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Metamodeling of the Electrical Conditions
in Submerged Arc Furnaces
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and HARALD MARTENS

Physics-based Finite Element Methods models can be used to investigate the electrical
conditions in submerged arc furnaces (SAFs). However, their explicit solution may be very
demanding in terms of time and computational resources. This makes these models difficult to
employ during control operations and in fast prototyping. To obviate these inconveniences, we
developed metamodels that are grounded on the physics-based model. In this context, a
metamodel is a surrogate of an original model obtained using statistical analysis tools to
determine approximate input–output relationships in a database of simulations from the
original model. The metamodels for the SAF electrical conditions are shown to retain the same
generalization capabilities as the original model while being computationally lightweight.
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I. INTRODUCTION

SUBMERGED arc furnaces (SAF) are metal-pro-
ducing units in which the energy needed for the primary
reactions are delivered by electric currents through large
electrodes. These type of furnaces are used for example
in the production of steel, ferroalloys, calcium carbide
and silicon.[1,2] Typically, SAFs operate at the grid
frequency of 50 or 60Hz with three-phase alternating
current (AC) and three or more electrodes.

Although SAFs are robust and reliable, cost-effective
operations require correct and stable electrical condi-
tions.[3,4] For example, it is important to understand and
control current densities, thermal conditions and
mechanical stresses to prevent problems such as elec-
trode breakages and to minimize electrode consump-
tion.[5–7] Furthermore, the design of a new furnace

requires a good understanding of the current paths to
deliver energy in the required zones for optimal
operations.[8–11]

Provided that some iron will not contaminate the
product, large furnaces utilizes self-backing Søderberg
electrodes with diameters up to 2 m. Normally, SAFs
operate at comparatively low voltages (100–150 V) but
with high currents that can exceed 130 kA. These
conditions produce strong electromagnetic fields that
cause induced eddy currents in the conductive materials
in the furnace. The induced eddy currents can have high
intensity and effectively modify the distribution of the
current. One normally identifies two distinct effects: (a)
the skin effect, that causes the currents to accumulate
near the surface of conductors, and (b) the proximity
effect, that induces currents in surrounding conduc-
tors.[2] The proximity effects typically yield an asym-
metric current density in the electrodes.[12–14] Although
these effects are significant and well-known,[15–19] they
are often neglected in electrode models which typically
concentrate on a single electrode.[7,20–22] To further
complicate the picture, furnaces have a (magnetic) steel
shell enclosing a conductive lining. This determines that
there may be strong eddy currents induced in the
periphery of the furnace.[23] When present, these shell
currents may also modify the currents of the electrode,
effectively creating electrode-shell proximity effects.[24]

Review papers about two-dimensional (2D) analytical
models of skin and proximity effects, together with
comparison papers that considered three-dimensional
(3D) case studies of large industrial furnaces[25] and that
conducted 3D simulations of ferromanganese and fer-
rosilicon furnaces[24] concluded that while 2D analytic
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solutions have the merit to capture part of the effects in
play, 3D simulations are recommended to gain proper
insight into the current distribution within the electrodes
in large industrial furnaces.[25]

The value of 3D models for SAFs have been discussed
also by other authors: for example, Dhainaut applied a
DC model to investigate current and power distribution
for the point in time where the current enter one
electrode and distribute evenly to the other two.[26]

Halvorsen et al. has shown that the results from two DC
computation can be combined to find the condition for
any point in time during an AC cycle or the time
averaged power and current distribution. This approach
is valid as long as electromagnetic induction can be
neglected.[27]

Moreover Bezuidenhout et al. developed a 3D com-
putational fluid dynamic model to investigate the
internal dynamics of an electrical furnace as used for
the smelting of Platinum Group Metal concentrates.[28]

Toh et al. used Maxwell’s equations in connection with
a Finite Volume Method approach to model steel-mak-
ing process.[29] Darmana et al. developed a Multiphysic
model (thermodynamics, electricity, hydrodynamics,
heat radiation and chemical reactions) for a SAF.[30]

More recently, Tesfahunegn et al. simulated the effects
of electrode shape, pitch circle diameter and frequency
on the current distribution in submerged arc furnaces
for silicon production.[31–36]

In short, physics-based models as these presented in
Reference 24 are capable to accurately estimate the
induced currents in the steel shell, the alternating current
distributions in the material layers, and the active and
reactive power densities within the furnace. However,
the explicit solution of the equations on which these
model are based upon are generally very demanding in
terms of time and computational resources. This makes
the physics-based model difficult to employ during
control operations and in fast prototyping.

To obviate these inconveniences a possible attempt is
to develop a multivariate metamodel of the physics-
based model, i.e., a statistical model of the input–output
behavioral repertoire of the physics-based model. In this
context, a metamodel is an approximation of an original
physics-based model obtained by applying a suitable sta-
tistical analyses on a database generated with the
original model. Ideally the metamodel should retain
the same generalization capabilities as the original
model, while being computationally lightweight.

A sufficiently informative database requires that the
input space of the physics-based model is spanned
properly: in other words the training data must
contain information about how the original model’s
set of outputs changes when its main set of input
parameters change, both individually and in combina-
tion, over a relevant, sufficiently wide range of
parameter values. The database should capture more-
over these changes in sufficient detail. This means that
the computations should be performed at many
relevant input conditions (different combinations of
its parameters, initial conditions and computational
controls) according to a cost-effective statistical design.

