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Ocean biogeochemical (BGC) models utilise a large number of poorly-constrained

global parameters to mimic unresolved processes and reproduce the observed complex

spatio-temporal patterns. Large model errors stem primarily from inaccuracies in these

parameters whose optimal values can vary both in space and time. This study aims

to demonstrate the ability of ensemble data assimilation (DA) methods to provide

high-quality and improved BGC parameters within an Earth system model in an idealized

perfect twin experiment framework. We use the Norwegian Climate Prediction Model

(NorCPM), which combines the Norwegian Earth System Model with the Dual-One-Step

ahead smoothing-based Ensemble Kalman Filter (DOSA-EnKF). We aim to estimate five

spatially varying BGC parameters by assimilating salinity and temperature profiles and

surface BGC (Phytoplankton, Nitrate, Phosphate, Silicate, and Oxygen) observations in a

strongly coupled DA framework—i.e., jointly updating ocean and BGC state-parameters

during the assimilation. We show how BGC observations can effectively constrain error

in the ocean physics and vice versa. The method converges quickly (less than a year)

and largely reduces the errors in the BGC parameters. Some parameter error remains,

but the resulting state variable error using the estimated parameters for a free ensemble

run and for a reanalysis performs nearly as well as with true parameter values. Optimal

parameter values can also be recovered by assimilating climatological BGC observations

or sparse observational networks. The findings of this study demonstrate the applicability

of the DA approach for tuning the system in a real framework.

Keywords: parameter estimation, Ensemble Kalman Filter (EnKF), biogeochemical model, Earth system model
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1. INTRODUCTION

Ocean biogeochemistry (BGC) is an important component of
an Earth system model (ESM) for simulating the anthropogenic
carbon sinks across the air-sea interface (e.g., Marotzke et al.,
2017; Tjiputra et al., 2020). It also simulates critical biophysical
feedbacks to the climate system such as phytoplankton short-
wave absorption (Jochum et al., 2010) and the production
of radiatively-important marine aerosol precursor (Schwinger
et al., 2017). Following the emergence of seasonal-to-decadal
prediction which shows that the ocean variability can be
predicted by up to 10 years in advance (Smith et al.,
2007; Keenlyside et al., 2008), a similar initiative has been
attempted for ocean biogeochemistry (Séférian et al., 2014;
Payne et al., 2017; Lovenduski et al., 2019; Park et al., 2019;
Fransner et al., 2020).

The accuracy of biological and chemical process
representations in ESMs is crucial for simulating the BGC
state and variability as realistically as possible. In current
state-of-the-art ESMs, the inorganic chemistry is governed
by well defined chemical and thermodynamic formulations.
However, the biological process representations such as primary
production are more uncertain, which leads to a large bias
and inter-model spread in their projections (Bopp et al.,
2013; Kwiatkowski et al., 2020). The uncertainty becomes
more evident at regional scales (Vancoppenolle et al., 2013),
hindering their application for regional impact studies. These
uncertainties are associated with empirical parameterisations
of the biogeochemical inter-actions, which are linked to
the complexities and imperfect descriptions of the ocean
physical environment that drives the biological process, among
others. Generally, ocean BGC models utilise numerous poorly
constrained, spatially and temporally constant parameters
to simplify the marine ecosystem complexity. Consequently,
the large error in the projections, primarily linked to these
inaccurate parameters, limits the reliability of the ecosystem
model (Losa et al., 2004). One of the reasons for inaccuracy in
these parameters is their static nature. Many studies have proven
that resolving space and/or time varying BGC parameters is
more relevant in the context of biogeochemical modeling (e.g.,
Losa et al., 2003; Tjiputra et al., 2007; Mattern et al., 2012; Roy
et al., 2012; Doron et al., 2013).

Ocean BGC parameters are often estimated and calibrated
in small-scale laboratory experiments, which do not always
reflect the large-scale open ocean conditions. Once implemented
in the global model, these parameters are generalized (i.e.,
assumed uniform across the globe for simplicity), and tuned
within observational uncertainty to capture the observed large-
scale BGC properties, for instance primary production, vertical
nutrient gradient, deoxygenation pattern, etc. However, this
parameter tuning process often becomes complicated and
inefficient when the number of parameters increases so as to
represent the increasing complexity of biogeochemical models.
Therefore, BGC simulations are often subject to a high level
of parametric uncertainty and require an efficient method for
optimal tuning of their parameters, particularly those which the
model is most sensitive to.

Data assimilation (DA) schemes provide an objective and
efficient methodology for parameter estimation by combining
observations with a numerical model simulation (Eknes and
Evensen, 2002). Particularly, ensemble based sequential DA
schemes like the Ensemble Kalman Filter (EnKF) offer a simple
but efficient framework for automatic optimisation of model
parameters alongside the state variables by simply augmenting
them together using “Joint-EnKF” formulation (Anderson, 2001;
Annan et al., 2005; Jazwinski, 2007). The EnKF (Evensen,
2003) is based on a Monte Carlo sampling of the state space
thereby avoiding model linearization. It updates the prior
statistics (mean and covariance of state variables) by assuming
Gaussian distributed variables and errors. It is one of the widely
used sequential DA schemes in the field of geosciences (e.g.,
Houtekamer and Mitchell, 2001; Reichle et al., 2002; Counillon
et al., 2014). However, the application of the EnKF for parameter
estimation of numerical models like BGC is both theoretically
and practically challenging. Difficulties are usually related to high
dimensions and non-linearity of the models as well as other
physical constraints such as the positiveness of the BGC variables
and parameters. To elaborate, in a high dimensional model
like ocean BGC, the number of unknown model state variables
and parameters are larger than the available observations. In
this case, the EnKF attempts to solve an underdetermined
inverse problem at each DA cycle, where it utilises a small
number of observations to estimate an extremely large set of
unknowns. This problem is more pronounced when the available
observations are limited to the surface only, which is often
the case for satellite ocean color observations. Furthermore,
BGC tracers and parameters, such as nutrient concentration and
phytoplankton exudation rate, are positive quantities and cannot
be negative. As such, the Gaussian assumptions made in the
EnKF (Losa et al., 2004) are not satisfied. To mitigate this issue,
a variable-transform approach called Gaussian anamorphosis
(Bertino et al., 2003), has been successfully tested and applied
for such application (e.g., Simon and Bertino, 2009; Gharamti
et al., 2017a). Another challenging issue is the strongly non-linear
behavior that BGC models experience during the spring bloom.
The rapid temporal dynamics may create large discrepancies
between the observations and the ensemble estimates. For
example, few ensemble members might start producing a bloom
earlier than the rest of the members, which may create inaccurate
state and parameter cross-correlations with a linear analysis
update. Such a situation often yields unrealistic updates of
parameters. On top of the aforementioned challenges, sampling
errors due to limited ensemble sizes are generally unavoidable
(Natvik and Evensen, 2003), and can degrade the accuracy
of the state and parameters. In short, the traditional joint-
EnKF scheme for parameter estimation may suffer from above
mentioned limitations that could degrade the filter performance
(e.g., Moradkhani et al., 2005; Chen and Zhang, 2006; Wen and
Chen, 2006).

