff files. To reduce speckle-
affecting backscattering values and obtain a more homogenous snow cover pattern, a Frost
filter with a 7× 7 window was applied to the images [36]. Top-of-atmospheric Sentinel-2
products (L1C) were processed to obtain clear-sky time-series. The cloud detection pro-
vided with the Sentinel-2 (L2A) product was often not sufficiently robust, and so clouds
were detected by a visual analysis of the images combined with different cloud-detection
algorithms for cloud removal. Specifically, we used algorithms from the literature [37,38],
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along with our own developed algorithms based on our experiences with time series pro-
cessing in Svalbard [39,40]. After this step, in the period from late April to late September,
16–22 days were cloud-free in 2017, and 15–21 days in 2018. Then, to reduce the time
discrepancy with SAR data, the cloud-free pixels were interpolated to daily data, by using
a Kernel Ridge Regression machine learning method [41]. Finally, time series from ground
sensors were filtered, selecting only the acquisition between 12 and 4 pm. The values within
this interval of time were averaged in order to reduce the noise.

3.2. Snow-Melting Detection

To detect temporal changes in snow structural and dielectric properties due to the
presence of water with S-1 C band backscatter, we used the ratio method [42]. Starting from
the climate database of the Norwegian Meteorological Institute (https://klimaservicesenter.
no/ Norwegian Centre for Climate Services (NCCS), accessed on 5 August 2019,) we
selected winter intervals with specific characteristics of snow depth, air temperature and
time between extreme events in days (snow depth ≥ 5 cm, mean and max of temperature
≤ 0 ◦C, ±5 days before and after). The same procedure was applied to the summer period
(snow depth = 0 cm, mean and min of temperature ≥ 5 ◦C, ±5 days before and after,
no precipitation). The meteorological station is located at 15 m a.s.l in the central part of
Adventdalen (latitude 78.2022◦–longitude 15.831◦). Using this information, it was possible
to select images during the winter as a reference for dry snow/snow covered, as well
during the summer period as snow free references. The specification of the selected images
are shown in Table 2.

Table 2. Sentinel-1 master images and meteorological data years 2017–2018.

Image Date Snow Depth (cm) Air Temperature Mean (◦C) Air Temperature Max (◦C) Air Temperature Min (◦C) Precipitation (mm)

6 March 2017 9 −11.8 −7.2 −13.3 -
12March 2017 9 −16.9 −14.9 −21.5 0.4
24 March 2017 12 −11.2 −8.9 −12.5 1.6

10 July 2017 - 7.4 8.7 5.7 -
22 July 2017 - 8.3 10.9 5.9 -

3 August 2017 - 8.1 10.6 7.4 -
17 February 2018 21 −16.3 −10.4 −22.6 -

7 March 2018 13 −16 −13.9 −16.7 -
13 March 2018 14 −18.3 −14.8 −20.4 -

As a first step, the 2017 time series was used to optimise a wet-snow threshold (Th).
Three images acquired during the winter period were averaged, representing the snow-
covered conditions (σsc 2017).

The same procedure was applied to three summer images, in order to obtain a reference
image for the snow-free surface (σsf 2017). The threshold for defining wet-snow surfaces
was quantified by calculating the ratio (RTh) of these two images (Equation (1)):

RTh =
σsc 2017

σsf 2017
(1)

Then, a sample of 30,000 snow-covered and snow-free pixels was extracted from
the ratio, respectively. RGB S-2 images from the corresponding period were used as
a guide to define snow-covered and snow-free surfaces. From the intersection of the
frequency distribution of pixels values, a threshold was obtained. As shown in Figure 4,
the intersection between the distribution of snow-free and snow-covered S-1 pixels was
−2.8 dB.

This threshold was applied to discriminate wet-snow in the 2017 and 2018 time series,
for a total of 115 wet-snow masks.

https://klimaservicesenter.no/
https://klimaservicesenter.no/
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Figure 4. Distribution of Ratio values (dB) in snow covered and snow-free condition.

Simultaneously, a stack of images was created between the winter reference images of
the years 2017 and 2018 (σsc2017, σsc2018) and each image of the time series, calculating their
ratio according to Equation (2):

RTS =
σtime series

σsc reference
(2)

where RTS (Equation (2)) is the ratio of each image of the time series (σtime series) and
the reference images ( σsc reference) of 2017 (σsc2017) and 2018 (σsc20178), respectively. After
rationing each image with the reference one, we applied the previously fixed threshold.
Finally, a binary classification of wet-snow (Maskwet-snow) was produced for the years 2017
and 2018 (Equation (3)).

Maskwet-snow = RTS < Th (3)

3.3. Snow-Free Mapping and Accuracy Assessment

The Normalized Difference Snow Index (NDSI) [12] was calculated from S-2 time
series for the years 2017 and 2018 according to Equation (4) :

NDSI =
(b03− b11)
(b03 + b11)

(4)

where b03 (Equation (4)) corresponds to green band (central wavelength 0.560 µm) and
b11 (Equation (4)) to shortwave infrared band (central wavelength 1.610 µm). A threshold
of 0.6 was then applied to create a binary snow/snow-free map for the season 2017 and
2018 [36]. The threshold was chosen based on our experience from previous work on
defining snow-free surfaces in Arctic environments [8].