Also the output space must be properly spanned: All
relevant simulation outputs from the physics-based
model are to be stored.
In this paper we consider linear multivariate meta-

models, i.e., metamodeling through sets of multivariate
linear subspace equations linking input parameters to a
output space or vice versa.
For this we employ the Partial Least Squares (PLS)

regression approach.[37,38] The PLS regression (PLSR)
relates one or more regressand variables Y ¼
½ðy1; . . . ; yMÞ� to a (large) set of regressor variables X ¼
x1; . . . ; xK½ � in data from a set of N objects, conditions or
time points. For real-world data, it is not known
beforehand which of the many X-variables are impor-
tant. Moreover, both the X- and the Y-variables are
often both noisy and strongly intercorrelated.
The PLS regression approach transforms the inter-

correlation patterns among the X-variables from being a
problem (‘‘multi-collinearity’’) to being an advantage
(modeling stabilization and graphical insight). This is
attained by basing the X 7!Y regression problem on a
small set of automatically identified Y-relevant linear
combinations of the X-variables (‘‘weighted averages’’
or ‘‘PLS components, PCs’’) that have maximum
covariance with a corresponding set of linear Y-variable
combinations. Cross-validation is used for finding the
optimal number of such PCs in order to guard against
over-fitting.
We thus consider here PLSR given its ability to

discover, in multivariate regression problems, funda-
mental relations between input and output variables in
terms of eigenstructures in the covariances that exist
between these input/output variables in the simula-
tion-based training data. Later, the obtained PLSR
models may be used for predicting, e.g., outputs from
new, hitherto untested input combinations by multivari-
ate interpolation. We note that the conversion of a
chosen physics-based model into its multivariate meta-
model implies converting the former mathematical
description of the expected input/output behavior –
that is formal, implicit, and thus complicated to inter-
pret – into a simpler relation under the same set of
conditions. The direction Outputs = f(Inputs) repre-
sents ‘‘classical’’ or ‘‘direct’’ multivariate metamodeling.
It is normally fairly straight forward, at least for
deterministic physics-based models. (Physics-based
models with stochastic elements may of course give
precision problems in the output predictions.) The
opposite direction, Inputs = f(Outputs) represents
‘‘indirect’’ multivariate metamodeling. It works well
when the physics-based model has a unique, one-to-one
mapping between the profile of input states and the
profile of output states. But if many different input
profiles give the same output profile, then an overall
indirect metamodel cannot be expected to give correct
predictions of the inputs from the outputs; additional
input variables is then required.
Summarizing, the purpose of this paper is thus to

investigate: (1) how to metamodel physics-based models
of SAFs through PLS regression approaches; (2) which
capabilities and limits such linear PLS regression
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approaches have in approximating the original model;
(3) which computational advantages are brought
through introducing the PLS regression schemes.

To serve the purpose of the manuscript, i.e., to
investigate how to metamodel SAFs, plus the capabil-
ities and limits of such metamodels, we organized the
text as follows: Section II introduces a Finite Element
Method (FEM) model of a SAF; Section III discuss the
possibility of constructing both direct and inverse
metamodels; Section IV describes the basis of the Partial
Least Square Regression techniques; Section V analyzes
the statistical performance of the overall PLS regression
approach to metamodeling; Section VI concludes the
manuscript by summarizing the main findings and by
highlighting future investigation directions.

II. A FINITE ELEMENT METHOD MODEL
OF A SAF

The present work focuses on a specific AC electro-
magnetic model of a 41 MW ferromanganese (FeMn)
furnace. The main purpose of such a FEM is to analyze
power density distributions in the various material
layers of the furnace. The model is a derivation of what
has been presented in Reference 24. In collaboration
with representatives of the ferroalloy industry, we have
conducted several case studies in which the results from
comparable FEM simulations were found in good
agreement with furnace observations. This includes
electrode resistance, furnace active power, the formation
of hot spots on the steel shell in regions where the
simulations show high concentration of induced cur-
rents, and general trends in the magnetic fields outside
the shell, as observed in a measurement campaign.[39]

The model (shown in Figure 1) represents a typical
large FeMn furnace with a cylindrical shape (diameter
approx. 15 m) and three large (1.9 m in diameter)
electrodes arranged in an equilateral triangle. Around
the tip of each electrode there are zones rich in carbon

called coke beds (bell-shaped in the model). Below there
are layers of slag (molten oxides) and of molten metal
alloys. The core of the furnace is encased in carbon
lining, oxide lining and a steel shell. To complete the
physical system, the model includes a steel roof.
The model equations and boundary conditions were

implemented and solved numerically using COMSOL
5.5 with the Magnetic and Electric Fields interface.[40]

The low-frequency Maxwell’s equations are solved using
the magnetic vector potential and the scalar electric
potential formulation. The equations are then dis-
cretized with the finite element method using quadratic
elements. To impose proper boundary conditions on the
magnetic field, a large volume of air (with a diameter
that is 5 times larger than the furnace diameter) is
included around the furnace.
The effects of transformers, busbars, power lines and

other structural elements that can strongly impact the
electrical conditions in real furnaces, are not accounted
for in this model.
The total current is given for each of the electrode and

an appropriate phase shift is imposed to ensure current
conservation. The induced currents (and the associated
impedance) of the steel shell and roof have been
modeled as surface currents, applying COMSOL’s
impedance boundary condition.
In the definition of the model a set of 12 variables

were selected to perform parametric studies. The
selected variables are geometrical and electrical (currents
and conductivities), and are listed in Table I. Briefly, the
parameters of the FEM control the electrical conditions
for each of the electrode by defining the amount of
current in each electrode (named Ix), the distance of the
electrode tip from the alloy bath (named zx), and the
shape (Sx) and conductivity (r1) of the coke bed.
Figure 2 gives a graphical representation of the

parameters for the Electrode 1—Coke Bed 1 system.
Furthermore, one additional ‘‘global’’ parameter, rCh,
defines the conductivity of the charge directly above the
coke beds.