Recently, many different analysis algorithms have been
developed to tackle the limitations of the traditional joint-
EnKF with the aim to estimate dynamically consistent and more
accurate model parameters. Wen and Chen (2006) derived a
confirming-step (CS-EnKF) where the updated parameters are
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used to rerun the model and obtain reliable state estimates.
Another classical approach, suggested by Moradkhani et al.
(2005), is a dual updating scheme (Dual-EnKF) for the state and
the parameters using two parallel and inter-active EnKFs, where
one acts on the state and the other on the parameters. Both
the CS-EnKF and the Dual-EnKF are heuristic in nature and
do not maintain the Bayesian consistency of the joint state and
parameters estimation problem. A recent work by Gharamti et al.
(2015) proposed a one-step-ahead smoothing ensemble scheme
(OSA-EnKF), which provides a robust estimation framework
while respecting the Bayesian consistency of the problem. The
algorithm shares a lot of similarities with the CS- and Dual-
EnKF, and further introduces a smoothing character in which
future observations are used to constrain current state variables.
Gharamti et al. (2017b) applied all four estimation schemes
(Joint-, CS-, Dual-, and OSA-EnKF) for optimising poorly
constrained ecosystem parameters using a one-dimensional
configuration of the Ocean BGC model. They concluded that
OSA-EnKF is accurate and reliable compared to the others
schemes and it successfully recovers the observed seasonal
variability of the ecosystem dynamics. Ait-El-Fquih et al. (2016)
further derived a more generalized variant of the OSA scheme,
namely dual one-step-ahead smoothing EnKF (DOSA-EnKF), by
using a dual updating feature where the state variables undergo
both smoothing and analysis steps. Motivated by the promising
results of OSA scheme in optimising ecosystem parameters, we
utilise the generalized variant of the scheme, i.e., DOSA-EnKF
for this study.

Another key ingredient for success is the choice of variables
in the state vector such that the use of available observations
is maximized and the dynamical consistency is preserved.
In a coupled model, observations are available in different
compartments (ocean, atmosphere, sea ice, biogeochemistry). A
simple approach referred to as weakly coupled data assimilation
(WCDA; Penny and Hamill, 2017), assimilates the data
independently in their respective components. The other model
components adjust to these individual changes dynamically in
between the assimilation cycles. Allowing the assimilation to
update across model components is expected to outperform
WCDA because it would enhance the dynamical consistency
of the initial conditions and expand the influence of the
observations across its own component (strongly coupled data
assimilation, SCDA; Penny and Hamill, 2017; Penny et al., 2019).
However, the update would still rely on a linear analysis update
step, which can be problematic as coupled covariances include
complex, coupled phenomena that can be strongly non-linear.
Iterative methods such as the dual one step ahead smoother,
can better control the growth of non-linearities. For ocean and
biogeochemistry this approximation is reasonable, and it has
been shown that cross compartment update were beneficial
(Yu et al., 2018).

The present study explores the efficiency and the feasibility
of the DOSA-EnKF scheme to optimise BGC parameters within
an Earth system model in an idealized perfect (or identical)
twin experiment framework (Halem and Dlouhy, 1984). In a
perfect twin experiment (or identical twin Observing System
Simulation Experiment), observations are constructed from the

same model and in this study, the only non-perfect aspects
of the model are the parameters to be estimated. It differs
from fraternal twin experiments (e.g., Arnold Jr and Dey,
1986; Masutani et al., 2010; Halliwell Jr et al., 2014) where
observations are constructed from a model that differs from
the model used in the data assimilation experiment. Here,
we use the Norwegian Climate Prediction Model (NorCPM;
Counillon et al., 2014), which provides the ensemble assimilation
framework for Norwegian Earth System Model (NorESM1).
We aim to estimate five spatially varying BGC parameters by
assimilating salinity and temperature hydrographic profiles and
surface BGC (Phytoplankton, Nitrate, Phosphorous, Silicate, and
Oxygen) observations in a strongly coupled DA framework—
i.e., jointly updating ocean and BGC state-parameters during the
assimilation. The five ecosystem parameters were also chosen
because they are essential to constrain the observed annual cycle
of surface BGC, which has been identified as one of the primary
sources of future projection uncertainties (Kessler and Tjiputra,
2016; Goris et al., 2018).

The rest of this article is organized as follows. Section
2 summarizes details of model, assimilation algorithm,
and experimental design. Section 3 present and discuss the
assimilation results and assessment of parameters estimates.
Summary and conclusion of the work are given in Section 4.

2. THE NORWEGIAN CLIMATE
PREDICTION MODEL AND THE
EXPERIMENTAL DESIGN

NorCPM (Counillon et al., 2014) is a climate prediction system
that aims to provide seasonal-to-decadal prediction (Kimmritz
et al., 2019; Wang et al., 2019; Bethke et al., 2021) and long
term climate reanalysis (Counillon et al., 2016). It combines the
Norwegian Earth System Model (e.g., NorESM1; Bentsen et al.,
2013) with the Ensemble Kalman Filter (Evensen, 2003).

2.1. The Norwegian Earth System Model
The NorESM1 is a global fully coupled system, which is
based on the Community Earth System Model version 1.0.3
(CESM1; Vertenstein et al., 2012). Unlike CESM1, NorESM1
uses the atmospheric component from the modified version of
Community Atmosphere Model (CAM4-Oslo; Kirkevåg et al.,
2013). The ocean physical component of NorESM1 is based on
Miami Isopycnic Coordinate Ocean Model (MICOM; Bleck and
Smith, 1990; Bleck et al., 1992) but with modified numerics and
physics (Bentsen et al., 2012). The ocean BGC compartment in
NorESM1 is the Hamburg Oceanic Carbon Cycle (HAMOCC;
Maier-Reimer et al., 2005; Tjiputra et al., 2013), which is
embedded with the isopycnic MICOM model (Assmann et al.,
2010). The other components in the model are adopted in their
original form from CESM1, which are the Community Land
Model (CLM4; Oleson et al., 2010; Lawrence et al., 2011), the Los
Alamos sea ice model (CICE4; Gent et al., 2011; Holland et al.,
2012) and with the version 7 coupler (CPL7; Craig et al., 2012).