The comparison between the wet-snow maps derived from Sentinel-1 and the snow
maps derived from Sentinel-2 was carried out.

At the same time, the ground stations and the meteorological station n. SN99870
(Norwegian Meteorological Institute) were used to validate the Sentinel-2 masks. The
validation of the optical snow cover/snow free mask was carried out using photos from
the PhenoCams. When images were not available (ST1, ST3 season 2017), the NDVI from
the ground stations was used [43] as:

Snow free = NDVI > 0.3 (5)
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To obtain a more robust validation, air temperature at 2 m height and snow depth
from the meteorological station (snow depth = 0 cm, mean and min of temperature > 0)
were incorporated into the validation process.

3.4. Ground Sensor Data Analysis

The next phase focused on understanding the dominant components in the backscatter
signal in relation to vegetation development. S-1 σ0 time series were extracted in homo-
geneous areas of around 50× 50 m corresponding to the ground stations. To remove the
noise, a linear interpolation and a moving average filter [44] were applied to the time series.

Correlation analyses were performed between time series of S-1 and ground sensor
data to understand the contribution of vegetation, and soil moisture on the SAR signal.
Subsequently, in order to measure the importance of the factors in a quantitative basis,
a dominance analysis [45] of the variables was carried out.

4. Results

First, a validation of the masks were carried out. Subsequently, the S-1 melting season
was calculated for the year 2017 and 2018, together with the snow season from S-2. Finally,
a sensitivity analysis between S-1 backscatter and ground information was performed.

4.1. Snow Masks, Inter-Satellite Cross-Comparison and Ground Validation

Applying the −2.8 dB threshold, wet snow masks were created for the 2017 and 2018
seasons. The masks were selected for the May-September period, when optical images were
also available. Next we created a binary daily snow cover mask by applying the S-2 NDSI
threshold. The S-1 wet-snow masks and S-2 snow masks were overlaid and visually verified
together with RGB images. An example of S-1 and S-2 masks is illustrated in Figure 5;
using a RGB image as the base (Figure 5a), the mask obtained from the NDSI (Figure 5b)
and the mask obtained from the coefficients of backscatter (Figure 5c) are overlaid.

Then, the first snow-free day of the S-2 masks was compared with the data of the
ground sensors. From the regression model, the coefficient of determination R2 between
S-2 masks and ground data was 0.73. The results are summarized in Table 3.

Table 3. First snow-free Day Of Year (DOY) detected by ground station and S-2 snow masks. The 2018
ground stations acquired data staring from May 23, already a snow free period. For this reason only
the information of the climatic station (SN99870) was available.

Station Ground Sensors Snow Mask

SN99870-2017 150 (30 May) 142 (22 May)
ST1-2017 151 (31 May) 154 (3 June)
ST3-2017 150 (30 May) 146 (26 May)
ST6-2017 141 (21 May) 144 (24 May)
ST7-2017 152 (1 June) 147 (27 May)
ST9-2017 154 (3 June) 166 (15 June)

SN99870-2018 128 (8 May) 124 (4 May)

4.2. Snow Seasonality

The total number of pixels affected by both by the presence of snow and melting snow
during the two seasons was comparable. However, a significant difference (quantified
in terms of km2 of wet-snow) was observed in the temporal distribution of the process.
Figure 6 illustrates late melting of snow in 2017, with a maximum area of wet snow around
DOY 150–160 (start of June). On the contrary, the snow melting season in 2018 was earlier,
with a large amount of wet snow already in May. The peak of melting in 2018 corresponded
to DOY 170–180 (end of June). Therefore, the melting process started early in 2018, whereas
in 2017, there was a late but faster snow melt. During the season, after the different start
dates of snowmelt in 2017 and 2018, the pattern of melting proceeded similarly from from
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the middle of June (around DOY 170) until the end of August (around DOY 240). To assess
the spatial distribution of the snowmelt, please refer to Appendix A.1.

(a)

(b)

(c)

Figure 5. Sentinel-2 RGB images of 2018-07-30 (a) with overlapped in green the snow mask obtained
using an NDSI threshold (b), and in yellow the wet snow mask obtained with 2.8 threshold on
sigma0 (c).
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Figure 6. Surface (km2) covered by wet-snow during the melting season 2017 and 2018. The range of
days expressed in DOY (from approximately DOY 130, which corresponds to early May, to DOY 250,
which corresponds to early September) represents the window in which Sentinel-2 images are usable
due to polar night.

The S-2 results also indicated that the number of snow-free areas in 2018 were greater
than in the previous year (Figure 7). In 2017, until the start of June (approximately DOY 150)
snow slowly disappeared from the surfaces, and then had a rapid decrease until the end of
June (approximately DOY 180). In 2018, on the contrary, since the beginning of the season
(DOY 130), the km2 occupied by snow progressively decreased, forming a bell-shaped
trend. Again, after a very different starting phase, the pattern proceeded similarly in both
years from the end of June (about DOY 180) until the end of August (about DOY 240).