Fig. 1—FEM model. Left panel: 3D rendering of the furnace where charge and other sections are hidden to reveal the coke beds (orange and
green), two electrodes (dark gray), the metal pool (white), the furnace linings (light and dark purple) and the steel shell (silver). Right panel: 2D
slice showing a typical power dissipation density (Color figure online).
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We note that not all parameters of Table I are
independent; IAV (average of the three rms currents),
Phi21, Phi32, Phi13 (Phase angle between pair of currents)
can be computed from I1, I2, I3. This lack of indepen-
dence should not cause problems in the PLSR subspace
model, except for some ambiguity in graphical interpre-
tation of causality. Table II lists a chosen set of
observables that can be extracted after each FEM
calculation. The solution of the FEM equations give
access to the total power dissipation density pðW=m3Þ
and the reactive power density qðW=m3Þ, computed as

q ¼ ðpf=lÞjBj2 ½1�

where f is the current frequency, l is the magnetic per-
meability and B is the magnetic field. By integrating p
and q over different material domains and the entire
furnace, it is possible to study power consumption in
different material layers and the total power consump-
tion and power factor for the full furnace.

To further subdivide the terms among the elec-
trodes the furnace was divided in 3 cylindrical sectors
with 120 deg opening with the planes defining the
sectors equally splitting the space between each

electrode pairs. From this definition it follows, for
instance, that The total active power equals the sum
of the active power associated to electrode 1, 2 and 3,
respectively (Eq. [2a]) Resistances and reactances for
each electrode are obtained dividing active and
reactive powers by the square of the average current
(Eqs. [2b] and [2c]). In turns these quantities give
access to the voltage of each electrode calculated by
multiplying the electrode current by the electrode
impedance (Eq. [2d]).

APTot ¼ AP1 þAP2 þAP3 ½2a�

R1 ¼ AP1=I
2
AV ½2b�

X1 ¼ RP1=I
2
AV ½2c�

V1 ¼ I1Z1 ¼ I1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
1 þ X2

1

q

½2d�

Volumes are finally obtained by integration over the
corresponding domains.

A. Design of Experiments

In this context, the purpose of the FEM model is to
identify how variations in the parameters listed in
Table I affect the observables listed in Table II. In this
way the FEM model acts as a map transforming inputs
(the parameters) into outputs (the observables).
We recall that to metamodel the FEM model we shall

collect a database of input–output data from the
original FEM model, and create a model of the model
by statistically analyzing this database. This raises the
natural question of how to design the ‘‘experiments’’:
namely, how which input variables to vary, at which
levels, and in which combinations.
In the present case 12 of the input parameters in

Table I were deemed to be the most relevant; all other
model parameters, initial conditions and computational
control were kept constant at values deemed ‘‘safe,
realistic but uninteresting’’.
As for how to explore the inputs space, we recall that

fixing the number of samples introduces a trade-off
between how many values we make each input variable
assume, and the number of combined effects that can be
explored. To make a rigorous choice we follow an
optimized multi–level binary replacement (OMBR)
design.[41]

For each of the 12 chosen input parameters, a
reasonable upper and lower value was defined. In order
to detect and describe curvature and other, more
complex input/output relationships, it was decided to
also include two intermediate levels of each parameter;
each variable thus assumes one of four possible values
from an equidistant grid (for example, the conductivity
of the charge was set to {12, 19, 26, 33} S/m).

Table I. Input Parameters of the FEM Model

Input Parameters Definition

I1 (A) rms current for electrode 1
I2 (A) rms current for electrode 2
I3 (A) rms current for electrode 3
z1 (m) height of the electrode 1
z2 (m) height of the electrode 2
z3 (m) height of the electrode 3
r1 (S/m) conductivity of the coke bed 1
r2 (S/m) conductivity of the coke bed 2
r3 (S/m) conductivity of the coke bed 3
rCh (S/m) conductivity of the charge
S1 broadness of the coke bed 1
S2 broadness of the coke bed 2
S3 broadness of the coke bed 3
IAV (A) average rms current
Phi21 (�) phase shift current el. 1 and 2
Phi32 (�) phase shift current el. 2 and 3
Phi13 (�) phase shift current el. 3 and 1

S1 and S2;3 are implemented in the range from 0 to 4, corresponding
to a broad flat and thin tall beds, respectively.

IAV, Phi21, Phi32, Phi13 can be computed from I1, I2, I3.

Fig. 2—Graphical representation of the parameters pertaining
Electrode 1.
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Note that even with this relatively simple setup of 12
parameters and 4 levels of each, exploring all the
combined effects (i.e., simulating all the potential combi-
nations of the variables) would lead to 412 =16777216
FEM calculations. In practice, we limited the number of
simulations to 640, considering that this number may
reasonably mimic the choice that a practitioner would do
in real-life settings given the computational complexity
associated to each sample generation.*

B. Extending the Databases Through Exploiting
Symmetry Considerations

We note that by construction the FEM model is
symmetric, it has a rotational symmetry of order 3 with
respect to the central vertical axis. This means that a
rotation by an angle of 120 deg does not change the
model.