This study utilizes the medium-resolution version of
NorESM1 (Tjiputra et al., 2013). The atmospheric component
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CAM4 and Land component CLM4 are configured on a
horizontal resolution of 1.9◦ at latitude and 2.5◦ at longitude
(approximately 2◦ finite volume grid). In the vertical, CAM4
features 26 hybrid sigma-pressure levels with model top at
approximately 3 hPa. The ocean MICOM and sea ice CICE4
models have a common horizontal resolution of approximately
1◦ × 1◦ with refined grids near the Equator in meridional
direction, and in both zonal and meridional direction at high
latitudes. MICOM uses 51 isopycnal layers and 2 additional
layers for representing the bulk mixed layer with time-evolving
thicknesses and densities. The biogeochemical component
HAMOCC utilizes the same spatial and temporal resolution as
the ocean model.

HAMOCC includes an NPZD-type ecosystem module which
was initially implemented by Six and Maier-Reimer (1996). It
includes one generic class of phytoplankton, one generic class
of zooplankton, three macronutrients (phosphate, nitrate, and
silicate), and one micronutrient (dissolved iron). In addition
to the ecosystem module, it also prognostically simulates full
inorganic carbon chemistry, which includes dissolved inorganic
carbon and alkalinity. Other key state variables include oxygen,
dissolved organic carbon, particulate organic and inorganic
carbon, and biogenic opal. The phytoplankton growth rate in
the model is formulated as a function of temperature and light
availability (Smith, 1936). The primary production is represented
by a prognostic function of phytoplankton growth rate, which
is limited by temperature, incoming shortwave radiation, and
availability of nutrients. Further details of the HAMOCC can be
sought from Tjiputra et al. (2013).

NorESM1 has been shown to capture the major observed
modes of climatic variability (Bentsen et al., 2013). Further, many
studies have demonstrated that it simulates well ENSO variability
and its teleconnection (e.g., Sperber et al., 2013; Bellenger et al.,
2014). In Anav et al. (2013), it was demonstrated that observed
tropical inter-annual variability in ocean primary production
reproduced by NorESM1 is in the top three among 18 ESM’s
used in their study. Tjiputra et al. (2013) evaluated the mean
state of HAMOCC with NorESM and reported that NorESM
satisfactorily reproduces many of the observed large scale ocean
biogeochemical features.

2.2. The Dual One Step Ahead Smoother
The dual one step ahead smoother (DOSA, Gharamti et al., 2015)
is an iterative smoother scheme based on the Ensemble Kalman
Filter. The DOSA scheme respects the Bayesian consistency of
the problem, and proceeds as shown in Figure 1. Here, we use
the Deterministic EnKF (DEnKF) in DOSA. The DEnKF is a
square-root (deterministic) formulation of the EnKF that solves
the analysis without the need to perturb the observations. It
inflates the errors by construction and is intended to performwell
in operational applications (Sakov et al., 2012).

In the first step, the ensemble of analysed model state Xa
k−1

and its associated parameters at time k − 1, Pa
k−1, are integrated

forward: X
f

k
=M(Xa

k−1,P
a
k−1). Note that the parameters are not

changed during the model integration (i.e., Pa
k−1 = P

f

k
).

The observations at time k, yk, are used to produce a smoothed
estimate of the state and parameters at the previous analysis step
k− 1 as follows:

Xs
k−1 = Xa

k−1 + Kk−1,k(yk −HX
f

k
). (1)

As
k−1 = Aa

k−1 −
1

2
Kk−1,kHA

f

k
. (2)

where,

Kk−1,k = Aa
k−1A

f

k
THT

(

HA
f

k
A
f

k
THT

+ R
)−1

. (3)

where the superscript T denotes a matrix transpose and A the
ensemble anomalies, i.e., A = X− x1T, with 1m = [1, 1, . . . , 1] ∈
R

1×N . In a similar way, the parameter ensemble, Ps
k−1, at time

k− 1 is smoothed using yk.
In the second step, the model is integrated forward to time k

again but with smoothed ensemble of state Xs
k−1 and parameters

Ps
k−1; i.e., X

f 2
k
=M(Xs

k−1,P
s
k−1).

The observations at time k, yk, are then used again to produce
an analysis of Xa

k
.

Xa
k
= X

f 2
k
+ Kk,k(yk −HX

f 2
k
). (4)

Aa
k = A

f 2
k
−

1

2
Kk,kHAf 2. (5)

Kk,k is the standard Kalman gain and A
f 2
k

are the ensemble

anomalies constructed from X
f 2
k
. It should be emphasized that

the observations are used twice, but the second time they are used
with a model that is using a different set of parameters. As such,
model state is updated twice in a assimilation cycle but parameter
is updated only at previous time step.

The model state (X) includes several ocean physical and
biogeochemical prognostic model variables and they are
updated in isopycnal coordinates as in Counillon et al.
(2014), Wang et al. (2017). In the physical component, we
update the full isopycnal temperature, salinity, layer thickness
and velocities (53 isopycnal layers). Similarly, we update the
biogeochemical variables at all isopycnal layers which include
oxygen, phytoplankton, silicate, nitrate, total dissolved inorganic
carbon, total alkalinity, dissolved organic carbon, particulate
organic carbon, zooplankton, and biogenic silica. The list of
selected BGC parameters for this study is provided in Section 2.3.
For the assimilation system, the state vector is composed of the
above physical and biogeochemical model variables along with
the biogeochemical parameters. When one updates the ocean
variable layer thickness, one effectively updates also the mass
of the BGC quantities. In Bethke et al. (2021), it was shown
that this approach conserves well BGC properties and does not
introduce spurious upwelling at the Equator. However, with
an EnKF, the linear analysis update returns unphysical values
for non-Gaussian distributed variables. Some state variables
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FIGURE 1 | Schematic diagram of the steps of the dual one step ahead (DOSA) scheme.

have a physical constraint and their values should be positive
definite such as layer thickness and tracer concentrations. For
layer thickness we use the upscaling algorithm (Wang et al.,
2016) while for the BGC concentration quantity (i.e., when
updating the BGC state) a post-processing step is applied so that
negative values are set to zero. We have not noticed degradations
caused by the post-processing. We think that it is due to the
fact that 1) part of the non-Gaussianity is already handled by
the super layer algorithm which updates the layer thickness,
and 2) with the smoothing flavor that the DOSA scheme
provides, the updated parameters rarely became non-physical
(i.e., negative).