The average difference in days between the first snow free day of 2017 and 2018
obtained by the validation of the stations positioned in Adventdalen valley was 23 days. The
spatial distribution of the snow-free surfaces over the two years is shown in Appendix A.2.

Finally, to obtain an overview of the snowmelt and snow seasons for both years we
created maps of ‘wet snow’, ‘dry snow’, and ‘snow-free’ areas. An example is shown in
Figure 8, where (a) and (c) are derived from 2017, while (b) and (d) from the same period of
2018 (±1 day).

Figure 7. Surface [km2] free of snow during the season 2017 and 2018.
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(a) (b)

(c) (d)

Figure 8. Snow cover classification of Sentinel-1 and Sentinel-2, based on backscatter and NDSI thresholds. The two maps at the top represent the month of May
(DOY 143 2017 (a) and DOY 144 2018 (b)). In the lower part represents the month of August (DOY 215 2017 (c) and DOY 216 2018 (d)).
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4.3. Multi Sensor Analyses and Vegetation

To understand the evolution of the HV signal in respect of the NDVI, the Soil Water
Content (SWC) and the temperature of soil, a temporal analysis was computed. Figure 9
shows an example of the S-1 time series related to ground information; the time series are
from 2017, station ST3.

The Pearson correlation coefficient (R) and p-value between time series are shown in
Table 4.

Table 4. Pearson correlation coefficient (R) and p-value for the five stations.

Time Series Station Pearson 2017 p-Value 2017 Pearson 2018 p-Value 2018

S1 HV ∼ NDVI ST1 0.36 0.000 0.52 0.000
ST3 0.09 0.379 0.23 0.014
ST6 0.64 0.000 0.69 0.000
ST7 0.45 0.000 0.56 0.000
ST9 0.53 0.000 0.14 0.147

S1 HV ∼ SWC ST1 0.17 0.094 0.61 0.000
ST3 0.81 0.000 0.71 0.000
ST6 0.42 0.000 0.53 0.000
ST7 −0.34 0.000 −0.34 0.000
ST9 0.44 0.000 0.65 0.000

S1 HV ∼ Temp ST1 0.38 0.000 0.19 0.047
ST3 0.30 0.002 0.19 0.043
ST6 0.79 0.000 0.32 0.000
ST7 0.77 0.000 0.50 0.000
ST9 0.68 0.000 −0.12 0.195

In the 2017 season, except for the ST3 and ST6 areas, the R between HV ∼ NDVI and
HV∼ SWC was below 0.6, with p-values less than 0.05 (excluding ST3 and ST1). Conversely,
the R between HV and temperature in the ST6, ST7, and ST9 stations were significant (R
mean of 0.74). Through the Pearson correlation coefficient, the positive correlation between
the time series was defined, except for the station ST7 (HV ∼ SWC). In 2018, the results of
the R were significant for HV ∼ NDVI and HV ∼ SWC. Instead, the HV ∼ temperature
correlation showed a low value in all five areas. Again, the ST7 station was negative
correlated with HV and SWC, along with the HV and temperature of the ST9 area. To
determine the order of factors soil temperature and moisture content, dominance analyses
of the linear models were performed. The results in Table 5 illustrate the dominance,
expressed as a percentage, of the NDVI and SWC variables in linear regression with the
HV channel. However, in 2018, for the stations ST1 and ST3 the SWC influences the HV
channel more than the vegetation.

Table 5. Dominance analyses of the linear models between HV ∼ NDVI and HV ∼ SWC.

Station 2017 NDVI % 2017 SWC% 2018 NDVI% 2018 SWC%

ST1 87 13 42 58
ST3 1 99 8 92
ST6 71 29 64 36
ST7 64 36 74 26
ST9 59 41 2 98
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Figure 9. Time series of S-1 HV channel and ground sensors for the area ST3 2017: in the graphs,
in red is shown the HV backscatter, in green the NDVI, in blue the Soil Water Content (SWC) and in
purple the soil temperature at 10 cm depth. A moving average filter was applied to the time series.

4.4. Discussion

The threshold for detection of wet snow was calculated and applied to 115 S-1 C
band images. To minimize the threshold dependency on the reference images, it was
essential to average three images during the winter (σsc 2017) and summer (σsf 2017) peri-
ods. The threshold identified in this study was in line with the thresholds found in the
literature [15,16,46].

However, the time lapse between two acquisitions was decisive in the definition of
wet snow, because there were strong changes from one day to the next. For this reason,
together with the low amount of snow, it was not possible to detect wet snow in some areas
of the valley floor. A specific threshold analysis for vegetated areas, rocks, and sediments
could improve our wet snow masks [17].