This feature may be included in the metamodel in two
ways: either opportunely constraining the parameters of
the model so to guarantee the symmetries above, or by
extending the original database with augmented data
that balance the information. More precisely, as an
example, assume to have access to the results of a
simulation where A, B, and C are the inputs pertaining
to Electrode 1, 2 and 3 respectively, and D are the inputs
for the entire system (e.g., A represents the values for I1,
z1,r1 and S1, whereas D contains rCh) and similarly, a,
b, c are the outputs for Electrode 1, 2 and 3 and d are

output for the entire system). In other words, assume the
simulation to represent the ‘‘inputs outputs’’
transformation

A;B;C;Dð Þ !FEM a; b; c; dð Þ: ½3�

Then the symmetry considerations above imply that
we may immediately extend the original dataset
through adding the transformations

C;A;B;Dð Þ !SYM
c; a; b; dð Þ ½4a�

B;C;A;Dð Þ !SYM
b; c; a; dð Þ ½4b�

In practice, this means that the 640 FEM simulations
considered above actually lead to a database composed
by 1920 entries.
We note that mirroring along three rv vertical planes

corresponding to the electrodes can not be used in this
context because the order of the current phases will be
inverted in mirror images.

III. METAMODELING, IN GENERIC TERMS

In Section 2, we outlined how the original Finite
Element Model was used to obtain a database where the
input parameters of the FEM model are collected in a
1920� 17 matrix (Inputs) and the results are in a
corresponding 1920� 37 matrix (Outputs). Nota-
tion-wise, this can be represented as a relation

Outputs ¼ FEMðInputsÞ ½5�

The term metamodeling, sometimes referred as ‘surro-
gate modeling’, is in this context considerable as a
re-modeling of the original model. This operation is in
practice usable to: (i) perform a model complexity
reduction, (ii) perform a sensitivity analysis, iii) com-
pare different competing models.
As mentioned, there exist two types of metamodels:
(i) direct (or classical) metamodel, where one searches

for an approximated map, indicated with DM, that
captures a relation of the kind

Outputs � DMðInputsÞ ½6�

Here the term Direct highlights that the metamodel
has the same causal direction of the original FEM
model;
(ii) inverse metamodel, where one searches for an

approximated map, called IM, that reverses the causal
direction above. This operation inverts the original
model by searching IM so that

Inputs � IMðOutputsÞ ½7�

and is typically useful when one wants to estimate
what has produced certain outputs - in other words,
construct observers of the internal state or unknown
inputs of a real plant. For example, estimate the actual
position of the electrodes’ tips given measurements

Table II. Observables of the FEM Model

Outputs Definition

APTot total active power (MW)
RPTot total reactive power (MVAr)
APShell;Tot total shell power (MW)
APRoof;Tot total roof power (MW)
RTot total resistance (mX)
XTot total reactance (mX)
APElx active power Elx (MW)
RPElx reactive power Elx (MVAr)
APShell;Elx shell power Elx (MW)
RElx resistance Elx (mX)
XElx reactance Elx (mX)
VElx voltage Elx (V)
VolCBx volume CBx (m3)
VolAb;CBx volume CBx above El. (m3)
VolBe;CBx volume CBx below El. (m3)
APCBx power CBx (MW)

‘‘Elx’’ indicates that the quantity is available for Electrode 1,
Electrode 2 and Electrode 3.

‘‘CBx’’ indicates that the quantity is available for Coke bed 1, Coke
bed 2 and Coke bed 3.

*The input set was limited to 12 variables by imposing S3 equal to
S2. OMBR with 12 variables, 4 levels and an experimental design of
128 experiment was applied 5 times (with different variable orders)
giving 640 simulations. Given that computing independent simulations
of the model is a highly parallel problem, with an appropriate batch-
ing, the 640 calculations were completed in few days on a standard
workstation.
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that are available from the plant SCADA system. Both
DM and IM can work well for deterministic FEM
models. But the IM may give bad models when several
different input combinations to the FEM model give
the same outputs.

For a more thorough discussion on the merits of
Direct and Inverse Metamodeling we refer to Refer-
ence 42. We, however, here recall that both maps DM
and IM in general work as estimators. There may thus
be different strategies for obtaining them, and to each of
these is associated an opportune strategy-dependent
statistical performance.

IV. USING PARTIAL LEAST SQUARE
REGRESSION TO CONSTRUCT DIRECT AND

INVERSE METAMODELS

Linear regression models are likely the most widely
used statistical structures in practical settings. In the
simplest case, these structures are so that the outputs are
computed through linear combinations of the inputs,
i.e., through structures of the kind

Y ¼ b0 þ XB þ F ½8�

where: Y (N x J) and X (N x K) are the outputs and
the inputs, respectively; b0 (1 x J) and B (K x J) are
the coefficients of the affine map DM, and F (N x J) is
an opportune residual matrix that captures the mod-
eled residuals in Y . In the present case of deterministic
simulations, the unmodeled residuals F are mainly due
to the fact that the map (5), i.e., Y ¼ FEMðXÞ, is
nonlinear.

The parameters b0 and B in the regression model
usually have to be estimated from a training set
consisting of xk variables (k ¼ 1; . . . ;K), yj variables

(j ¼ 1; . . . ; J), and a finite number of training samples,
N. In other words in the most basic statistical learning
setting the training set consists of an inputs matrix X train

of dimensions N� K, and an outputs matrix Y train of
dimensions N� J.

Later, for each new X-vector (1� K), the correspond-
ing Y-vector (1� J) may then be predicted from these
estimates of b0 and B.