Observations are used to update both ocean and BGC
components in a strongly coupled framework (Penny and
Hamill, 2017). The BGC component does not feedback to
the physics in this version of NorESM and thus error in the
physical state cannot be caused by error in the value of the
BGC parameters. Therefore, for simultaneous state-parameter
estimation, we update the parameter values from only BGC
observations in Equations (1) and (2) while the state variables
of ocean physics and BGC are updated using all available
observations (see Figure 1).

The rest of the configuration for the assimilation experiments
in this work follows that of Counillon et al. (2014, 2016), Wang
et al. (2016, 2017) and Bethke et al. (2021). The assimilation
algorithm uses a local analysis framework (Evensen, 2003; Sakov
et al., 2012), where a local analysis is computed for one horizontal
grid point at a time by utilizing all available observation in a
spatial window around the grid point. A quasi-Gaussian and
distance-dependent localization function (Gaspari and Cohn,
1999) is used to smooth the impact at the boundary of the
localisation radius. In this work, the localization radius varies
with latitude for both hydrographic profile and BGC observations
(Wang et al., 2017). We do not use vertical localization. A
moderation and a pre-screening technique (Sakov et al., 2012)
is used to sustain the ensemble spread during the assimilation
period.We also use themoderation technique, where observation

error variance is increased (here by a factor of 4) for the
update of the ensemble anomalies [Equation (2)] while the
original value of the observation error variance is kept to update
the ensemble mean [Equation (1)]. The pre-screening method
inflates the observation error such that the analysis remains
within two standard deviations of the forecast error from the
ensemble mean.

2.3. Experiment Design
We test the potential of the DOSA to optimise BGC parameters
with NorCPM in an identical twin experiment framework.
A reference model simulation performed with the prescribed
parameter values is considered as the truth. We aim to retrieve
the parameter values in the truth that are assumed to be
unknown. We focus on optimizing five BGC parameters of
NorESM1, which are among the most uncertain in the BGC
model component. The parameters are: 1) the half-saturation
constant for nutrient uptake during the phytoplankton growth
(BKPHY), 2) Maximum zooplankton grazing rate (GRAZRA),
3) Phytoplankton exudation rate, i.e., the rate of dissolved
organic carbon release by phytoplankton (GAMMAP), 4)
Sinking speed for particulate organic carbon (WPOC), and
5) Half-saturation constant for silicate uptake during biogenic
opal production (BKOPAL). A complete list of the ecosystem
parameters used in the HAMOCC model is documented in
Maier-Reimer et al. (2005).

The “true” parameters (TP) values are constant in time but
they vary spatially (the first row of Figure 6). They have two
Gaussian anomalies centered randomly: one with an isotropic
distribution and another with an anisotropic distribution. The
spatial pattern is purely artificial but more as a way to test
the robustness of the proposed parameter estimation method
in retrieving spatially varying pattern. The characteristic length
scale and structure of those perturbations are unknown so
that the DA system cannot be tuned specifically. The initial
(first guess) perturbed parameters (PP) values (the second
row of Figure 6) are sampled from a multi-variate Gaussian
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distribution, with a spatially uniform value for each ensemble
member. The ensemble mean of PP is set intentionally to be 25%
lower than the global mean of TP. The standard deviation of the
ensemble of PP is equal to 33% of the global mean of TP. As such
the PP are chosen so that the ensemble mean differs from the
truth but that it encloses the truth value.

We have first performed a NorESM simulation (one
member/realisation) with TP values (the first row of Figure 6)
from 1980 to 1999 that henceforth referred to as TRUTH.
It has been initialized in January 1980 from member one of
the 30-member NorCPM1 historical simulation integrated with
historical forcing from 1850 to 2014 following phase 6 of the
Coupled Model Inter-comparison Project (CMIP6) protocol
(Bethke et al., 2021). A tiny perturbation of 10−6◦C was added to
SST of that member in January 1980. We constructed synthetic
observations from monthly averages of TRUTH with random
white noise taking into account for observational error. The
observation error was specified to be equal to one standard
deviation of the temporal variability in TRUTH. The observation
error varies with grid cell and calendar month. The monthly
averaged observations of temperature, salinity, phytoplankton
concentration, Oxygen, Nitrate, Silicate, and Phosphate were
chosen for this study. Synthetic observations of temperature
and salinity were produced at 35 vertical z-levels sampling the
full water column, while in horizontal direction we kept only
points at every 5th model cell. The BGC observations have
been produced at surface at every 5th grid cell. Observations in
ice-covered water were discarded.

Four sets of experiments have been performed in this study
as follows:

• We use perfect parameters (i.e., TP;) to evaluate the impact
of different observational networks for constraining error of
the physical and BGC state variables. All experiments use
30 members. The initial ensemble state in January 1980 is
taken from the historical ensemble NorCPM1 simulation run
(Bethke et al., 2021). The initial condition is constructed from
the 30-member NorCPM1 historical simulation- meaning
that member 1 is nearly identical to the truth. However,
two members starting with a microscopic difference in SST
would be totally different at the surface within 10 months
(Supplementary Figure S3 in Fransner et al., 2020), and would
have produced a spread comparable to climatology in the top
1000m. The first 10 years (i.e., 1980–1989) are considered as
a spin-up period so as to let the model adjust to the perfect
parameters that differ from the value used for producing
the historical ensemble and so that the initial condition of
member 1 differs from the truth. Assimilation of the state
variables starts in February 1990 and run until July 1991 with
assimilation of (1) ocean physics profiles (EnKF_PHY), (2)
BGC surface observations (EnKF_BGC), and (3) combined
physics and BGC observations (EnKF_ALL). All observations
are time-varying and available at every 5th grid cell. We
also perform a free ensemble run (without data assimilation
called NorESM_TP) so it is feasible to quantify the
impact of assimilation. Theses simulations are analysed
in Section 3.1.