In terms of optical images, the validation of the NDSI masks by PhenoCams/NDVI
was not possible for the 2018 season. Due to the early snow melting, the start of the RGB
image acquisition occurred only in a snow-free period. For this reason, it was only possible
to use the information from meteorological station. The NDSI snow-mask/field data
correlation, considering both years, was found to have an R2 of 0.73. This is significantly
better than the results obtained by the optical sensor MODIS over northern Norway [8].

The two seasons investigated showed a variability in the melting period. The 2017
season experienced late melting, with peaks around the end of June. On the contrary,
in 2018 the snow began to melt much earlier. On average, the discrepancy in the valley
between the two years was around 20 days.

Once the masks were obtained and validated, it was possible to get an overview
of the snow season 2017 and 2018. The SAR and optical time-series were fused into a
multi-sensor and multi-temporal snow cover masks. At this latitude, due to low incident
angle, after September it was not possible to detect the first day of snow covered with
optical data in the valley. The discrepancy between snow melting and the last day of snow
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corresponded in both cases to about 20 days at the lowest elevations in the two seasons
under consideration. Therefore, in 2018, in these areas, snow melting was about 20 days
earlier, as well as snow-free surface in comparison with the 2017 season. Considering that
the vegetation phenology is strongly influenced by the dynamics of snow [2,3], it would be
interesting to estimate the impact of the two seasons on a large scale [10], with a spatial
resolution equal to 20 m (the spatial resolution of the S-2 short wave infrared band).

An exploratory investigation was conducted on the sensitivity of backscattering coeffi-
cients to snow-free surfaces in the high arctic environment. The structure of the vegetation
and its dielectric properties, soil roughness and moisture influence the backscattering coef-
ficients. For dense vegetation and small leaves, the C band has proved useful in detecting
the dynamics of vegetation compared to other frequencies [47,48]. Moreover, in the cross
polarized channels the contribution of vegetation is predominant [49]. Our results con-
firmed at most stations a dominance of the vegetation factor, expressed by the NDVI, on soil
moisture (SWC). Nevertheless, the R between HV and NDVI showed, especially in 2017,
a low significance and a variation depending on the areas under consideration. In the ST3
area, in both years, soil moisture was the prevalent component of σ0 HV channel. The area
has cryoturbated soil and is dominated by polygons of frost patterned ground, with little
vegetation in the center. Soil moisture in this area averaged 0.30 m3/m3 in both years,
with maximum values not exceeding 0.34 m3/m3. Furthermore, the dominant vegetation of
this area are graminoid that grow in tussocks; an example is the genus Luzula. These plants
have short leaves (1–6 cm and 3–5 mm wide) and keep withered leaves and sheaths from
previous years [50,51]. These factors could explain the dominance of the soil component
over the vegetation in this area. On the contrary, station ST6 has a plain of sandy sediments
dominated by herbs, such as the genus Festuca. In this case, the leaves are up to 10–20 cm
long, with 0.7–1.0 mm broad when rolled up, up to 2.5 mm broad when flat [50,51]. For this
reason, the sensitivity of the HV channel is greater with respect to the vegetation component
than to the soil component. A similar argument applies to station ST1 and ST7, which have
graminoid dominated cover. A further element in the analysis of the results of the station
ST7 is the saturation of the soil. The SWC reaches maximum values of 0.6–0.8 m3/m3 in
2017 and 2018, respectively. This could limit the penetration of the radar signal into the soil,
resulting in limited sensitivity to this component. Another important point is the relevance
of the correlations with temperature in the two years under consideration. In 2017, the year
with delayed melting and disappearance of the snow, the SAR signal is more related to
temperature at stations ST6, ST7, and ST9, than to vegetation and soil. On the contrary,
in 2018, the relevance of temperature is almost negligible at all the stations. The change in
snow cover determines the thawing rates of the soil, and thus controls the temperatures in
the soil and soil surface, as well as the thickness of the active layer [52].

As the soil temperature decreases, there is lower liquid water content, which causes
the backscattered signal to reduce [53,54]. The amount of frozen soil/tundra (with drier
vegetation dominated by graminoids) may therefore limit the radar’s capability to follow
the vegetation growth pattern and soil moisture. In addition, links were observed between
thawing of tundra soils and rainfall, especially from May to June [55]. For a phenological
state estimation model, the incorporation of the soil temperature and precipitation could
improve the outcomes. A better and deeper understanding of the backscatter dependence
on soil and vegetation properties could be achieved by using data from boreholes in Sval-
bard (e.g., Adventdalen and Kapp Linne’) in combination with fieldwork procedures such
as those conducted by Bergstedt et al. (2018) [53] in their study covering circumpolar
regions including Scandinavia. As a final consideration, the variation in the correlation
between the vegetation and the backscatter signal could be determined by the presence
of reindeer and migratory birds on the vegetated areas. The grazing of Svalbard reindeer
(Rangifer tarandus platyrhynchus), whose population is increasing with an estimated mean
population size of 22,435 [56], as well as grazing and grubbing by an exponentially increas-
ing population of geese (e.g., Anser brachyrhynchus) cause a severe loss of plant biomass [57]
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that should be taken into account in understanding the response of backscatter coefficients
to vegetation dynamics.