If the K X-variables vary independently of each other
over the N observations in the training set, or only
display weak intercorrelations, then the parameters b0
and B may be estimated by ordinary least squares (OLS)
regression, i.e., simple projection of Y on X over the N
training samples:

½b0;B� ¼ ð½1;X �T½1;X �Þ�1½1;X �TY: ½9�

But quite often, the X-variables have strong intercorre-
lations over the N observations in the training set.
This is almost always true if the X-variables come
from one given multichannel instrument (e.g., a spec-
trophotometer or a camera). But it may also be the
case if the X-variables come from factorial design, but
some of the planned experiments or simulations had to
be dropped, for whatever reason. Then this full-rank
projection of Y on X does not give good results, due

to collinearity problems: The matrix ð½1;X �T½1;X �Þ
simply cannot be inverted in a stable way. This, in
turn, can give erroneous and meaningless estimates
½b0;B� and a needless amplification of noise in future
predictions.
The collinearity problem can be solved with a wide

range of regression methods, ranging from variable
selection methods via ridge /LASSO regression, Elastic
Nets to reduced-rank subspace methods like Principal
Component Regression (PCR) and Partial Least Square
Regression (PLSR).[37] The latter is used here, due to its
ability to give compact subspace regression models
under a wide range of collinearity conditions.
The PLSR searches for an orthogonal sequence of

PCs, where each PC is the linear combination of
X-variables that show maximum covariance with a
linear combination of the previously unmodeled resid-
uals in the Y-variables. This gives compact statistical
models that are easy to plot graphically. This covariance
maximization is sensitive to the relative scaling within
the set of X-variables and the set of Y-variables. Here
we therefore employ the common practice of standard-
izing both X and Y i.e., rescaling each input variable to
a standard deviation of 1, in order to remove the effect
of which unit the individual variables are given in. For a
recent review on PLS regression we refer to Reference
43.
As for an outline of the method, we recall that the

models obtained through a PLS regression may be
summarized by the above-mentioned linear model
Y ¼ b0 þ XB þ F. However, the estimation actual
structure of the underlying model identified through a
PLS regression approach is given by

X ¼ 1 � xmean þ TPT þ E

¼ 1 � xmean þ
X

A

a¼1

tapTa þ E
½10a�

Y ¼ 1 � ymean þ TQT þ F

¼ 1 � ymean þ
X

A

a¼1

taqTa þ F
½10b�

and where

T ¼ X � 1 � xmeanð ÞV : ½11�

More precisely,

– a ¼ 1; . . . ;A is the model rank for X (i.e., the number
of linear combinations of the X-variables to be used
as regressors for both Y and X;

– T (of dimension N� A) is the orthogonal set of A ‘‘X
supervariables’’ (i.e., linear combinations of the
X-variables;

– ta (of dimension Nx1) is equal to X � Xmeanð Þva,
where va (of dimension K� 1) are weights defining ta
so that it has maximal covariance with a corre-
sponding auxiliary linear combination of the Y-vari-
ables;
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– V is the X-weight matrix (K x A);
– P is the X-loadings matrix (K x A);
– Q is the Y-loadings matrix (J x A);
– xmean ( 1 x K) is the mean of X over the N observa-

tions;
– and ymean (1 x J) is the mean of Y over the N

observations.

In practice the matrices xmean, ymean,T, P, U and Q are
estimated through one of the many equivalent learning
algorithms leading to the PLS regression solution from
the training set X train;Y train.

Usually, one first chooses to estimates ‘‘more than
enough’’ model dimensions, e.g., AMax=min(K,N-1).
This solution is usually over-optimistic in the sense that
it gives too good prediction of Y from X when the
training data are used, but too bad prediction of Y from
X in new, ‘‘secret’’ samples.

Then, one searches for a simpler model within this
over-fitted AMax-dimensional subspace model. To find
the model rank A that gives minimal prediction error in
Y, one usually employs so-called cross-validation.[38]

Thereby one avoids confusing results and bad predictive
ability due to unwarranted over-optimism.

In this case for which, usually, A � B, the resulting
final model uses only the first A of the AMax column
vectors in V ,T,P and Q. This means that all the
components that are subsequent of the optimal rank,
A, are ignored in the model. This corresponding
‘‘optimal rank model’’ may then be summarized into
b0 and B in Eq. [8]. We note that some slightly
different, but equivalent PLSR algorithm versions
exist, each with their pros and cons. For more
information we send the interested reader back to
Reference 42.

The linear model summary b0 and B at optimal rank

can then be used to estimate which outputs bYnew would
be obtained if we were having, as inputs, the values
Xnew. Alternatively, the same prediction results are
attained by going via the bilinear model.

Statistically speaking, the hope is that b0 and B will be

so that the estimated bYnew will be close to the actual
Ynew that would be computed through the actual FEM
model in Section II.

When following the PLS regression approach, then,
b0 and B are chosen as follows: intuitively, each row in
P and Q can be thought as a direction in the row
spaces of X and Y . Then to follow the PLSR approach
means to find P and Q as that directions in the row
spaces of X and Y that maximally capture the variance
of the X- and Y-data simultaneously (i.e., their
covariance).[44]

Note that the PLSR approach can be used for both
direct and inverse metamodeling purposes. More pre-
cisely, doing direct metamodeling corresponds to setting
X ¼ Inputs and Y ¼ Outputs, whereas doing inverse
metamodeling means setting X ¼ Outputs and
Y ¼ Inputs. From logical perspectives, though, the
PLSR operations are the same.