• The second set of experiments is conducted to test state-
parameter estimation. A 30-member ensemble simulation
is run from the initial ensemble as in the previous set of
experiments but this time with PP values (the second row
of Figure 6). Again the ensemble is integrated from January
1980 until January 1990 (NorESM_PP) to let the model
state adjust to the new parameter values. From February
1990 to December 1990, three state-parameter estimation
experiments are performed to test the impact of the parameter
estimation. The parameters are only adjusted by assimilation
and the value is kept unchanged during the model integration
(persistence) until the next assimilation step. All experiments
assimilate physical observations but differ in the BGC surface
observation networks: (1) time-varying BGC observations at
every 5th grid cell (EnKF_PE), (2) monthly climatology of
BGC observations at every 5th grid cell (EnKF_PE_CO), and
(3) monthly climatology of BGC observations at a sparser
grid (i.e., every 10th grid cell; EnKF_PE_SCO). The monthly
climatology is generated by averaging 20-years time varying
observations. The results of these experiments are presented
in Section 3.2.

• The parameters estimated in the previous set of experiments
are now fixed and we analyse their impact on the
model state for free ensemble runs (without assimilation).
All simulations were initialized on the 15th of January
1980 (as in NorESM_TP) and run until December 1983.
However, the state variable of member 1 is very close to
the truth run in January 1980 and we have decided to
consider only the other 29 members that are completely
independent (member 2–30) for all experiments. Three
ensemble simulations are performed with parameters obtained
from EnKF_PE, EnKF_PE_CO and EnKF_PE_SCO (referred
to as NorESM_PE, NorESM_PE_CO and NorESM_PE_SCO,
respectively). The simulations with parameters estimated
(PE) are compared to NorESM_TP and NorESM_PP. In
NorESM_TP, parameters are perfect but the initial state in
1980 is imperfect and it quantifies a climatological error
level expected with a perfect model (upper benchmark). In
NorESM_PP, both the initial state and the parameter are
inaccurate, and it represents the lower benchmark. The results
of these experiments are presented in Section 3.3.

• The final set of experiments addresses the impact of the
estimated parameters on the performance of reanalysis—
where monthly assimilation of the state is performed. The
reanalysis is started on February 1990 and run to December
1991. Prior to this, a 10 year spin up from 1980 is performed
to allow the model to adjust to the new parameter values. The
ensemble parameter values are from (1) parameters estimated
(PE) obtained from EnKF_PE (referred as REANA_PE),
(2) Perturbed parameters (REANA_PP, lower benchmark),
and (3) REANA_TP with perfect parameter values. All
experiments use the same observations (as in EnKF_ALL
experiment), which combined physics and BGC surface time-
varying observations available at every 5th grid cell. The results
of these experiments are presented in Section 3.4.

A summary of all experiments is given in Table 1.
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TABLE 1 | List of performed experiments.

Description Experiment Name Observations (if assimilated) Initial ensemble from Parameters used Time period

Model free runs NorESM_PP Historical run Perturbed parameters Jan 1980–Jan 1990

NorESM_TP Historical run True Parameters Jan 1980–Jul 1991

Assimilation

runs with true

parameters

EnKF_PHY Physics obs. NorESM_TP True Parameters Feb 1990–Jul 1991

EnKF_BGC BGC obs. NorESM_TP True Parameters Feb 1990–Jul 1991

EnKF_ALL Physics + BGC obs. NorESM_TP True Parameters Feb 1990–Jul 1991

Online

parameter

estimation

EnKF_PE Physics + BGC obs. NorESM_PP Online Feb 1990–Dec 1990

EnKF_PE_CO Physics + BGC Clim. Obs. NorESM_PP Online Feb 1990–Dec 1990

EnKF_PE_SCO Sparser grid Physics + BGC Clim. Obs. NorESM_PP Online Feb 1990–Dec 1990

Free runs with

fixed PE

NorESM_PE Historical run PE from EnKF_PE Jan 1980–Jan 1990

NorESM_PE_CO Historical run PE from EnKF_PE_CO Jan 1980–Dec 1983

NorESM_PE_SCO Historical run PE from EnKF_PE_SCO Jan 1980–Dec 1983

Reanalysis runs REANA_PE Physics + BGC obs. NorESM_PE PE from EnKF_PE Feb 1990–Dec 1991

REANA_TP Physics + BGC obs. NorESM_TP True parameters Feb 1990–Dec 1991

REANA_PP Physics + BGC obs. NorESM_PP Perturbed Parameters Feb 1990–Dec 1991

FIGURE 2 | The first row shows the time evolution of the vertical global-averaged RMSE for temperature (first column), salinity (second column), and phytoplankton

concentration (third column) in the NorESM free run against TRUTH. The other rows show the RMSE difference (RMSED) for the same variables with assimilation of

physics observation (EnKF_PHY), BGC surface observations (EnKF_BGC), and combined observations (EnKF_ALL), respectively. RMSED is computed by subtracting

the RMSE of simulations with DA from that of free run RMSE. Warm (cold) colors represent improvement (degradation) from assimilation.
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FIGURE 3 | Same as Figure 2 but for Phosphate (first column), Silicate (second column), and Oxygen (third column).

3. RESULTS

3.1. Impact of Assimilation on the State
Using True Parameters
A prerequisite for skillful parameter estimation is that
assimilation constrains the error of the state variables well.
Error in state variables, particularly at the surface and at
inter-mediate depth can have a strong influence on near-
surface biogeochemical processes. We work in a perfect model
framework (i.e., all members use true parameter values) and
we are interested in how well the error of the state variables is
constrained by different observation networks. The monthly
time evolution of the RMSE (averaged over the global domain
and organized by depth level) of the NorESM free ensemble
run (NorESM_TP) is shown in Figures 2, 3. We also show the
RMSE-difference (RMSED) of EnKF_PHY, EnKF_BGC and
EnKF_ALL assimilation experiments compared to NorESM_TP.