4.5. Conclusions

To follow snow dynamics on Svalbard, Sentinel-1 wet snow masks and Sentinel-2 snow
masks were created and validated using ground data. An optimized threshold, applied to
SAR backscattering coefficients, was used to detect wet snow during the years 2017 and
2018. Using the NDSI index, a daily snow mask was extracted from the Sentinel-2 sensor.
Then Sentinel-1 and NDVI were used in synergy to follow vegetation dynamics. Our
results have shown a variability in the length of snow seasons of 2017 and 2018. In 2018, the
snow melted and the surface was free of snow about 20 days earlier than in 2017, and this
was most clearly visible in the valley bottoms. In future studies, it would be interesting
to evaluate the impact of these snow seasons on the vegetation phenology. Since high
cloud coverage limits optical satellite data in the Arctic environment, a sensitivity study of
cross-polarized channels to phenology and soil dynamics was performed.

The results of our study confirmed that vegetation is best detected by the HV channel
in the Arctic environment. However, the ability to detect is limited due to the structure of
the vegetation and the saturation of the soil. The late melting and disappearance of snow
causes a further challenge in the monitoring of vegetation and soil dynamics. Therefore,
when studying vegetation and soil dynamics, the amount of frozen soil/tundra should
also be considered to understand the response of backscattering coefficients. Furthermore,
the grazing of reindeer and arctic geese should be taken into account to fully understand
the data.
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Appendix A

Appendix A.1

A visual representation of the difference between years is shown in Figure A1, where
each colour matches the wet snow cumulatively at a specific month. The snow cover for a
specific month is coloured blue for May, red for June, orange for July, green for August and
purple for September.
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Figure A1. Cont.
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(i)

(j)

Figure A1. Wetsnow masks of the season 2017 and 2018: May is shown in blue (a,b), June in red (c,d),
July in orange (e,f), August in green (g,h) and September in purple (i,j). The masks of the different
days of the months are overlapped by a dark to light gradient for each type of color (cumulative of
month periods). The picture shows the surrounding area of Adventdalen to provide an overview of
the region, with a dotted frame representing the investigated area.

Appendix A.2

The periods without snow (expressed in DOY) are shown in Figure A2 by red to
dark purple shading. In both years the first surface free from snow was in the area of the
airport situated at the mouth of Adventfjørd, then on roads and on the steepest slopes of
the mountains. After that, the snow disappeared from the flat bottom and lower slopes of
the main Advent valley, in the secondary vallies and lastly in the areas with the highest
altitude. The 2018 snow-free season was earlier than in 2017. The maps show a discrepancy
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in the red-orange colours of the vallies. The difference between the maps is smaller for
areas at higher elevations.

(a)

(b)

Figure A2. Snow-free maps for the years 2017–2018 (Period May-September). Each colour is matched
by a period of 10 days expressed in DOY. (a) 2017 and (b) 2018.

References
1. Box, J.E.; Colgan, W.T.; Christensen, T.R.; Schmidt, N.M.; Lund, M.; Parmentier, F.J.W.; Brown, R.; Bhatt, U.S.; Euskirchen, E.S.;

Romanovsky, V.E.; et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019, 14. [CrossRef]
2. Gillespie, M.A.K.; Baggesen, N.; Cooper, E.J.H. Arctic flowering phenology and plant–pollinator interactions in response to

delayed snow melt and simulated warming. Environ. Res. Lett. 2016, 11, 115006. [CrossRef]
3. Semenchuk, P.R.; Gillespie, M.A.K.; Rumpf, S.B.; Baggesen, N.; Elberling, B.; Cooper, E.J.H. Arctic plant phenology is determined

by snowmelt patterns but duration of phenological periods is fixed: An example of periodicity. Environ. Res. Lett. 2016, 11,
125006. [CrossRef]

http://doi.org/10.1088/1748-9326/aafc1b
http://dx.doi.org/10.1088/1748-9326/11/11/115006
http://dx.doi.org/10.1088/1748-9326/11/12/125006


Remote Sens. 2022, 14, 1866 22 of 23

4. Treharne, R.; Bjerke, J.W.; Tømmervik, H.; Stendardi, L.; Phoenix, G.K. Arctic browning: Impacts of extreme climatic events on
heathland ecosystem CO2 fluxes. Glob. Chang. Biol. 2019, 25, 489—503. [CrossRef] [PubMed]

5. Saha, S.K.; Rinke, A.; Dethloff, K.C. Future winter extreme temperature and precipitation events in the Arctic. Geophys. Res. Lett.
2006, 33. [CrossRef]

6. Hansen, B.B.; Isaksen, K.; Benestad, R.E.; Kohler, J.; Pedersen, Å.; Loe, L.E.; Coulson, S.J.; Larsen, J.O.; Varpe, Ø. Warmer and
wetter winters: Characteristics and implications of an extreme weather event in the High Arctic. Environ. Res. Lett. 2014, 9,
114021. [CrossRef]