V. NUMERICAL RESULTS

As mentioned before, we consider a situation for
which direct and inverse metamodels are built on a
database constructed by symmetrizing 640 FEM simu-
lations (thus a final database of 1920 entries). The
corresponding PLS regression models were computed
using Unscrambler X,[45] and the following results about
the statistical performance of the metamodels have been
obtained considering a leave-one-out cross-validation
strategy.[46]

A. Assessing the Statistical Performance of the Direct
Metamodel

The obtained results suggested an optimal number of
factors for the PLS regression model of 9; corresponding
to this level of complexity of the model we obtained a
root mean squared error (rmse) about testing the
different output quantities, as shown in Table III.
For comparison, the PLS regression modeling results

show that the rmse for the active and reactive power of
Electrode 1 are 1.1 MW and 0.17 MVAr, respectively.
Since the two quantities have the same order of
magnitude, the rmse clearly indicates a better perfor-
mance of the model for the reactive power. One possible
explanation for this is the spread of the underlying
database. Taking as example Electrode 1, Table III
shows that the entries in the database are much more
centered around the relevant values, (cfr. the standard
deviation, and the Min–Max spread), whereas the
Active Power terms are largely spread. It is likely that
an improved strategy on the selection of the database
points may improve the performances of the metamodel.

Table III. Database Characteristics for the Properties of
Electrode 1a and Root Mean Squared Error (rmse) for the

Direct PLS Regression Model

Output

Database
DM

Mean SD Min Max rmseb

APTot (MW) 36.2 7.8 18.5 63.0 1.9
RPTot (MVAr) 33.1 1.4 29.0 37.0 0.4
APShell;Tot (MW) 0.39 0.01 0.35 0.42 0.005
APRoof;Tot (MW) 0.19 0.01 0.18 0.20 0.003
RTot (mX) 2.07 0.44 1.08 3.51 0.11
XTot (mX) 1.89 0.05 1.76 2.01 0.03
APEl1 (MW) 12.1 3.9 5.4 29.2 1.1
RPEl1 (MVAr) 11.0 0.6 9.6 12.6 0.17
APShell;El1 (MW) 0.13 0.01 0.11 0.14 0.002
REl1 (mX) 0.69 0.22 0.31 1.62 0.06
XEl1 (mX) 0.63 0.03 0.56 0.72 0.01
VEl1 (V) 125.7 23.9 83.5 238.7 7.4
VolCB1 (m3) 26.1 13.7 12.5 49.6 5.2
VolAb;CB1 (m3) 5.9 5.4 1.3 21.9 3.4
VolBe;CB1 (m3) 20.3 9.4 9.4 43.1 3.6
APCB1 (MW) 9.5 3.1 4.0 24.0 1.0

aThanks to the imposition of the rotational symmetry, the same
values are found for Electrode 2 and 3.

bRelative to the validation data.
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While the above results are general metamodel
properties, we now consider the ability of the metamodel
in simulating two specific study cases that, to the best of
our knowledge, have important relevance for the man-
agement of SAF systems:
case 1: the system is balanced, in the sense that all the

electrodes are behaving equivalently (case1);
case 2: the three electrodes have different conditions,

both in their associated coke bed shapes and
properties, and in the currents flowing through
them.

For completion, we report in Table IV the input
parameters associated to the FEM simulations that the
direct metamodel should approximate.

Table V compares then the results obtained with an
explicit FEM simulation for case 1 and case 2, and the
ones obtained through the direct metamodel. The
comparisons show that the direct metamodel overesti-
mates the active powers and the resistance by 3 to 4 pct,
whereas the reactive powers and the reactances are very
close to the reference values. The volume of the coke
beds are overestimated in all cases.

On the other hand, Reactive powers, reactances and
induced powers in the steel structures are predicted with
high accuracy.

Finally, we investigated how the metamodel compares
to the FEM target for a linear scan of one of the input
parameters. In Figure 3 the active power computed for
Electrode 1 is plotted as function of the Electrode 1 tip
position, with the other input parameters matching case
2 presented above. The scan shows that, as the electrode
is lifted 50 cm, the power increase from 9.4 to 12.9 MW
as consequence of the increase resistance encountered by
the electric current. The value computed with the direct
metamodel slightly overestimated the reference values as
seen already in Table VII, but it is noteworthy that the
error remain constant at ca. 0.65 MW for a large section
of the span before decreasing to 0.35 MW.

These results show that even if the absolute values
computed with the metamodel may have significant
errors, the trends are robust and reliable. The reason for
the slight overestimation can be tracked to the face that
there is a slight curvature in the prediction vs true Power
plot as can be seen in Figure 4. Here, each point
represents one input parameter combination; the red

points represent the prediction and true Power data in
Figure 3. There are several ways to deal with this in
multivariate metamodeling, if needed, e.g.: (1) Nonlin-
ear transformation of the predicted Power (e.g., logistic
or polynomial) to maximize its correlation to the true
Power. (2) Nonlinear transformations of the input
parameters used as X-variables. (3) Polynomial exten-
sion of the set of X-variables, including, e.g., quadratic
terms and cross-product terms. (4) Nonlinear PLSR
regression. (5) Hierarchical cluster-based PLS regres-
sion/locally weighted regression, forming different, sim-
pler regression models in different regions in the input/
output space.
In summary, the classical, ‘‘direct’’ multivariate meta-

model gave quite good predictions of many of the
observables, already in its simplest linear form modeling
all the observable variables jointly. It can probably be
improved further, by nonlinear modifications and by
regression modeling of each observable separately.
When deemed sufficiently successful, such a direct
multivariate metamodel may be used for global sensi-
tivity analysis, for graphical identification of unexpected
intercorrelation patterns and for performance compar-
ison of different parameter combinations.
Used in an analysis-by-synthesis setting, it may also

be used for identification of input parameters from
observable model outputs or from actually observed
versions of these model outputs, thus optimizing the
process originally modeled by, e.g., FEM. By repeatedly
calling the DM with different input parameter values in
a nonlinear hill-climbing process (e.g., Simplex opti-
mization), one can find the combination(s) of the input
parameters that maximize some desirable function of the
predicted observables. But it should be noted that for
mathematically sloppy physics-based models there may
be several different input parameter combinations that
give more or less the same ‘‘optimal’’ output
characteristics.