All assimilation experiments improve the accuracy of both
the ocean and the BGC state variables in the near-surface levels
compared to NorESM_TP. The difference between the three

DA experiments is small. Sole assimilation of BGC or physical
data alone is able to constrain well the surface ocean physical
and biogeochemical variables and vice versa. This was somewhat
unexpected, and it exemplifies well the potential of strongly
coupled data assimilation (Penny and Hamill, 2017). It should be
reminded that we assimilate in an isopycnal coordinate that has
been shown to be more effective than assimilation in geopotential
depth for surface observation (Gavart and De Mey, 1997;
Counillon et al., 2016). The Analysis error for phytoplankton
concentration is well reduced in all experiments. Similarly,
clear improvements are shown for nutrients (phosphate and
silicate) and oxygen estimates. BGC data assimilation alone
yields the largest reduction of errors in the top 200 m. Below
200 m depth, the combined assimilation of physical and BGC
observations provides slightly better performance than the other
two experiments and it mitigates the degradation seen at deeper
layers for some variables, e.g., temperature, phosphate, and
oxygen. Overall, the accuracy of the combined assimilation
experiment is slightly better. For example, the average error
in EnKF_ALL for salinity in the top 1 km is 35% lower than
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FIGURE 4 | Time evolution of global-averaged normalized RMSE (solid lines)

and ensemble spread (dotted lines) of the BGC parameters from

state-parameter estimation experiment using assimilation of time-varying

observations (EnKF_PE). RMSE is calculated by comparing each member

against the true values. Both RMSE and spread has been normalized by the

global mean value of the true parameter.

that of the free run, while it is 24% for EnKF_PHY and 30%
for EnKF_BGC. Similarly for Oxygen, EnKF_ALL has 28%
lower error than the free run while EnKF_PHY is 19% and
EnKF_BGC 24%.

3.2. Online Parameter Estimation
This section presents and assesses spatially varying ecosystem
parameters estimation with the DOSA scheme (reduction of
error of the estimated parameter). We analyse the EnKF_PE,
EnKF_PE_CO and EnKF_PE_SCO experiments (see Table 1).
The time evolution of the global-averaged ensemble spreads and
RMSEs of the estimated parameters obtained from EnKF_PE
are shown in Figure 4. RMSEs for all parameters reduce
with time and become stable within one year of assimilation.
The reduction is largest for GRAZRA that shows a 72%
error reduction from its initial distribution (Table 2). The
error reduction in the remaining parameters WPOC, BKPHY,
GAMMAP, and BKOPAL is about 54, 47, 40, and 30%,
respectively. Similarly, the ensemble spreads of all parameters
reduce with time. However, the reduction is quicker than
for RMSE, which suggests that the system may benefit
from using multiplicative or additive inflation (Mitchell and
Houtekamer, 2000; Anderson, 2001). Similar results have been
obtained from EnKF_PE_CO and EnKF_PE_SCO experiments
(not shown).

Ensemble data assimilation estimates the parameters based
on their correlation with the model misfits from observations
(e.g., Anderson, 2001). In order to visualise the convergence
process, we have used scatter plots (see Figure 5) of the
parameter ensemble against the model deviation from the truth
at different cycles of the assimilation experiment; i.e., in the
start in January 1990 (red color), after the first assimilation, the
second and the last assimilation cycles (green, purple, and blue
colors, respectively). Each scattered dot represents one ensemble
member and the big dots represent the ensemble mean. All
ecosystem variables simulated using perturbed parameters show

TABLE 2 | Spatial average of the point-wise ensemble RMSE of the parameter

values obtained at the end of the estimation period (December 1990).

NorESM_PP EnKF_PE EnKF_PE_CO EnKF_PE_SCO

BKPHY 0.38 0.20 0.17 0.22

GRAZRA 0.37 0.10 0.09 0.11

BKOPAL 0.36 0.25 0.22 0.29

GAMMAP 0.43 0.26 0.30 0.32

WPOC 0.39 0.18 0.15 0.23

The RMSE has been normalized (divided) by the global mean value of the true parameter.

relatively large deviations from the TRUTH (y-axes in Figure 5),
which underlines the sensitivity of the surface quantities to
errors in the parameters. Among all parameters, GRAZRA
shows the strongest linear relation with all variables and is the
most important parameter for reducing model bias. For some
parameters, the linear relationship is only strong with respect
to some variables (e.g., WPOC with Silicate), which shows
the importance of using multiple type of observations for the
parameter estimation. The parameters are converging toward the
true value very rapidly (already within the first 2 assimilation
cycles), strongly reducing the error in ecosystem variables. After
11 assimilation cycles (corresponding to December 1990), one
can notice that global means of the estimated parameters are
very close to the true value and that the errors in the ecosystem
variables are close to zero. This shows that the method converges
quickly (within few assimilation steps) and is able to constrain
the global mean of estimated parameters close to their true values
by largely reducing the error in parameters. Similar results have
been found for EnKF_PE_CO and EnKF_PE_SCO experiments
(not shown).

We further analyse the spatial distribution of the estimated
parameters obtained for December 1990 from all three
experiments. Figure 6 shows the true and ensemble mean of
the experiments with perturbed and estimated parameters. First,
we note that the data assimilation yields a reduction of error
compared to the initial values for all parameters. We can also
notice that there is some spatial coherency in the value of the
pattern retrieved. Parameters show relatively good agreement
with the spatial distribution of the true value with spatial RMSE
reduced by 75% for GRAZRA, by 50 % for BKPHY and WPOC,
40% for GAMMAP, and only 30% for BKOPAL, see Table 2.
However, some differences remain and there is some small-scale
noise. We suspect the latter to be related to spurious correlations
present in our finite size ensemble (30). The places where the
estimation fails to converge to true value may relate to places
where the model is insensitive to the parameters. Hence, the
parameter estimation can drift towards an erroneous value—
e.g., as a response to spurious correlation or because of the
approximation of Gaussianity and linearity during the analysis—
without having an impact on the state error. In order to assess the
impact of the error reduction on the state variable, we will freeze
the parameter values at the last assimilation cycle and perform
simulations in a free ensemble run and in a reanalysis mode in
the following sections.
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FIGURE 5 | Scatter plots for globally-averaged misfit (model-TRUTH) ensemble vs. BGC parameters ensemble. Plots are shown for surface phytoplankton (row-one),

silicate (row-two), phosphate (row-three), nitrate (row-four), and oxygen (row-five) with BKPHY (column-one), GRAZRA, (column-two), BKOPAL (column-three),

GAMMAP (column-four), and WPOC (column-five) parameters; obtained from first guess (red), after first assimilation cycle (green), second assimilation cycle (purple),

and end of assimilation (blue) with EnKF_PE experiment. The large dots show the ensemble mean. Horizontal and vertical dashed black reference lines represent the

line of zero misfit and global-averaged TP values, respectively. Solid colored lines are the linear regression lines.

3.3. Model Ensemble Free Run With
Estimated Parameters
We verify the state accuracy of a free ensemble run that uses
the final parameter’s estimates of EnKF_PE, EnKF_PE_CO and
EnKF_PE_SCO experiments, and refer to them as NorESM_PE,
NorESM_PE_CO and NorESM_PE_SCO, respectively. We
compare the performance against a free ensemble run using
the true parameter (NorESM_TP) and one using the perturbed
parameter (NorESM_PP).