7. Vikhamar-Schuler, D.; Isaksen, K.; Haugen, J.E.; Tømmervik, H.; Luks, B.; Schuler, T.V.; Bjerke, J.W. Changes in winter warming
events in the Nordic Arctic Region. J. Clim. 2016, 29, 6223–6244. [CrossRef]

8. Malnes, E.; Karlsen, S.R.; Johansen, B.; Bjerke, J.W.; Tømmervik, H. Snow season variability in a boreal-Arctic transition area
monitored by MODIS data. Environ. Res. Lett. 2016, 11, 125005. [CrossRef]

9. Winther, J.-G.; Bruland, O.; Sand, K.; Gerland, S.; Marechal, D.; Ivanov, B.; Gøowacki, P.; König, M. Snow research in Svalbard—An
overview. Polar Res. 2003, 22,125–144. [CrossRef]

10. Malnes, E.; Karlsen, S.R.; Johansen, B.; Haarpaintner, J.; Hogda, K.A. Monitoring of the snow coverage and its relation to
vegetation and growing seasons on Svalbard using ENVISAT ASAR and TERRA MODIS data. In Prcoceedings of the ESA Living
Planet Symposium, Bergen, Norway, 28 June–2 July 2010; Volume 686, pp. 28.6–28.7.

11. Vickers, H.; Karlsen, S.R.; Malnes, E. A 20-year MODIS-based snow cover dataset for Svalbard and its link to phenological timing
and sea ice variability. Remote Sens. 2020, 12, 1123. [CrossRef]

12. Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution
imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [CrossRef]

13. Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote
Sens. Environ. 2004, 89, 351–360. [CrossRef]

14. Shi, J.; Dozier, J. Mapping seasonal snow with SIR-C/X-SAR in mountainous areas. Remote Sens. Environ. 1997, 59, 294–307.
[CrossRef]

15. Nagler, T.; Rott, H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38,
754–765. [CrossRef]

16. Baghdadi, N.; Gauthier, Y.; Bernier, M. Capability of multitemporal ERS-1 SAR data for wet-snow mapping. Remote Sens. Environ.
1997, 60,174–186. [CrossRef]

17. Notarnicola, C.; Ratti, R.; Maddalena, V.; Schellenberger, T.; Ventura, B.; Zebisch, M. Seasonal snow cover mapping in alpine areas
through time series of COSMO-skymed images. IEEE Geosci. Remote Sens. Lett. 2012, 10, 716–720. [CrossRef]

18. Buchelt, S.; Skov, K.; Rasmussen, K.K.; Ullmann, T. Sentinel-1 time series for mapping snow cover depletion and timing of
snowmelt in Arctic periglacial environments: Case study from Zackenberg and Kobbefjord, Greenland. Cryosphere 2022, 16,
625–646. [CrossRef]

19. Hallikainen, M.; Ulaby, F.; Abdelrazik, M. Dielectric properties of snow in the 3 to 37 GHz range. IEEE Trans. Antennas Propag.
1986, 34, 1329–1340. [CrossRef]

20. Mätzler, C.; Schanda, E. Snow mapping with active microwave sensors. Remote Sens. 1984, 5,409–422. [CrossRef]
21. Ulaby, F. Radar response to vegetation. IEEE Trans. Antennas Propag. 1975, 23, 36–45. [CrossRef]
22. Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [CrossRef]
23. De Bernardis, C.; Vicente-Guijalba, F.; Martinez-Marin, T.; Lopez-Sanchez, J.M. Contribution to real-time estimation of crop

phenological states in a dynamical framework based on NDVI time series: Data fusion with SAR and temperature. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3512–3523. [CrossRef]

24. Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES
Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [CrossRef]

25. Drusch, M.; Del, B.U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et
al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36.
[CrossRef]

26. Christiansen, H.H.; Humlum, O.; Eckerstorfer, M. Central Svalbard 2000–2011 meteorological dynamics and periglacial landscape
response. Arct. Antarct. Alp. Res. 2013, 45, 6–18. [CrossRef]

27. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst.
Sci. Discuss. 2007, 4, 439–473. ISSN 1812-2116. [CrossRef]

28. Elvebakk, A. Tundra diversity and ecological characteristics of Svalbard. Ecosyst. World Polar Alp. Tundra 1997, 347, 347–360.
29. Elvebakk, A. A vegetation map of Svalbard on the scale 1: 3.5 mill. Phytocoenologia 2005, 35, 951–967. [CrossRef]
30. Anderson, H.B.; Nilsen, L.; Tømmervik, H.; Karlsen, S.R.; Nagai, S.; Cooper, E.J. Using ordinary digital cameras in place of

near-infrared sensors to derive vegetation indices for phenology studies of High Arctic vegetation. Remote Sens. 2016, 8, 847.
[CrossRef]

31. Clerc, S.; Devignot, O.; Pessiot, L.; MPC Team. S2 MPC Level 2A Data Quality Report. In PDGS-MPC-L2ADQR, 39th ed.; ESA
Copernicus: Lima, Peru, 2019; pp. 1–18.