B. Assessing the Statistical Performance of the Inverse
Metamodel

Inverse multivariate metamodeling is a way to sim-
plify the identification of input parameters from observ-
able model outputs or from actually observed versions
of these model outputs.
If there exists a unique one-to-one mapping between

input parameter values and output observables, then it
should be possible to predict the parameter values of the
FEM model from a (linear) combination of the observ-
ables. If that were the case, one could predict the
parameter values without the repeated analysis-by-syn-
thesis search process.
The inverse metamodel was constructing using the

same dataset used for the direct one, i.e., a 1920-samples
long database containing the observables as X and
inputs as Y , and validated once again using a
leave-one-out cross-validation strategy.[46]

When all the design variables were used as Y-vari-
ables, the optimal number of factors was found to be
equal to 13. At this level of complexity the rmse of
validation are shown in Table VI.

Table IV. Configuration of the Most Important Inputs

Associated to the Cases Above

Input Case 1 Case 2

Ix (kA) 134 134 134 132 130 135
zx (m) 1.50 1.50 1.50 1.35 1.40 1.37
rx (S/m) 310 310 310 310 330 350
Sx (1) 1.9 1.9 1.9a 2 2 2a

rCh (S/m) 19 24

Note that here ‘‘x’’ indicates the corresponding quantity for
Electrode 1, Electrode 2 and Electrode 3.

a one unique value is used for both S2 and S3 input variables.
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In this case, we evaluate the statistical performance by
comparing the inputs predicted by the inverse meta-
model against the ones used in the physics-based FEM
model to run the simulation. In other words, we test the
capability of the inverse metamodel of recovering the

inputs associated to cases 1 and 2 above starting both
from the FEM output (i.e., compare Input against
IM ðFEM ðInputÞÞ) and the direct metamodel output
(i.e., compare Input against IM ðDM ðInputÞÞ).
Analysis of the results of Table VII shows that the

inverse metamodel has a fair performance in predicting
the input of the FEM model given the outputs. Currents
and shape of the coke beds are in very good agreement,
whereas conductivities in the coke beds are generally
overestimated.
With the results of the linear scan discussed in the

previous section, we investigated the performance of the
inverse metamodel in determining that only the elec-
trode position parameter was modified in the
experiment.
When analyzing the data from the linear scan, the

inverse metamodel correctly identified that the Electrode
position was being scanned. However, as shown in
Figure 5, the variation in the electrode height is under-
estimated: The metamodel predict a rate of 10 mm/step

Table V. Comparing the Results of the FEM Model and the Corresponding Direct Metamodel

Case1 Case2

FEM (Input) DM (Input) FEM (Input) DM (Input)

APTot 40.4 41.8 34.3 35.7
RPTot 34.8 34.4 33.8 33.7
APShell;Tot 0.40 0.40 0.39 0.39
APRoof;Tot 0.20 0.20 0.19 0.19
RTot 2.25 2.33 1.96 2.04
XTot 1.94 1.91 1.93 1.92
APElx 13.5/13.5/13.5 13.9/13.9/13.9 11.7/11.2/11.3 12.3/11.7/11.8
RPElx 11.6/11.6/11.6 11.5/11.5/11.5 11.2/11.0/11.6 11.1/11.0/11.6
APShell;Elx 0.13/0.13/0.13 0.13/0.13/0.13 0.13/0.13/0.14 0.13/0.13/0.13
RElx 0.75/0.75/0.75 0.78/0.78/0.78 0.67/0.64/0.65 0.70/0.67/0.68
XElx 0.65/0.65/0.65 0.64/0.64/0.64 0.64/0.63/0.66 0.64/0.63/0.67
VElx 132.7/132.7/137.4 135.9/135.9/135.9 122.3/116.6/125.1 126.4/120.3/128.8
VolCBx 17.5/17.5/17.5 21.3/21.3/21.3 16.6/16.7/16.6 20.5/20.9/20.7
VolAb;CBx 2.6/2.6/2.6 4.0/4.0/4.0 3.1/2.9/3.0 4.4/4.8/4.2
VolBe;CBx 14.8/14.8/14.8 17.3/17.3/17.3 13.4/13.8/13.6 16.1/16.1/16.5
APCBx 10.9/10.9/10.9 11.0/11.0/11.0 9.0/8.6/8.7 9.6/9.1/9.2

Note that ‘‘Elx’’ indicates that the quantity is available for Electrode 1, Electrode 2 and Electrode 3.
Note that ‘‘CBx’’ indicates that the quantity is available for Coke bed 1, Coke bed 2 and Coke bed 3.

Fig. 3—Active Power on Electrode 1 as function on the Electrode
position: FEM vs metamodel results.

Fig. 4—Calibration (blue) and Test (red) sets in the Predicted vs
Reference Power plot (Color figure online).

Table VI. Database Characteristics for the Properties of
Electrode 1a and Root Mean Squared Error (rmse) for the

Inverse PLS Regression Model

Output

Database
DM

Mean Min Max rmseb

I1 (kA) 132.3 127 138 0.6
z1 (m) 1.45 1.1 1.8 0.12
r1 (S/m) 315 170 460 47
rCh (S/m) 22.5 12.0 33.0 3.3
S1 1.5 0.0 3.0 0.4

aThanks to the imposition of the rotational symmetry, the same
values are found for Electrode 2 and 3.

bRelative to the validation data.