In Figure 7, NorESM_PP poorly simulates the phytoplankton
activity with a systematic overestimation of phytoplankton

concentrations and generally longer spring blooms during
the summer seasons compared to NorESM_TP. The runs
that use the estimated parameters clearly outperform
NorESM_PP, and perform closely to NorESM_TP. For
instance, the global averaged RMSE of the phytoplankton
concentration with NorESM_PE and NorESM_TP is roughly
51 and 54% lower than in NorESM_PP. Similarly, the biases
in the parameter estimation experiments are significantly
reduced to the level of that of TP. The performance of
TP and PEs are also comparable in the upper 200-m as
shown in Figure 7C. Below this depth, the model seems to
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FIGURE 6 | True (row-one) and point wise ensemble mean of the perturbed (row-two) and estimated BGC parameters in December 1990 with assimilation of

time-varying (row-three), climatological (row-four), and very sparse climatological (row-five) BGC surface observations in addition to time varying physics. Column-one

to -five correspond to BKPHY, GRAZRA, BKOPAL, GAMMAP, and WPOC parameters.

have no sensitivity to these parameters and all experiments
perform equivalently.

This conclusion is also verified for others BGC quantities
such as silicate (Figure 8), phosphate (Figure 9), nitrate, and
oxygen (not shown) in which PEs perform nearly as good as
TP, while PP leads to a poor simulation of these variables and a
large underestimate (negative bias) of the nutrient concentration,
specifically during summer seasons, in the euphotic zone. This
is related to the highly enhanced phytoplankton activity in PP,
as seen earlier, which removes the available nutrients from the
euphotic zone. RMSE and bias profile plots suggest that BGC
parameters may strongly control the biogeochemical process in
deeper layers up to roughly 500m depth. Again, the simulated
quality of nutrients and oxygen profiles by PEs and TP are very
similar throughout entire depth.

We can also notice that NorESM_PE and NorESM_PE_SCO
experiments show very comparable accuracy for ecosystem
variables. Results from NorESM_PE_CO is not included to avoid
overlapping lines in the Figures but we found very similar results.
It suggests that BGC surface sparse climatological observations,
and even very sparse climatological observations are somewhat

sufficient to retrieve optimal ecosystem parameters with similar
quality as time-varying observations using the DOSA-EnKF
algorithm. Hence, in our model, the largest contribution to the
error appears to be related to the seasonal cycle representation,
which can be effectively corrected with a monthly climatology
of observations.

We also analyse the impact of the parameters spatially.
Figure 10 shows the RMSE and bias averaged over 100m depth
for the phytoplankton concentration and 500m for the silicate
profile. In general, bloom intensity increases from mid to high
latitudes. It is seen that PP shows a larger overestimation of
phytoplankton concentration, specifically over high latitudes and
over some tropical regions, e.g., the eastern tropical Pacific
Ocean. In all 3 PEs, the biases and RMSEs are reduced. The
RMSE and bias patterns of the PEs closely match that of TP.
In the case of silicate, PP shows a severe underestimation
over the region where increased phytoplankton activities
are seen.

Performance of the PEs is now assessed for an observation that
was not used for tuning the parameters. Hence, we investigate air-
sea CO2 flux and net primary production (NPP) (Figure 11) and
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FIGURE 7 | Panels on the left show the RMSE (solid lines) and bias (dotted lines) of the ensemble mean of NorESM phytoplankton concentration compared to the

TRUTH in the euphotic zone (i.e., from the surface to 100 m) in the northern hemisphere [NH, (A)] and in the southern hemisphere [SH, (B)]. (C) is the globally

averaged vertical error profiles estimated over the 4-year period (1980–1983). The results of the free NorESM simulation using TP are shown in black, PP in red, and

PE using assimilation of time-varying observations in blue and sparse climatological BGC observations in magenta.

found consistent results. Similar to previous results, PEsmaintain
the accuracy closer to TP.

The above results provide strong evidence that the DOSA-
EnKF system can successfully recover the optimal value for
chosen BGC parameters. It also suggests that the remaining
parametric error does not effectively influence the behavior of
the model.

3.4. Reanalysis With Estimated Parameters
This section presents the accuracy of the state variables in the
reanalyses which started in February 1990 and were run until
December 1991 using fixed estimated parameters (REANA_PE).
We compare the performance of REANA_PE with that of
a reanalysis using perturbed parameters REANA_PP (lower
benchmark) and a reanalysis using true parameters REANA_TP
(upper benchmark).

The time evolution of the RMSE and bias over the
euphotic zone is presented in Figure 12. First, we notice that
assimilation improves the accuracy of the ecosystem variables
in all experiments. For instance, the prior distributions of
phytoplankton, oxygen and net primary production (NPP) are
associated with high uncertainty and biases in the months with
maximum bloom activity (January in the southern hemisphere).
After a few assimilation cycles, there is a lower error during
the bloom seasons. This can also be verified by comparing the
phytoplankton free run accuracy shown in Figure 7 with the

analysis accuracy presented here. For instance, the free run with
PP shows RMSE values of roughly 70 µmolC m−3 for the spring
bloom peak over the northern hemisphere (Figure 7), which is
reduced to roughly 40µmolC m−3 after assimilation (Figure 12).

Similar results are found for NPP (time evolution of free run
not shown), for which observations are not being assimilated
in the system (non-observed variable). Thus, the assimilation
system is capable of improving the quality of not only the
observed ecosystem variables (e.g., phytoplankton and Oxygen)
but also of the non-observed variables. However, differences in
the accuracy of reanalyses are clearly visible for the different set
of parameters. REANA_PP shows larger uncertainty and stronger
biases particularly during bloom seasons for phytoplankton,
oxygen and net primary production reanalyses. The differences
between REANA_PP and REANA_TP are more pronounced
in the northern hemisphere than in the southern hemisphere.
This exemplifies that assimilation cannot achieve optimum
performance in the presence of model error.

The quality assessment of reanalysis has been further assessed
in the deeper ocean by estimating the globally averaged RMSE
and bias profiles for the top 1-km (Figure 13). The statistics have
been computed using the July 1990 to December 1991 period.
The first 6 months have been discarded for removing assimilation
spinup that is longer in the deeper ocean. TP and PE show overall
comparable performance for phytoplankton reanalysis whereas
PP leads to degraded performance mostly in the top 150 m.
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FIGURE 8 | Same as Figure 7 but for Silicate.