32. Spectral Reflectance Sensor for NDVI. METER Group, Inc. USA. Available online: https://www.ai-nex.co.jp/SRS-N%20
Integrators%20Guide.pdf (accessed on 18 September 2019).

http://dx.doi.org/10.1111/gcb.14500
http://www.ncbi.nlm.nih.gov/pubmed/30474169
http://dx.doi.org/10.1029/2006GL026451
http://dx.doi.org/10.1088/1748-9326/9/11/114021
http://dx.doi.org/10.1175/JCLI-D-15-0763.1
http://dx.doi.org/10.1088/1748-9326/11/12/125005
http://dx.doi.org/10.3402/polar.v22i2.6451
http://dx.doi.org/10.3390/rs12071123
http://dx.doi.org/10.1016/0034-4257(95)00137-P
http://dx.doi.org/10.1016/j.rse.2003.10.016
http://dx.doi.org/10.1016/S0034-4257(96)00146-0
http://dx.doi.org/10.1109/36.842004
http://dx.doi.org/10.1016/S0034-4257(96)00180-0
http://dx.doi.org/10.1109/LGRS.2012.2219848
http://dx.doi.org/10.5194/tc-16-625-2022
http://dx.doi.org/10.1109/TAP.1986.1143757
http://dx.doi.org/10.1080/01431168408948816
http://dx.doi.org/10.1109/TAP.1975.1140999
http://dx.doi.org/10.1029/RS013i002p00357
http://dx.doi.org/10.1109/JSTARS.2016.2539498
http://dx.doi.org/10.1016/j.rse.2011.05.028
http://dx.doi.org/10.1016/j.rse.2011.11.026
http://dx.doi.org/10.1657/1938-4246-45.16
http://dx.doi.org/10.5194/hess-11-1633-2007
http://dx.doi.org/10.1127/0340-269X/2005/0035-0951
http://dx.doi.org/10.3390/rs8100847
https://www.ai-nex.co.jp/SRS-N%20Integrators%20Guide.pdf
https://www.ai-nex.co.jp/SRS-N%20Integrators%20Guide.pdf


Remote Sens. 2022, 14, 1866 23 of 23

33. Soil Temperature and Moisture Sensor (5 TM). METER Group, Inc. USA. Available online: http://publications.metergroup.com/
Manuals/20424_5TM_Manual_Web.pdf (accessed on 18 September 2019).

34. Infrared Radiometer (SI-421). Apogee Instruments, INC.|721 WEST 1800 NORTH, LOGAN, UTAH 84321, USA. Available online:
https://www.apogeeinstruments.com/content/SI-400-manual.pdf (accessed on 18 September 2019).

35. Larsen, Y.; Engen, G.; Lauknes, T.R.; Malnes, E.; Høgda, K. Arild A generic differential interferometric SAR processing system,
with applications to land subsidence and snow-water equivalent retrieval. In Proceedings of the Fringe 2005 Workshop, ESA
ESRIN, (ESA SP-610), Frascati, Rome, 28 November–2 December 2005 .

36. Schellenberger, T.; Ventura, B.; Zebisch, M.; Notarnicola, C. Wet snow cover mapping algorithm based on multitemporal
COSMO-SkyMed X-band SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1045–1053. [CrossRef]

37. Hollstein, A.; Segl, K.; Guanter, L.; Brell, M.; Enesco, M. Ready-to-use methods for the detection of clouds, cirrus, snow, shadow,
water and clear sky pixels in Sentinel-2 MSI images. Remote Sens. 2016, 8, 666. [CrossRef]

38. Zupanc, A. Improving Cloud Detection with Machine Learning. Available online: https://medium.com/sentinel-hub/
improving-cloud-detection-with-machine-learning-c09dc5d7cf13 (accessed on 20 September 2019).

39. Karlsen, S.R.; Elvebakk, A.; Høgda, K.A.; Grydeland, T. Spatial and temporal variability in the onset of the growing season on
Svalbard, Arctic Norway—measured by MODIS-NDVI satellite data. Remote Sens. 2014, 6, 8088–8106. [CrossRef]

40. Karlsen, S.R.; Stendardi, L.; Tømmervik, H.; Nilsen, L.; Arntzen, I.; Cooper, E.J. Time-Series of Cloud-Free Sentinel-2 NDVI Data
Used in Mapping the Onset of Growth of Central Spitsbergen, Svalbard. Remote Sens. 2021, 13, 3031. [CrossRef]

41. Matthew, J.M.; Christopher, S.S.; Kyle, J.; Martha, K.R. Landsat-based snow persistence map for northwest Alaska. Remote Sens.
Environ. 2015, 163, 23–31. [CrossRef]

42. Rignot, E.J.M.; Van Z.J.J. Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 896–906.
[CrossRef]

43. Metsämäki, S.; Vepsäläinen, J.; Pulliainen, J.; Sucksdorff, Y. Improved linear interpolation method for the estimation of snow-
covered area from optical data. Remote Sens. Environ. 2002, 82, 64–78. [CrossRef]