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 52B, JUNE 2021—1275



compared to the 25 mm/step that was actually
employed. The inverse metamodel compensates this by
assuming that the conductivity of the coke bed 1 was
decreasing for each scan step as seen in Figure 6, we
note that all the remaining parameters are correctly
identified as constants. In practice, the inverse meta-
model interprets the scan results (increase in Power/
resistance for electrode 1) as due by the simultaneous lift
of the electrode and decrease of coke bed conductivity.

Although it is correct that both parameters could lead
to the same output, this shows that the inverse meta-
model was unable to recognize the nuances on the other
observables to identify that only the electrode position
was scanned, at least with the current training set/level
of complexity.
The most probable reason for this failure is that the

FEM model is ambiguous (‘‘mathematically sloppy’’) in
some respects. For instance, if certain combinations of
the FEM inputs, e.g., the lift of the electrode and
decrease of coke bed conductivity, give more or less
similar responses for all the FEM outputs, then the
outputs cannot be expected to give unique predictions of
the these FEM inputs under these conditions.

VI. SUMMARY AND CONCLUDING REMARKS

In this work, we devised a procedure to construct
metamodels and inverse metamodels linking the input
parameters of a Finite Element Method calculations
and the resulting observables. To obtain a metamodel/
inverse metamodel, one need to implement a
physics-based model that gives a suitable representation
of the system at hand. With this model, a database of
numerical experiments is obtained by the help of
experimental design. The extension of the database
depends on the dimension of the input space. When
possible, inherent symmetry of the model can be
exploited to formally increase the size of the database,
alternatively numerical constrains can be implemented
in the procedure determining the data-based model
coefficients to ensure the proper behavior. The final step
consists in applying statistical analysis methods to devise
a data-driven approximation of the physics-driven
model.
In the specific, the system investigated in this work is a

large FeMn furnace for which the electrical conditions
as function of the operational parameters have been
investigated with a FEM model implemented in
COMSOL 5.5. Here the input space includes position,
current, size and conductivity of the coke bed for each

Table VII. Performance of the Inverse Metamodel About Reconstructing the Inputs

Input

Case1 Case2

Input IM (FEM (Input)) IM (DM (Input)) Input IM (FEM (Input)) IM (DM (Input))

I1 (kA) 134.0 133.9 133.9 132.0 131.6 131.9
I2 (kA) 134.0 133.9 133.9 130.0 129.7 130.1
I3 (kA) 134.0 133.9 133.9 135.0 134.9 134.9
z1 (m) 1.50 1.45 1.47 1.35 1.38 1.41
z2 (m) 1.50 1.45 1.47 1.40 1.37 1.37
z3 (m) 1.50 1.45 1.47 1.37 1.39 1.42
r1 (S/m) 310 324 301 310 339.7 324.0
r2 (S/m) 310 324 301 330 343.5 323.4
r3 (S/m) 310 324 301 350 372.5 355.8
S1 (1) 1.9 2.1 1.9 2.0 2.2 1.9
S2;3 (1) 1.9 2.1 1.9 2.0 2.1 1.9
rCh (S/m) 19.0 20.5 21.8 26.0 26.3 22.3

Fig. 5—Position of Electrode 1 during the linear scan: actual FEM
vs inverse metamodel results.

Fig. 6—Conductivity of Coke bed 1 during the linear scan: actual
FEM vs inverse metamodel results.
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electrodes and conductivity of the charge, whereas the
output space contained active and reactive powers,
voltages, resistances, reactances, and coke beds volumes.
An optimized multi–level binary replacement design was
used to direct the computation of 640 FEM simulations,
the size of the database was then triplicated exploiting
the symmetry of the physics-based model. Partial Least
Square Regression, a linear multivariate model was
selected to perform the statistical analysis that gave the
direct and inverse metamodels.

The performances of the direct and inverse meta-
model where investigated on 2 typical cases and on a
linear scan with encouraging results. Applied to a small,
independent test set of new input combinations, chosen
in the most relevant parameter ranges, the direct
metamodel predicted with high accuracy reactive pow-
ers, reactances and induced powers but overestimated
the active powers and the resistance by 3 to 4 pct. This
was possibly due to unmodeled curvature, which can be
corrected for. The inverse metamodel predicted with fair
accuracy the input used to generate selected outputs but
could not resolve the observables generated by simulat-
ing the lifting of an electrode. This was probably due to
mathematical ambiguity in the FEM model, whereby
different input parameter combinations gave more or
less the same output observables, and it will require
further investigations.

Future efforts will focus on: (i) improve the construc-
tion of the FEM database by implementing a strategy in
which the simulated points are selected adaptively, i.e., it
the model dictates which point to simulate to strengthen
its performances. (ii) Using squared terms and interac-
tions to go beyond the linear model.
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Notes in Mathematics, B. Kågström, and A. Ruhe, eds., Springer,
Berlin, vol. 973, pp. 286–93.

38. H. Martens and T. Næs: Multivariate Calibration, John Wiley &
Sons Ltd, Chichester, 1989.

39. Elmet: «Electrical Conditions and their Process Interactions in
High Temperature Metallurgical Reactors», https://app.cristin.no/
projects/show.jsf?id=686160, 2016–2020.

40. COMSOL Inc.: «COMSOL ver. 5.5», https://www.comsol.com.
Accessed 15 April 2020, 2020.
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