FIGURE 9 | Same as Figure 7 but for Phosphate.
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FIGURE 10 | RMSE and bias maps estimated over 1980–1983 for phytoplankton and silicate. For phytoplankton, RMSE (column-one) and bias (column-two) are

averaged over euphotic zone (0–100 m), while for silicate, they are averaged over 0–500m depth (column-three and -four, respectively). The error are computed from

free NorESM simulation using TP (first row), PP (row-two), and fixed PE estimated with assimilation of time-varying observation (row-three), time varying physic and

climatological BGC (row-four), and time varying physic and sparse climatological BGC (row-five).

Similar results can be seen for nutrients (e.g., phosphate and
silicate) and oxygen profiles where differences of PP with TP or
PE are more pronounced at inter-mediate depth levels. Still we
can see that the performance of PE is not as efficient for oxygen
and phosphate below 300m. It would have been interesting to test
whether training the parameters with deeper BGC observations
(currently only available at the surface) would have improved
performance there.

4. SUMMARY AND CONCLUSIONS

We have presented the feasibility of optimizing spatially
varying ocean biogeochemical parameters in an Earth system
model using an ensemble-based data assimilation method in

an idealized perfect twin experiment setup. We used the
NorCPM system, which combines the NorESM global model
with the DOSA-EnKF assimilation method. The DOSA-EnKF
applies a smoothing step to the state and parameters before
propagating the model for the analysis step. We estimate
five spatially varying biogeochemical parameters in addition
to ocean physical and biogeochemical state variables. The
parameters characterize the major surface biological processes
such as phytoplankton growth, zooplankton grazing, release
of dissolved organic carbon, sinking of organic matter and
nutrient uptake. We assimilate synthetic monthly ocean physics
profiles (temperature and salinity) and surface BGC observations
(Phytoplankton, Nitrate, Phosphate, Silicate, and Oxygen)
in a strongly coupled framework, where observations are
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FIGURE 11 | Same as Figure 10 but for CO2 flux (column-one and -two) and net primary production (column-three and -four).

used to update ocean and BGC state variables jointly along
with parameters.

Assimilation of different observation networks in a strongly
coupled framework reveals that BGC observations can effectively
constrain errors in the ocean physics and vice versa. It
demonstrates the potential of strongly coupled data assimilation
to constrain the errors in cross component state variables. It
could benefit ocean BGC in real observations setup, where
dense network of physical observations can be used to constrain
the BGC state variables for which measured properties are
under-sampled. In our setup, sole assimilation of BGC surface
observations seems to yield largest error reduction in the top
200 m for both physical and ecosystem variables. Further,
combined assimilation of physical and BGC observations
provides more robust performance and avoid degradation in
deeper layers.

The success of the parameter estimation has been tested by
three state-parameter estimation experiments performed using
different networks of BGC observation on top of physical
observations. One of them assimilating sparse-grid (every 5th
grid cell) time-varying BGC observations and the other two
assimilating climatological BGC observations prepared at sparse
(every 5th grid cell) and very sparse horizontal resolution (every
10th grid cell). All experiments converge quickly within a year
and are able to retrieve the true global mean of estimated
parameters, strongly reducing the error in the perturbed
parameters. Further, the spatial pattern for nutrient uptake and
zooplankton grazing parameters show relatively good agreement
with that of the true values. However, some differences remain
in the estimated values. The success of recovering the true
parameter values in any region depends on the sensitivity of the
model to those parameters. It is possible that the true values are
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FIGURE 12 | Panels on the left show the RMSE (solid lines) and bias (dotted lines) of the ensemble mean of phytoplankton concentration reanalysis compared to the

TRUTH in the euphotic zone in the northern hemisphere [NH, (A)] and southern hemisphere [SH, (B)]. The results of the reanalysis using TP are shown in black, PP in

red, and PE in blue using assimilation of time-varying observations. (C,D) and (E,F) are same as (A,B) but for net primary production and oxygen concentration.

FIGURE 13 | (A) is the globally averaged RMSE (solid lines) and bias (dotted

lines) profiles estimated over the 18-months reanalysis period (July 1990-

December 1991) for phytoplankton concentration generated using TP (black),

PP (red), fixed PE (blue), and assimilating time-varying observations. (B–D) are

same as (A) but for oxygen, phosphate, and silicate, respectively.

not sensitive in many regions. Over such regions, the estimation
of parameters may not work effectively and differences between
estimated and true values are possible.

As a way to test the impact of the parameters on the state
variables, we conducted ensemble free run using estimated
parameter values obtained from three different BGC observation
networks mentioned earlier. The performance of the estimated
values has been compared with upper- and lower benchmark
model ensemble runs conducted using true and perturbed
parameter values, respectively. We found that the accuracy
of simulated ecosystem variables obtained using all three sets
of estimated parameters is as good as those obtained using
true parameters. Perturbed parameters lead to a systematic
overestimation of the phytoplankton and longer spring blooms
compared to the true parameters. Similar results have been
obtained for nutrient and oxygen concentrations throughout
the entire water column. These results suggest that remaining
differences in the estimated and true parameters do not effectively
influence the behavior of the model and estimated values are
optimal. As similar results have been obtained from all three
sets of estimated parameters, we can conclude that very sparse
BGC surface climate observations are sufficient to retrieve
optimal ecosystem parameters with similar quality as time-
varying observations using the DOSA-EnKF algorithm with our
model system. We suspect that this is because the primary source
of error is in the representation of the seasonal cycle that is well
represented by the monthly climatology data.

The performance of reanalyses using fixed estimated
parameters was also assessed. Again, we found that using
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the estimated parameters improves the quality of ecosystem
variables in the reanalyses mode. The accuracy of the reanalysis
with perturbed parameters shows poorer performance than the
one using true and estimated parameters with large biases and
error for observed variables (e.g., phytoplankton, oxygen and
phosphate) as well as for unobserved variables (e.g., net primary
production which was not assimilated). This is expected because
assimilation is not designed to correct model errors (Dee, 2005;
Counillon et al., 2021).

The finding of this study clearly reveals that the DOSA-EnKF
system in a perfect twin experiment can estimate spatially varying
optimal BGC parameters for the NorESM model, even with very
sparse climatological BGC surface observation. It remains to be
confirmed whether the method succeeds in a real framework
(assimilating real observations) as errors may originate from
the other components (atmosphere, ocean physics, sea ice) or
additional structural-related errors.
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