44. Qiu, D.; Shao, Q.; Yang, L. Efficient inference for autoregressive coefficients in the presence of trends. J. Multivar. Anal. 2013, 114,
40–53. [CrossRef]

45. Budescu, D.V. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression.
Psychol. Bull. 1993, 114, 542–551. [CrossRef]

46. Floricioiu, D.; Rott, H. Seasonal and short-term variability of multifrequency, polarimetric radar backscatter of alpine terrain from
SIR-C/X-SAR and AIRSAR data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2634–2648. [CrossRef]

47. Ferrazzoli, P.; Paloscia, S.; Pampaloni, P.; Schiavon, G.; Sigismondi, S.; Solimini, D. The potential of multifrequency polarimetric
SAR in assessing agricultural and arboreous biomass. IEEE Trans. Geosci. Remote Sens. 1997, 35, 5–17. [CrossRef]

48. Macelloni, G.; Paloscia, S.; Pampaloni, P.; Marliani, F.; Gai, M. The relationship between the backscattering coefficient and the
biomass of narrow and broad leaf crops. IEEE Trans. Geosci. Remote Sens. 2001, 39, 873–884. [CrossRef]

49. McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30,
525–542. [CrossRef]

50. Scholander, P.F. Vascular Plants from Northern Svalbard: With Remarks on the Vegetation in North-East Land. 1934. Available
online: http://hdl.handle.net/11250/173806 (accessed on 23 September 2019).

51. Available online: https://svalbardflora.no/ (accessed on 30 September 2019).
52. Eckerstorfer, M.; Malnes, E.; Christiansen, H.H. Freeze/thaw conditions at periglacial landforms in Kapp Linné, Svalbard,

investigated using field observations, in situ, and radar satellite monitoring. Geomorphology 2017, 293, 433–447. [CrossRef]
53. Bergstedt, H.; Zwieback, S.; Bartsch, A.; Leibman, M. Dependence of C-band backscatter on ground temperature, air temperature

and snow depth in arctic permafrost regions. Remote Sens. 2018, 10, 142. [CrossRef]
54. Baghdadi, N.; Bazzi, H.; El Hajj, M.; Zribi, M. Detection of frozen soil using Sentinel-1 SAR data. Remote Sens. 2018, 10, 1182.

[CrossRef]
55. Rydén, B.E.; Kostov, L. Thawing and freezing in tundra soils. Ecol. Bull. 1980, 30, 251–281. [CrossRef]
56. Le Moullec, M.; Pedersen, Å.Ø.; Stien, A.; Rosvold, J.; Hansen, B.B. A century of conservation: The ongoing recovery of Svalbard

reindeer. J. Wildl. Manag. 2019, 83, 1676–1686. [CrossRef]
57. Speed, J.D.M.; Woodin, S.J.; Tømmervik, H.; Van der Wal, R. Extrapolating herbivore-induced carbon loss across an arctic

landscape. Polar Biol. 2010, 33, 789–797. [CrossRef]

http://publications.metergroup.com/Manuals/20424_5TM_Manual_Web.pdf
http://publications.metergroup.com/Manuals/20424_5TM_Manual_Web.pdf
https://www.apogeeinstruments.com/content/SI-400-manual.pdf
http://dx.doi.org/10.1109/JSTARS.2012.2190720
http://dx.doi.org/10.3390/rs8080666
https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13 
https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13 
http://dx.doi.org/10.3390/rs6098088
http://dx.doi.org/10.3390/rs13153031
http://dx.doi.org/10.1016/j.rse.2015.02.028
http://dx.doi.org/10.1109/36.239913
http://dx.doi.org/10.1016/S0034-4257(02)00025-1
http://dx.doi.org/10.1016/j.jmva.2012.07.016
http://dx.doi.org/10.1037/0033-2909.114.3.542
http://dx.doi.org/10.1109/36.974998
http://dx.doi.org/10.1109/36.551929
http://dx.doi.org/10.1109/36.917914
http://dx.doi.org/10.5589/m03-069
http://hdl.handle.net/11250/173806
https://svalbardflora.no/
http://dx.doi.org/10.1016/j.geomorph.2017.02.010
http://dx.doi.org/10.3390/rs10010142
http://dx.doi.org/10.3390/rs10081182
http://dx.doi.org/10.2307/20112776
http://dx.doi.org/10.1002/jwmg.21761
http://dx.doi.org/10.1007/s00300-009-0756-5

	Introduction
	Materials and Methods
	Study Area
	Datasets

	Methodology
	SAR, Optical and Ground Data Processing
	Snow-Melting Detection
	Snow-Free Mapping and Accuracy Assessment
	Ground Sensor Data Analysis

	Results
	Snow Masks, Inter-Satellite Cross-Comparison and Ground Validation
	Snow Seasonality
	Multi Sensor Analyses and Vegetation
	Discussion
	Conclusions

	Appendix A
	Appendix A.1
	Appendix A.2

	References

